MCF5272 USB SW Developer Manual.
Stand-Alone Device Driver for CBI &
Isochronous Transfers.

M5272/USB/SDD/CBII
Rev. 0.3 05/2002

:“:‘:DigitalDNA' SR SR

from Motorola

N—1 i

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

CONTENTS

Paragraph Title Page
Lo INErOAUCTION . et e e e 1-1
1.1, Driver CapabilitiES.......cccciiieiice et 1-1
2 L - 1= o N =S SRS 1-2
1.3, QUICK Start GUITE.cceeeieeeeieecee ettt re e sar e e ere e 1-2
2. Driver INItialiZation.ooueii e 2-1
2.1. Initialization of Descriptor Pointers and Variables..........cccoocvevvieivccnvicseenns 2-1
2.2, Initiaization of ENPOINES.......cooiiiiiiiieie e 2-1
2.3. Initidization of the Configuration RAM.ccccoiiieieeie e 2-2
24. Initiaization of the FIFO MOAUIE.cccooiiiieiiieece e 2-2
25, Initialization of INEEITUPLS.ceveeeeceeceee e 2-5
3. Control, Bulk, Interrupt Data Transfer..........cocooeiiiiiiiniiiii e, 3-1
3. 1. Device-to-HOSt Data TranSfercoociveienerenieesie s 3-1
3.1.1 Initiating the Data IN Transfer. ... 34
3.1.2. Continuation of the Data IN Transfer. ..o 3-7
3.1.3. Completion of Data IN Transferccooeieeieneseee e 3-9
3.1.4. Notifying Client Application about Completion of DataIN Transfer. 3-11
3.2. Host-to-Device Data TranSferoocveeeierie e 3-12
3.2.1. Initiating the Data OUT TranSfer........ccooveieceeseere e 3-14
3.2.2. Continuation of the Data OUT Transfer.cccvvveenenienenieseesee e 3-17
3.2.3. Completion of the Data OUT Transfer.cccccveveereererieeseeneseeseesee s 3-20
3.2.4. Notifying Client Application about Completion of Data OUT Transfer. .. 3-20
4. Isochronous Data TranSTer..... ..o 4-1
4.1, Device-t0o-HOSt Dala TranSfercoeieereriinieseeie e 4-1
4.2. Monitoring Host Software During IN Transfers........cccovvveveneevievceveese e, 4-2
4.3. Monitoring the Device-side Application During IN Transfers.cccceeeeenenen. 4-8
4.4. HOSt-0-Device Data TranSerccooiiiiiieiriree e 4-8
45. Monitoring the Host Software During OUT Transfers.ccooevvreneenenenniennen. 4-9
4.6. Monitoring the Device-side Application During OUT Transfers.........cccuc....... 4-11
5. Vendor Request Handling.covoiiiiiiii e 5-1
N~—1 L

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

5.1. Accepting arequest from the HOSL.cccoveevecieseese e 5-1

5.2. DataOUT request handlingc.ccoeeiiriiiiiienieseeseee e 5-2
53. DatalN request handling.cccccveoiiieiieie e 5-4
54. Nodatarequest NandliNg.ccoooeeiiiienirii e e 5-5
6. Miscellaneous OpPerationNS.ccc.ieiuiiiieii e e e e 6-1
6.1. POrt Reset Handling.ccocooiiiiiii et 6-1
6.2. Change of Configuration Handling.cccevereerieeneseseese e 6-2
6.3. Hat/Unhat Endpoint Handling.cccccooeiiiiinii i 6-2
7. USB Device Driver Function Specification.ccccooviiiiiiiiiiieiineinn, 7-1
7.1, uSh_buS Stale CNQ _SEIVICE.....cciii e 7-1
FAZZV'S o [0 =Y o o RS = 8/ o TS 7-2
ARSI V'S o = oo o o] o1 N K= oS 7-3
A SV o I = 0o oo] o1 A 1 S 7-4
7.5, USD_ €D FITO NIt ..o e 7-5
AL T o = o ST 011 Y S 7-6
A A Vs o = o K - | SRR 7-7
A TV o I = o L7 S 7-8
7.9, USD_FIfO INIT..eiiiiciiccc e 7-9
7.10. 01 oI 0 = A 0 (= o 7-10
7.11. USh_get_frame NUMDES ..o e 7-11
7.12. 05 oI o USSR 7-12
7.13. 0 o oI £V SRR 7-13
7.14. usb _isochronous transfer SErVICE........cocvvecieecee e 7-14
7.15. 01 o TS 111 SRR 7-15
7.16. USD_MaKe POWEr _Of TWO....cceeieieiecee ettt 7-16
7.17. 0 o o UL = VLot SRR 7-17
7.18. U1 oI 0 G 0 = = OSSO RORR 7-18
7.19. 0 oI G 1 = 10 RS 7-19
7.20. USD_SENAZLP.....iie et 7-20
7.21. ush_set final_frame NUMDEYcccoiirii e 7-21
7.22. usb set start frame NUMDENcccveeiie i 7-22
7.23. U oS o A = oI - YRR 7-23
7.24. U1 oI o o = - WS ORR 7-24
7.25. U1 oY= 1o = o [0 (o] o1 TSR 7-25
7.26. U VL= aTo (= o [= AV ol 7-26
8. Application Specific Function Prototypes.ccovveiviiiiiiiiiiiineneeen, 8-1
LT I U1 o = o(e'= o o0 0 110 =T [P 8-2
LT U1 o I o (=Y ox o [010 1 o = USRS 8-3
LS TC T 01 o = o I £ 7= 1 SRR 8-4
LS S VS o = o o G 0 [0 L= USRS 8-5
LRSS U1 o = o N oG o (o] 1= TSP 8-6
~—1 i

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

o ST 01 o = o U 0] 07 PR 8-7

o A U o (=< = 11 oSSR 8-8
9. Appendix 1: File Transfer Application.cccoveeiiiiiiiiiiiici e, 9-1
LS50 IR 1 0o U o i o] o NPT 9-1
9.1.1. IMPOITANT NOLES.......eieceie e s 9-1
9.1.2. Capabilities of File Transfer AppliCation...........cocevereeneeienieseeseeeeseenen o-1
9.13. REGIE FIlES........eieiieieieeeee e 9-2
9.2, UFTP ProtoCOl DESCIPLION.ccveeiirieesieeie e sieseesieesie e seee st ee e e sae e 9-2
9.2.1. USB USBOE. ...ttt sttt 9-2
.22, SHAUS VAIUES.....ccoe ettt sttt sre s 9-3
9.2.3. UFTP Command DESCiPLIONS.cccuevierieeieseenieesieseesieeseesseesieesesseessesneens 9-3
9.2.3.1. UFTP_READ cOmMMaNd: OLh......cccceoemierereieiereieieinieieisiereiesssesesesesssesssesesesesesssssesesesesesesesenes 9-3
9.2.3.2. UFTP_WRITE COMMANG: 02N, ...oorrverrmreerrmreessneesssseessssesssssessssssssssssssssssssssssssssssssssnns 9-4
9.2.3.3. UFTP_GET_FILE INFO command: O3N........ccceerererererernrninrnrerersinrssnsesssesesssssesssssesesesesenes 9-4
9.2.3.4. UFTP_GET_DIR COMMANG: 04N,courverrrrerrereessneessssssssssesssssssssssssssssssssssssssssssssssans 9-5
9.2.35. UFTP_SET_TRANSFER_LENGTH cOMMAaNG: 05h.ccccreermreerreeessneesssseesssneessnns 9-6
9.2.3.6. UFTP_DELETE command: OB.........ccccoeueieeieinininieieieieiesisieeeessssessseseesesesssssssssesssesesenes 9-7

9.3. Implementation of File Transfer AppliCation.ccccuecevieereniesceeseece e 9-8
9.3.1L Implementation of File System. ... 9-8
9.3.2. INItIAliZING thE DIIVESceeeeeceeceee e e 9-8
9.3.3. Program EXECULION.coiieiiiiiieeie ettt s sae e 9-9
9.3.3.1. UFTP_READ cOmMMand EXECULION.c.covrurvererereriereesesenssenesessssesesessesesssesssssnssessssessnsssnsens 9-9
9.3.3.2. UFTP_WRITE cOMMaNd EXECULION.cvrererererererriessesssssssssssssssssssssssssssssssssssens 9-12
9.3.3.3. UFTP_GET_FILE INFO command EXECULION.cccccueerrrmrerreerereriereesesessessesessssenenens 9-14
9.3.3.4. UFTP_GET_DIR cOmMmMand EXECULION.ccvrererrrrrrrsrssssssssssssssssssssssssssssens 9-14
9.3.35. UFTP_SET_TRANSFER_LENGTH command eXeCULION.cccovrrerrrreeeenernsenens 9-15
9.3.3.6. UFTP_DELETE cOmmMand EXECULION.c.ccrruiuieimrrimimieneeeeeeeeseeesese s 9-15
9.3.3.7. Request for string descriptor NANAIING.cccvovririieirrereeesese s 9-15

9.4. USB File Transfer Application Function Specification.ccceevvveerveieeseenne 9-18
94.1. do_command_dElEte.ccoieeiiiieee e 9-20
9.4.2. (o [o] oo 0101070 I 7= Ao 1 S 9-21
9.4.3. do_command_get_file info.ccooerieieri e 9-22
9.4.4. do commMaNd FEAA.ccuveeei e 9-23
9.4.5. do_command_set transfer_length. ... 9-24
9.4.6. dO_ COMMEANT WIITE....c.ueeceeecee et s enne e 9-25
9.4.7. fetCh_COMMANG.coiiiieeee e 9-26
9.4.8. et _SIIING AESCIIPLON.......eeieeieeeieeeesteeie e s ree e se e ae e sreeeesnee s 9-27
9.4.9. FEAM_ T, e 9-28
S R/ ¢} (=Y {1 = OSSO 9-29
10. Appendix 2: Audio Application. ... 10-1
10.1. Lo (8o i) RSP URR 10-1
10.2.1. IMPOItANE NOLES........eeiieieieeiee ettt s r e e e e sneesnneeas 10-1
10.1.2. Capabilitiesof Audio APPIICALION.cccveeeieieereeiecee e 10-1
10.1.3. RE @O FIlES.....ceceeieiecice sttt 10-1
10.2. Implementation of USB Audio AppliCationccccveeereeiesceeseere e 10-2
~—1 v

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.2.1. USB USAHE. ..oiiiiiiieieie ettt sttt 10-2
10.2.2. INiti@liZING the DIIVEN.....cooiiiiieeeeee e 10-2
10.2.3. Program EXeCUtiON FIOW.ccooveiuiiieiece e 10-3
10.2.4. USB_AUDIO_START command eXECULION.ccccereereereesieereeneeneennens 10-4
10.25. USB_AUDIO_STOP command EXECULION.cceeevveeireeireesreesreesseesneens 10-6
10.2.6. USB_AUDIO_SET_VOLUME command execution.cccccereerueenn 10-6
10.2.7. START_TEST OUT_TRANSFER command execution.cccceeeuvenne 10-7
10.2.8. START_TEST_IN_TRANSFER command execution.cccceeceerueenee. 10-7
10.2.9. START_TEST_INOUT_TRANSFER command execution. 10-8
10.2.10. Request for string descriptor handling. ..o 10-8
10.2.10.1. Memory layout for string deSTriPLOrS.......cvovv et 10-9
10.2.10.2. Sending the string descriptor to HOSL. ..o 10-10
10.3. USB Audio Application Function Specification.cccccveeereeiesieesieninnns 10-13
0 3 S o0 1 = T o SR 10-13
10.3.2. DUFFEN N2, et 10-14
(ORCTC Ao 1= S 1] aTo [0 (S o 1] o (o] SRR 10-15
10.3.4. INIt_tESL SITUCIUIES.c.veecereciee ettt ettt et s sre e reas 10-16
(O BT 117 1 == PSR 10-17
10.3.6. print_buffer CONENES.cccooeeieeeceee e 10-18
10.3.7. Print_transfer_StALUS.ccooveereriinieresee e 10-19
OGN o000 SR o = - VS 10-20
10.3.9. test_casel handler. ... e 10-21
10.3.10. test €ase2 handler.cccceiieeiee i 10-22
10.3.11. test case3 handIer. ... e 10-23
N1 v

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

ILLUSTRATIONS

Figure Title Page
Figure 3-1. Data Transfer Stages by the Driver. ... 3-3
Fig 3-2. Algorithm of usb_tx_data() fuNCLioN.cccoeiiriiiee e 35
Fig 3-3. Algorithm of usb _in_service() funCtion.cccccveeeeevecce s 3-8
Fig 3-4. Stages of receiving data by the DIiVer. ... 3-13
Fig 3-5. Algorithm of usb _rx_data() fUNCLioN.cceoeeieiieie e 3-15
Fig 3-6. Algorithm of usb_out_service() fuNClion.ccoveriirieninieee e 3-18
Fig 9-1. Memory layout for String deSCriptorsS.........cooeveeeereeieeiee s ee e eee e eeens 9-16
Fig 10-1. Memory layout for String deSCriptorsS..........oueevereereerie e 10-10

~—1 vi

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

About this document.
This document describes initidization and functionality of USB Device Driver (CBI &
I sochronous transfer types), and how to useit in user’s applications.

Audience.
This document targets software developers using MCF5272 processor.

Suggested reading.
[1] Universal Serial Bus 1.1 Specification.
[2] MCF5272 ColdFire Integrated Microprocessor. User’s manual. Chapter 12.

Definitions, Acronyms, and Abbreviations.
The following list defines the acronyms and abbreviations used in this document.

CBI Control / Bulk / Interrupt
EOP End of Packet
EOT End of Transfer
FHFO Hardware on-chip First-In-First-Out buffer
IMR Interrupt Mask Register
RAM Random Access Memory
SOF Start of Frame
UFTP USB File Transfer Protocol
USB Universal Seria Bus
ZLP Zero Length Packet
~—1 vil

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

1. Introduction.

This document describes a Device-side USB Driver, developed for MCF5272 processor.
The document is divided logically into two parts. The first part describes functionality of
the Driver. It covers data transferring to/from the Host, accepting vendor specific
commands, and describes how the Driver notifies the Client application about such events
as completion of transfer, reset, changing of configuration, and halt/unhalt endpoint. Each
chapter in the first part describes in full detail al routines, which perform some concrete
functionality, global structures and variables, explains how they work together as a
whole, and why it works in this way.

The second part (Chapter 7) is a specification of each function of the Driver. It gives a
short description of each function, it's arguments and returned values. Also, an example is
shown of the calling of each routine. Appendix 1 describes a File Transfer Application
example and Appendix 2 describes an Audio Application example.

1. 1 Driver capabilities

Passes a command (having data IN stage, data OUT stage, or without data stage)
to the Client application in real-time.

Notifies Client application about completion of transfer, reset, changing of
configuration, and halt/unhalt endpoint in real-time.

In/Out data transferring is highly optimized using hand-made assembler
code.

Simultaneous data transferring on different endpoints. Thus, if transfers
require different endpoints, the Driver will handle these transfers independently
and simultaneously (Driver does not wait until the transfer for some other
endpoint finishes, if required endpoint is free, it starts a new transfer
immediately).

Transfer data in both directions on endpoint number zero in the same way as
for other endpoints. The Driver ONLY dedicates an endpoint number zero in
order to accept commands from the Host. The usua data transfers from the Host
to the Device and from the Device to the Host are available on endpoint number
zero.

During Isochronous IN/OUT transfers the Driver can perform (if Device-side
Client application needs it) per-frame monitoring of Host-side software and
Device-side Client application when they areworking in real-time.

If the Host s/w is not working in real-timei.e. misses frames (in some
frames does not send IN/OUT tokens), the Driver sustains the sample rate relative
to the Device (it emulates sending of data to the Host) and notifies the Device-side
Client application about missed frames by the Host s/'w. Therefore, when Driver
Device-side s’w is still being synchronized with USB, and when sending of tokens
is resumed, the Device will send not the old data but the actual data (for IN
transfers).

nN—1 Introduction. 1-1

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

If the Device side Client application is not working in rea-time i.e. it
passes the data buffer to the Driver for transmitting/receiving but not in time
(Driver receives token but no buffer is allocated), the Driver notifies the Client

program.

1.2. Related files

Thefollowing files are relevant to Driver:

usb. h — Driver's function prototypes, global structures definition, Driver's
constant definitions;

usb. ¢ —implementation of Driver’s functions;

i nt _handl ers. ¢ —interrupt service routines for USB module are called from this
file;

descriptors.h — types definition for Device, configuration, interface, and
endpoint descriptors.

The Driver requires the following files:

alloc.c — Driver uses dynamic memory allocation, so the module
containing mal | oc() andfree() function is needed;

printf.c — in debug mode Driver calls printf() function to output debug
information;

stdlib.c —Driver callsmencpy() function.

Therest of filesinthei ni t group are used to initialize the board and processor.

1.3. Quick start Guide.

To dart working with the Driver, the Client application must call the usb_init()
function:

usb_ini t (&Devi ce_desc);

After that is done, the Client application may call usb_tx_dat a() and usb_rx_dat a()
functions to send data to the Host and receive data from the Host respectively:

usb_tx data(BULK IN, bufptr, size);
usb_rx_data(BULK QUT, bufptr, size);

To wait until the transfer is completed, the Client program may call the usb_ep_wai t ()
function:

usb_ep_wai t (BULK_I N);

Alternatively, the Driver calls usb_ep_tx_done() and usb_ep_rx_done() functions
when it completes the corresponding transfer, so it is a matter for the Client application
which mechanism it will use.

nN—1 Introduction. 1-2

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

The Driver also calls the usb_accept _command() function, which has to be implemented
in Client application, when it receives a command from the Host. Examples of using
other functions are given in Appendices 9 and 10.

nN—1 Introduction. 1-3

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

2. Driver Initialization.

This section describes step-by-step the initialization of the Driver. The initialization is
combined into one function — usb_i ni t (). Different parts of this function are described
in separate subsections.

2.1. Initialization of Descriptor Pointers and

Variables.

Initialization of the Driver starts from initialization of its global variable NewC (refer to
Chapter 5):

DEVI CE_COWAND * NewC = NULL;

To start work with the Driver, the Client application must call the usb_i ni t () function.
The only argument this routine has is the pointer to the structure that holds an address and
size of Device descriptor. usb_init() fetches the addresses from the structure and
initializes global pointers: usb_Devi ce_descri pt or (pointer to Device descriptor):

usb_Devi ce_descriptor = descriptor_info -> pDescriptor;

Then, it initializes its local variables: PConfi gRam — pointer to hardware on-chip
Configuration memory, pDevDesc — pointer to Device descriptor, and DescSi ze —size of
Device descriptor. The value of DescSi ze must be incremented by 3 (refer to Chapter
2.3).

2.2. Initialization of Endpoints.
Initialization of endpoints starts from initialization of endpoint number zero. The type of

transfer for that endpoint should be set to CONTROL (0). The size of packet is taken from
the Device descriptor:

ep[0] . packet _si ze = ((UsSB_DEVI CE_DESC *) pDevDesc) -
>bMaxPacket Si zeO;

Length of the FIFO-buffer for this endpoint is equal to four maximum size packets
(FI FO_DEPTHIis equal to 4):

ep[0].fifo_length = (uintl6) (ep[O0].packet_size * FI FO DEPTH);

No buffer is allocated for endpoint number zero as yet, so field start, |ength, and
posi tion should be cleared. The state of the endpoint is USB_CONFI GURED (according to
USB 1.1 specification, any transfers can be performed with an unconfigured Device via
endpoint zero). It is not the same as the state of Device such as def aul t, addr essed, or

N~——"1 Driver Initiaization. 2-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

configured. This field indicates whether either endpoint is able to transmit / receive
data or not.

Therest of the endpoints must be disabled:

for (i = 1; i < NUMENDPQO NTS; i++)
{

Dl SABLED;
USB_DEVI CE_RESET;

ep[i].ttype
ep[i].state

2.3. Initialization of the Configuration RAM.
To access the configuration RAM of the USB module, that memory must first be
disabled, otherwise an access error results. The Driver clears the CFG_RAM VAL bit of USB
Endpoint 0 Control Register (EPOCTL) and disablesthe USB module:

MCF5272_WR_USB_EPOCTL(i nm 0);
Then, the configuration RAM is loaded with the descriptors:

for (i =0; i < (DescSizel/ld); i++)
pConfigRanii] = pDevDesc[i];

The configuration RAM is long-word accessible only. The compiler performs division by
4 as aright shift by 2. In order not to decrease the actual size of descriptors, 3 was added
to DescSi ze (refer to Chapter 2.1). Descriptors can be stored in configuration RAM in a
4 byte format.

2.4. Initialization of the FIFO Module.

The initidization of the FIFO module is combined into one function -
usb _fifo_init(). Thisfunctioniscalled from usb_devcfg_servi ce() routine aso.

According the documentation for MCF5272 USB Module, the following restrictions
apply:
- EPnCFG[FIFO_SIZE] must be a power of 2.

EPNnCFG[FIFO_ADDR] must be adigned to a boundary defined by the
EPNCFG[FIFO_SIZE] field.

The FIFO space for an endpoint defined by FIFO_SIZE and FIFO_ADDR must
not overlap with the FIFO space for any other endpoint with the same direction.

To meet these restrictions, usb fifo_init() alocates two arrays of pointers to
endpoints—onefor I N endpoints, and the other — for OUT endpoints:

USB_EP_STATE *pl N[NUM_ENDPO NTS] ;
USB_EP_STATE *pOUT[NUM_ENDPO NTS] ;

N~——"1 Driver Initiaization. 2-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Endpoint number zero is always present and bi-directional. Thus its address should be
stored in both arrays:

pIN[0] = &ep[O0];
pQUT[0] = &ep[O];
niIN = nQUT = 1;

Then the function sorts the endpoints by direction and allocates them into two arrays.
for (i = 1; i < NUMENDPQO NTS; i++)
if (ep[i].ttype != DI SABLED)

if (ep[i]l.dir == IN)

pI N[nl N++] = &ep[i];
el se

pOQUT[NOQUT++] = &ep[i];

}

For the first call of usb_fifo_init() (from usb_init()), al these endpoints are
disabled. Thus arrays pl Nand pOUT contain the address of endpoint number zero only.

Then it calls usb_make_power _of _two() passing the length of the FIFO buffer for each
endpoint:

for (i =0; i <nIN i++)

usb_make_power _of _two(& pINi]->fifo_length));
for (i =0; i < nQUT; i++)

usb_make_power _of _two(& pOQUT[i]->fifo_l ength));

usb_make_power _of _two() finds the nearest higher power of 2 and stores it into
fifo_l ength.

usb_fifo_init() then sorts endpoints (their addresses in arrays pl N and pQuUT) by
fifo_l engthindescending order:

usb_sort _ep_array(pIN, nIN);
usb_sort _ep_array(pQUJr, nQUT);

This must be done in order to eliminate fragmentation of the FIFO buffer when alocating
gpace for each active endpoint. Thus, addresses in the FIFO buffer for endpoints can be
calculated in asimple way:

| Npos = O;
QUTpos = 0;
for (i =0; i <nIN i++)
pIN[i]->in_fifo_start = | Npos;
N~—1 Driver Initialization. 2-3

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

I Npbos += pINi]->fifo_ Il ength;
for (i =0; i < nQUT; i++)
pQUT[i]->out fifo start = QUTpos;

QUTpos += pQUT[i]->fifo_l ength;
}

Finaly, the maximum length of packet, the size of FIFO buffer, and the address of FIFO
buffer for each endpoint should be stored in the appropriate configuration register. In the

first instance, thisis done for endpoint number zero:

/* Initialize Endpoint O IN FIFO */
MCF5272_WR _USB_| EPOCFEinm O
| (ep[O0].packet_size << 22)
| (ep[O].fifo_length << 11)
| ep[O].in_ fifo_start);

/* Initialize Endpoint 0 QUT FI FO */
MCF5272_WR USB CEPOCFG i mm O
| (ep[O].packet_size << 22)
| (ep[O].fifo_length << 11)
| ep[O].out_fifo_start);

then for the remaining endpoints:

for (i =1; i < NUM_ENDPQ NTS; i++)
{
if (ep[i].ttype != DI SABLED)

if (ep[i].dir == IN)
/* Initialize Endpoint i FIFO */
MCF5272_WR USB EPCFGimm i, O
| (ep[i].packet_size << 22)
| (ep[i].fifo_length << 11)
| ep[i].in_fifo_start);

el se
/* Initialize Endpoint i FIFO */
MCF5272_WR _USB EPCFG(imm i, O
| (ep[i].packet_size << 22)
| (ep[i].fifo_length << 11)
| ep[i].out_fifo_start);

mN—1 Driver Initialization.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

2-4

2.5. Initialization of Interrupts.

The initialization of interrupts is combined into one function —usb_i sr_i ni t (). First, it
clears any pending interruptsin all endpoints:

MCF5272_WR_USB_EPOI SR(i nm O0x0001FFFF);
MCF5272_WR_USB_EP1I SR(i nm O0xO001F) ;
MCF5272_WR_USB_EP2I SR(i nm 0x001F) ;

Then, the function enables the dw red interrupts for al endpoints:

MCF5272_WR_USB_EPOI MR(i nm O
| MCF5272_USB_EPOI MR _DEV_CFG EN
| MCOF5272_USB_EPOI MR_VEND_REQ EN
| MCOF5272_USB_EPOI MR_WAKE_CHG EN
| MOF5272_USB_EPOI MR_RESUVE EN
| MCOF5272_USB_EPOI MR_SUSPEND EN
| MOF5272_USB_EPOI MR_RESET _EN

| MCOF5272_USB_EPOI MR_OUT_EOT_EN

|

|

|

|

|

MCF5272_USB_EPOI MR_OUT_EOP_EN
MCF5272_USB_EPOI MR | N_EOT_EN
MCF5272_USB_EPOI MR | N_ECP_EN
MCF5272_USB_EPOI MR_UNHALT_EN
MCF5272_USB_EPOI MR_HALT_EN

& ~(MCF5272_USB_EPOI MR_OUT LVL_EN
| MCOF5272_USB_EPOI MR IN_LVL_EN));

/* Enabl e EOT, EOP, UNHALT, and HALT interrupts, disable FIFO LVL */
MCF5272_WR_USB_EP1I MR(i nm Ox001E);
MCF5272_WR _USB_EP2I MR(i nm Ox001E);

Finally, it sets up ar.1”interrupt priority level for each endpoint, by initidizing the
corresponding Interrupt Control Registers:

MCF5272_WR SIM | CR2(imm 0

| ~(0x00008888)

| (USB_EPO_LEVEL << 12)

| (USB_EP1_LEVEL << 8)

| (USB_EP2_LEVEL << 4)

| (USB_EP3_LEVEL << 0));
MCF5272_WR SI M | CR3(i mm 0

| ~(0x88880000)

| (USB_EP4_LEVEL << 28)

| (USB_EP5_LEVEL << 24)

| (USB_EP6_LEVEL << 20)

| (USB_EP7_LEVEL << 16));

usb_i ni t () then enablesthe USB controller and Configuration RAM:

MCF5272_WR_USB_EPOCTL(i nm 0
| MCF5272_USB_EPOCTL_USB_EN
| MCOF5272_USB_EPOCTL_CFG RAM VAL) ;

N—1 Driver Initiaization. 2-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Now, transfers are permitted for endpoint number zero only. To enable other endpoints,
the Host must first set up the configuration.

N—1 Driver Initiaization. 2-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

3. Control, Bulk, Interrupt Data Transfer.

This chapter describes how the Driver supports Control, Bulk, and Interrupt transfer
types, describing how to initiate a transfer and how complete it correctly.

3.1. Device-to-Host Data Transfer

To transfer data from the Device to the Host, the usb_tx_data() function must be
called. It accepts three parameters:

epnum— number of endpoint, on which data will be transferred;
start — pointer to data buffer, that will be transferred;
| engt h — number of bytesto transfer (transfer length).

Thisfunction initializes the fields of globa structure ep. buf f er .

It sets the field ep[epnuni . buf fer. start to the beginning of the data buffer to be sent,

ep[epnuni . buf fer. | engt h — to the length of buffer, and ep[epnuni . buf f er. posi ti on
to O (no data sent yet).

Then, it determines the number of bytes that can be placed into the FIFO buffer, and
copies that amount of data from the source buffer to the FIFO. After that it modifies
ep[epnuni . buf fer. posi tion field (ep[epnuni. buffer. position will be set to the
number of byteswritten). usb_t x_dat a() then returns control.

For more detailed information about usb_t x_dat a() refer to Chapter 3.1.1.

The USB module sends that data to the Host in packets. If the Host successfully receives
a packet, it sends an acknowledge to the Device. Following this, the USB module
generates EOP (end of packet) interrupt. Using this interrupt, a new portion of data can be
placed into the FIFO buffer. Theusb_i n_ser vi ce() handler isused for this purpose.

usb_in_service() checks if there is any daa to send (examines
ep[epnuni . buf fer. position and ep[epnuni. buffer.length. If thereis data to be
sent, it determines the amount of data that can be placed into the FIFO buffer. Then
usb_i n_service() copies that amount of data to the FIFO buffer and increases the
ep[epnuni . buf f er. posi ti on field by the number of written bytes.

For more detailed information about usb_i n_ser vi ce() refer to Chapter 3.1.2.

When usb_t x_dat a() returns control, the Client application may process another portion
of data or execute an algorithm. This activity will be interrupted from time-to-time by
EOP/EOT interrupts, and usb_i n_service() will then be caled. When the Client
application finishes execution of its algorithms and is ready to send another data buffer to
USB, it may call the usb_ep_i s_busy() function (to test if desired endpoint is free) or

N—1 Control, Bulk, Interrupt Data Transfer. 3-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

usb_ep wait() (to wat while the desired endpoint is busy). For more detailed
information about these functions refer to Chapter 7.

The different stages of data transfer from Device to Host are represented in Fig 3-1
below.

N—1 Control, Bulk, Interrupt Data Transfer. 3-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Initial state: ep[epnum].buffer.start = 0
ep[epnum].buffer.position =0

ep[epnum].buffer.length = 0

Call toush tx data():

ep[epnum].buffer.start ep[epnum].buffer.start +
ep[epnum].buffer.position = 0 ep[epnum] .buffer.lengtt

Data Buffer (to be sent)

usb tx data() places datato FIFO buffer:

ep[epnum].buffer.start + ep[epnum].buffer.start +
ep[epnum].buffer.start ep[epnum].buffer.position ep[epnum].buffer.lengtt
Data aready Data Buffer (to be sent)
placed to FIFO

EOP interrupt occurred,
usb in service() is called
and places data to FIFO:

ep[epnum].buffer.start + ep[epnum].buffer.start +
ep[epnum].buffer.start ep[epnum].buffer.position ep[epnum].buffer.lengtt
Sent Data Data already Data Buffer (to be sent)
placed to FIFO

EOP interrupt occurred,
usb in service() is called
and placesdatato FIFO:

ep[epnum].buffer.start + ep[epnum].buffer.start +

eplepnum].buffer.start ep[epnum].buffer.position ep[epnum].buffer.length

Sent Data Data already Data Buffer
placed to FIFO (to be sent)

Figure 3-1. Data Transfer Stages by the Driver.

N—1 Control, Bulk, Interrupt Data Transfer. 3-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

3.1.1. Initiating the Data IN Transfer.

The usb_tx_data() function is used to initiate each data transfer from Device to Host.

The agorithm of thisfunctionis shownin Fig 3-2.

Aretransfer
alowed for this

endpoint?

Exit

<
yes
no
Exit
no
Exit
|s there data no
to send?
Exit
Isthisan no
IN endpoint?
yes Exit
N—"1 Control, Bulk, Interrupt Data Transfer. 34

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Is endpoint yes

halted?

Exit

Save the current
IMR

Disable EOP, EOT, RESET,
DEV_CFG interrupts

Set up EP buffer
structure

Determine number of bytesto
place into FIFO

Place data
to FIFO buffer

Modify position

Isit all the data yes
to be sent?

no Complete transfer

Restore saved IMR

Fig 3-2. Algorithm of usb_tx_data() function.

usb_t x_data() accepts three parameters (see Chapter 3.1). Firstly it checks whether the
Device has been reset for data transfers on non-zero endpoint. For endpoint number zero,

N—1 Control, Bulk, Interrupt Data Transfer. 35
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

transfers are permitted even if the Device is not configured. Then it checks that the epnum
parameter does not exceed the maximum number of endpoints (7). Then,
usb_t x_dat a() testswhether the given endpoint is busy:

/* See if the EP is currently busy */
if (ep[epnuni.buffer.start || (epnum && MCF5272_RD USB EPDPR(i mm

epnum))

return 1;

It checks the ep[epnuni.buffer.start field (it should not point to any buffer) and
checks that the FIFO buffer is empty (for non-zero endpoints, because EPODPR monitors
OUT FIFO only). Then it makes sure there is data to send (examines parameters st ar t
and | engt h). Findly, the function ensures that the desired endpoint is an IN endpoint
and the endpoint is not halted.

EOP/EOT interrupts should be disabled in order to prevent damage of
ep[epnuni . buf f er structure by the usb_i n_servi ce() handler. RESET and DEV_CFG
interrupts must also be disabled in order to properly terminate the transfer.

usb_t x_dat a() setsup theep buffer structure:

ep[epnun] . buffer.start = start;
ep[epnuni . buffer.length = | ength;
ep[epnun] . buffer. position = 0;

Then, the amount of datathat can be placed into the FIFO buffer is determined:

free_space = ep[epnun.fifo_l ength;

| engt h parameter (amount of data to be sent) can be less than the size of FIFO the
buffer for epnum thus additional modification must be made:

/* 1If the ampunt of data to be sent |ess than free_space, nodify
free_space */
if ((intl6) free_space > | ength)
free_space = |l ength;

Now, usb_t x_dat a() starts to write data to the FIFO buffer four bytes at a time (while it
is possible) and the rest of data - by one byte After that, it sets the
ep[epnuni . buf f er. posi ti on field to the number of written bytes.

If thisis all the data that has to be sent, usb_t x_dat a() finishes the transfer (refer to
Chapter 3.1.3). It does not clear the ep[epnuni . buf f er structure. The usb_t x_dat a()
function placed data for at least one packet, so EOP interrupt will occur, and
usb_i n_servi ce() will either continue or finish the transfer properly.

The saved interrupt mask register must be restored. The function then returns control.

N—1 Control, Bulk, Interrupt Data Transfer. 3-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

3.1.2. Continuation of the Data IN Transfer.

If the Host successfully receives a data packet it sends acknowledge to the Device and the
USB module generates EOP interrupt. At this moment there is a free space in the FIFO
buffer for at least one data packet. Thus, placing a new portion of data into the FIFO
buffer will continue the transfer.

usb_i n_service() isresponsible for continuation of the transfer. Its agorithm is shown
inFig 3-3.

This function accepts two parameters.

epnum— number of endpoint, on which interrupt has occurred;
event —thekind of interrupt(s) occurred.

First, usb_i n_service() tests event for EOP interrupt. If an interrupt occurred, the
function saves IMR and disables RESET and DEV_CFG interrupts. If there is data to
send, it determines the amount of data that can be placed into the FIFO buffer.

The data present register for endpoint number zero monitors only the OUT FIFO, so it
cannot be used to determine the free space in the FIFO buffer for that endpoint. Thus, if
epnum is zero, only one packet can be safdly placed in the FIFO from
usb_in_service(). Free space for the rest of the endpoints can be calculated by
subtracting the amount of data in the FIFO buffer from the length of the FIFO buffer for
that endpoint:

if (epnum == 0)
free_space = ep[0]. packet _si ze;
el se
free_space = (uint16) (ep[epnuni.fifo_length -
MCF5272_RD USB EPDPR(i mm epnum);

If the amount of data to be sent is less than the free space in the FIFO buffer, variable
free_space must be modified:

if (free_space > (length - ep[epnuni.buffer.position))
free_space = (length - ep[epnun].buffer.position);

Then usb_i n_service() writes data to the FIFO four bytes at a time (while it is
possible) and the rest of data - one byte at a time. It increases the posi ti on field by the
number of written bytes.

If this is al the data to be sent, usb_i n_service() completes the transfer. The saved
interrupt mask register must be restored. Finally, usb_i n_service() tests event for
EOT interrupt. If the interrupt occurred, the function completes the transfer (refer to
Chapter 3.1.3).

N—1 Control, Bulk, Interrupt Data Transfer. 3-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

N—1

Does EOP

interrupt occur?

Disable RESET and DEV_CFG interrupts
(save current IMR)

Isthere datato

send?

| Y&
Determine amount of data that
can be placed to FIFO

|
Place datato FIFO
|

Isit all the data yes

to be sent?

no

Finish transfer

Restore saved IMR

<

Isthere EOT
interrupt?

Finish transfer

Exit

Fig 3-3. Algorithm of usb_in_service() function.

Control, Bulk, Interrupt Data Transfer.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

3-8

3.1.3. Completion of Data

IN Transfer

The Driver sends data to the Host in largest size packets possible. The rest of data are
sent in one short packet. The Driver handles the end of transfer in different ways
depending upon the exact dtuation. The Table 3-1 summarizes the conditions and the

Device' s actions according those conditions.

Table 3-1. The variants

of transfer completion.

N Condition Driver’sactions
Driver clears EPNCTL[IN_DONE] bit to
1 | The length of transferred buffer | send one short length data packet. EOT
was not a multiple to the|interrupt will occur. Driver clears the
maximum size of packet. ep[epnuni . buf fer dtructure and sets up
EPNCTL[IN_DONE] hit in EOT interrupt
handler.
Host received all the data it | Clears the ep[epnuni.buffer structure
2 | expected. The length of transferred | after the last packet was successfully sent to
buffer was a multiple to the| Host.
maximum size of packet.
Host did not receive all the data it | In this case, the Device sends zero length
3 | expected. The length o transferred | packet to the Host to indicate the end of
buffer was a multiple of the| transfer. Driver clears EPNCTL[IN_DONE]
maximum size of packet. bit. EOT interrupt will occur. Driver clears
the ep[epnuni . buffer structure and sets
up EPNCTL[IN_DONE] hit in EOT
interrupt handler.

If the length of a transferred buffer was less
for the used endpoint, the usb_t x_dat a()
packet is maximum size, it will be sent by

than or equa to the size of the FIFO buffer
function completes the transfer. If the last
the USB module automaticaly. If the last

packet is short, IN_DONE bit must be cleared and as a result, the USB module will send
to the bus all the data it has (and will not wait to form a maximum size packet). In both
cases, theusb_i n_servi ce() handler will be called and will complete the transfer.

i f
{

(i ep[epnuni . buffer.length)

/* This is all

of the data to be sent */

if ((i %ep[epnun].packet _size) !'= 0)

/*Send short packet -
MCF5272_WR _USB EPCTL(i mm
epnun

Clear the INNDONE bit */

epnum MCF5272_RD USB EPCTL(i mm

& ~MCF5272_USB_EPNCTL_| N_DONE) ;

N—1

PRELIMINARY—SUBJECT TO

Control, Bulk, Interrupt Data Transfer.

CHANGE WITHOUT NOTICE

}

usb_i n_service() finishes the transfer in two different places: in the handler of EOP,
and in the handler of the EOT event:

a) If al the data is placed in the FIFO buffer and the amount of that data was a
multiple of the maximum size of packet, an EOP interrupt will occur;
usb_i n_servi ce() completesthe transfer in EOP event handler.

b) If al the data is placed in the FIFO buffer but the size of data was not a multiple
of the maximum size of packet, the last packet (short) may stay in the FIFO
buffer. In this case the EPNCTL[IN_DONE] bit must be cleared to send a short
packet. EOT interrupt will occur; usb_i n_servi ce() completes the transfer in
EOT event handler.

usb_i n_service() checksin the EOP handler if all the data was written to the FIFO. If
it was, usb_i n_service() tedts if the length of transfer is multiple to maximum size of
packet, and clears the EPNCTL[IN_DONE] bit to send the last short packet if the length
of the buffer is not a multiple of the maximum packet size:

if ((ep[epnuni.buffer.start) &&
(ep[epnun] . buffer.position == ep[epnun].buffer.length))
{

remai nder = i % ep[epnuni. packet _si ze;

/* This all of the data to be sent */

if ((remainder I!= 0) [((remainder == 0) &&
ep[epnuni . sendZLP))

{

/* All done -> Cear the INNDONE bit */

MCF5272_WR _USB _EPCTL(i mm epnum
MCF5272_RD USB EPCTL(i mm epnum
& ~MCF5272_USB_EPNCTL_| N_DONE) ;

el se

i f (MOF5272_RD_USB_EPDPR(i mm epnum) == 0)

{
if ((epnum == 0) && (NewQ))
{

usb_vendr eq_done(SUCCESS) ;

free(NewQ ;
NewC = NULL;
}

usb_ep_t x_done(epnum SUCCESS, i);
ep[epnun] . buffer.start = 0;

ep[epnuni . buffer.length = 0;
ep[epnun] . buffer. position = 0;

N—1 Control, Bulk, Interrupt Data Transfer. 3-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

}
ep[epnun] . sendZLP = FALSE;

EOT will occur in such a case and its handler completes the transfer.

If the length of a transferred buffer was a multiple of the maximum size of packet, one of
two variants is possible: either the Host received al the data it expected or not. Field
sendZLP is used to distinguish these cases. The Client application knows the amount of
data requested by the Host. If that amount is larger than the Client application is going to
send, there is a possibility to send the last packet with the maximum size. To properly
handle the end of transfer in this case, the Client application must cal the
usb_sendzLP() function with a required endpoint & a parameter. The function sets up
the sendzLP field to TRUE. The Driver tests this field and only if the last packet is
maximum size, does it send zero length packet.

The Client application does not need to calculate the remainder of a division to find the
size of the last packet before calling usb_t x_data(), since the Driver makes the
calculation by itself. The only thing the Client application must do is to compare the size
of requested data by Host with the amount of data that the Client application is going to
send before each transfer. If the last is smaller, sendzLP must be setup to TRUE.

If the Client application is able to send all the requested data, it does not need to call
usb_sendzLP() function (sendzLP field is cleared by Driver after last transfer). The EOP
handler completes the transfer in this case (see the source code above). For more
information refer to Chapter 6.17.

EOT interrupt occurs if a short length or zero length packet was sent. It completes the
transfer and sets EPNCTL[| N_DONE] hit to send data for the next transfer by maximum
size packets (previoudly that bit was cleared).

3.1.4. Notifying Client Application about Completion of

Data IN Transfer.

When the transfer is completed (al the data is received by Host), Driver cals
usb_ep_t x_done() function either from EOP or EOT event handler to notify Client
application about termination of transfer. The Driver defines the prototype of that
function, but it must be implemented in the Client application to handle properly that
event in a Client specific manner. usb_ep_t x_done() must return control as soon as
possible and it is not intended for initiating a new data transfer directly (by calling the
usb_tx_data() function) — ep[epnuni.buffer structure is still busy and
usb_t x_dat a() will return control with error status. The best way to accomplish thisis
when usb_ep_tx_done() is used to change some control and/or status
variableg/structures, which in turn will be examined in the main program.

N—1 Control, Bulk, Interrupt Data Transfer. 3-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

When the Driver receives control from usb_ep_t x_done(), it clears ep[epnuni . buf f er
structure and a new transfer can be started.

3.2. Host-to-Device Data Transfer

Assuming that the OUT transfer starts from the moment when function usb_r x_dat a()
is called, if there is data in the FIFO buffer but the Client buffer is not allocated yet, the
transfer will not be started. EOP interrupts will occur (while FIFO buffer is able to accept
data) and usb_out _service() function will properly handle this situation. But for the
Client program, transfer is not started yet.

usb_rx_dat a() accepts three parameters:

epnum— number of endpoint, through which datawill be transferred (to Device);
start — pointer to the buffer, where datawill copied from FIFO buffer;
| engt h —number of bytesthat will be received.

This function initializes the fields of global structure ep. buffer. It sets the field
ep[epnuni . buffer.start to the beginning of data buffer where it will place the data,
ep[epnuni.buffer.length — to the sze of expected data, and
ep[epnuni . buf f er. posi ti on to O (no data read yet).

Then, the function determines the number of bytes in the FIFO buffer, and copies that
amount of data from FIFO to destination buffer. After that it modifies the
ep[epnuni . buf fer. position field (ep[epnuni. buffer.position will be set to the
number of copied bytes). usb_rx_dat a() returns control. For more detailed information
about usb_r x_dat a() refer to Chapter 3.2.1.

The Host sends data in packets. If the USB module successfully receives a packet, it
generates EOP (end of packet) interrupt. Using this interrupt, a new portion of data can be
read from the FIFO buffer. The usb_out _servi ce() handler is used for this purpose. It
determines the amount of data in the FIFO buffer and copies the data to a destination
buffer (ep[epnuni.buffer.start points to it). For more detailed information about
usb_out _servi ce() refer to Section 3.2.2.

N—1 Control, Bulk, Interrupt Data Transfer. 3-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

I nitial state:

ep[epnum].buffer.start = 0

ep[epnum].buffer.position = 0
ep[epnum].buffer.length =0

Call tousb rx data():

ep[epnum)].buffer.start
ep[epnum)].buffer.position =0

ep[epnum].buffer.start +
ep[epnum].buffer.length

Dedtination Data Buffer (empty)

usb _rx_data() reads data
from FIFO buffer:

ep[epnum].buffer.start +
ep[epnum].buffer.position

ep[epnum].buffer.start

ep[epnum].buffer.start +
ep[epnum].buffer.length

Data already
placed from FIFO

Free space

EOP interrupt occurred,
usb out service() iscalled
and reads from FIFO:

ep[epnum].buffer.start

ep[epnum].buffer.start +
ep[epnum].buffer.lengtt

ep[epnum].buffer.start +
ep[epnum)].buffer.position

Received Data

Data already

Free space
read from FIFO

EOP interrupt occurred,
usb out service() iscalled
and reads from FIFO:

ep[epnum] .buffer.start

ep[epnum].buffer.start + ep[epnum].buffer.start +
ep[epnum)].buffer.position ep[epnum].buffer.lengtt

Received Data Data already Free space
read from FIFO
Fig 3-4. Stages of receiving data by the Driver.
N—"1 Control, Bulk, Interrupt Data Transfer. 3-13

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

When usb_rx_dat a() returns control, the Client application may process another portion
of data or execute some agorithm. This activity will be interrupted from time-to-time by
EOP interrupts, and usb_out _service() will be called. When the Client application
finishes execution of its agorithms and is ready to receive other data from the Host, it
may cal usb_ep_is_busy() function (to test if desired endpoint is free) or
usb_ep_wai t () (to wait while desired endpoint is busy). For more detailed information
about these functions refer to Chapter 8.

The different stages of data transfer from Host to Device are shown in Fig 3-4.

3.2.1. Initiating the Data OUT Transfer.

usb_rx_data() function is used to start receiving the data from the Host. The agorithm
of thisfunctionisshownin Fig 3-5.

Start
| Y&
yes
Aretransfer no
alowed for this

endpoint?

t

t

L

It

s there buffer no
allocated?
Exit
Isthisan no
OUT endpoint?
yes Exit
N—"1 Control, Bulk, Interrupt Data Transfer. 3-14

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Is endpoint yes

halted?”

Save the current
IMR

Disable EOP, EOT, RESET,
DEV_CFG interrupts

Set up EP buffer
structure

Determine number of bytes
in FIFO buffer

Read data
from FIFO buffer

Modify position

Isit all the data yes

to be recaived?

no

Finish transfer

Restore saved IMR

Exit

Fig 3-5. Algorithm of usb_rx_data() function.

Control, Bulk, Interrupt Data Transfer.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

3-15

usb_rx_data() accepts three parameters (see Chapter 3.2). Firgt, it checks whether the
Device is reset for data transfers with non-zero endpoint. Endpoint number zero transfers
are permitted, even if the Device is not configured. Then it checks that the epnum
parameter does not exceed the maximum number of endpoints (7). After that,
usb_rx_dat a() teststhat the given endpoint is not busy:

/* See if the EP is currently busy */
if (ep[epnun].buffer.start)
return 1,

It checks the ep[epnuni.buffer.start field - which should not point to any buffer.
Then it makes sure there is atarget data buffer (examines parametersst art and | engt h).

Finaly, the function ensures that the desired endpoint is an OUT endpoint and that the
endpoint is not halted.

EOP/EOT interrupts should be disabled in order to prevent damage to the
ep[epnuni . buffer dStructure by the usb_out_service() handler. RESET and
DEV_CFG interrupts must also be disabled in order to properly terminate the transfer.

usb_rx_data() setsup the ep buffer structure:

ep[epnuni . buffer.start = start;
ep[epnuni . buffer.length = | ength;
ep[epnuni . buffer. position = 0;

Then, determines the amount of datain the FIFO buffer:

/* Read the Data Present register */
fifo data = MCF5272_RD USB EPDPR(i nm epnunj;

| engt h parameter (amount of data to be received) can be less than the amount of data in
the FIFO buffer for epnum thus additional modification must be made:

if (fifo_data > length)
fifo_data = | ength;

Now, usb_rx_dat a() startsto read data from the FIFO buffer four bytes at a time (while
thisis possible) and the rest of data one byte at atime.

If thisis al the data to be received, usb_r x_dat a() finishesthe transfer (refer to Chapter
3.2.3). The saved interrupt mask register must be restored. The function returns control.

N—1 Control, Bulk, Interrupt Data Transfer. 3-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

3.2.2. Continuation of the Data OUT Transfer.

If the USB module successfully receives a data packet it generates EOP interrupt. At this
moment there is data in the FIFO buffer. Thus, reading a new portion of data from the
FIFO module will continue the transfer.

usb_out _servi ce() is responsible for continuation of the transfer. Its agorithm is
shown in Diagram 3-6.

This function accepts two parameters:

epnum— number of endpoint, for the interrupt that occurred;
event —thekind of interrupt(s) that occurred.

First, usb_out _service() tests event for EOP interrupts. If that interrupt occurred,
function saves IMR and disables RESET and DEV_CFG interrupts. Then it determines
the amount of datain the FIFO buffer:

/* Read the Data Present register */
fifo data = MCF5272_RD USB EPDPR(i mm epnun;

The function also checks that the overflow condition does not occur. If that were to
happen, then the function would complete the data transfer with an error status. This is
done to help in debugging the Host software only. Normally, this event should not occur
in practice.

If data is received a the endpoint but no buffer is alocated, the USB module will be
accepting the data from the Host while there is free space in the FIFO buffer. Following
this occurrence data transmission will be stopped, until such time as the Client
application allocates atarget buffer.

If a buffer is allocated for given endpoint, the Driver starts to read data from the FIFO
buffer four bytes at atime (while thisis possible) and the rest of data one byte at atime.

N—1 Control, Bulk, Interrupt Data Transfer. 3-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Start

Does EOP

~
/

interrupt occured

yes

Disable RESET and DEV_CFG interrupts
(save current IMR)

Determine the amount of data
in FIFO buffer

Terminate transfer if overflow
condition is occurred

Is buffer allocated fo
given endpoint?

Read data from FIFO buffer

yes

Isit al the data
to bereceived?

Finish transfer
| no
P

N
Restore saved IMR

<

Exit

Fig 3-6. Algorithm of usb_out_service() function.

N—1 Control, Bulk, Interrupt Data Transfer. 3-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

N—1 Control, Bulk, Interrupt Data Transfer. 3-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

3.2.3. Completion of the Data OUT Transfer.

For OUT transfers, both functions usb_rx_data() and usb_out_service() may
complete the transfer.

If usb_rx_data() reads al the required data from the FIFO buffer, it clears the
ep[epnuni . buf f er structure (because other OUT EOP interrupts may not occur).

If al the data are received in the EOP handler, usb_out service() checks if the
recelved datais a command:

if (i == ep[epnuni.buffer.Ilength)
{
if ((epnum == 0) && (NewQ))
{

status = usb_accept _conmand(NewC) ;

The Driver notifies the Client application about the completion of data transfer and

command transfer in different ways. Following which, it clears the ep[epnuni . buf fer
structure.

3.2.4. Notifying Client Application about Completion of
Data OUT Transfer.

When all expected data is received (for data transfers, not command), the Driver cals the
usb_ep_rx_done() function. The Driver itself defines the prototype of this function, but
it should be implemented in the Client program to handle completion of transfer in a
Client specific manner. usb_ep_r x_done() must return control as soon as possible and it
is not intended to be used to initiate a new data transfer directly (by calling the
usb_rx_data() function) — the ep[epnuni.buffer dtructure is sill busy and
usb_rx_dat a() would return control with an error status under these circumstances. The
best way to accomplish this is when usb_ep_rx_done() is used to change some control
and/or status variableg/structures, which in turn will be examined in the main program.

When a whole command is received (data stage of command transfer is completed), the
Driver notifies the Client program by calling the usb_accept _command() function
(usb_ep_rx_done() function is not called in such a case). The Driver defines this
function also, however the Client program must implement it. The Driver passes a pointer
to the just received command as a parameter to usb_accept _command(). For more
detailed description refer to Chapter 4.2.

When the Driver receives control from usb_ep_rx_done() oOr usb_accept _command(),
it clearsthe ep[epnuni . buf f er structure and a new transfer can be started.

N—1 Control, Bulk, Interrupt Data Transfer. 3-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

4. Isochronous Data Transfer

(for CBI & Isochronous Driver only).
This chapter explains how the Driver controls isochronous IN/OUT transfers. It describes
how to open isochronous IN and OUT data streams and how to close them correctly.
Also, this chapter describes how the Driver performs per-frame monitoring of Host-side
software and Device-side Client application when they are working in real-time.

4.1. Device-to-Host Data Transfer.

This subsection describes the concepts of isochronous IN transfer, tells how the Driver
opens a data stream, continues it, etc. The following two sections describe how the Driver
monitors whether the Host software and Device-side Client application are working in
real-time. It aso describes how the Driver sustains sample rate if the Host s’'w misses
frames.

Some remarks towards terminology must be made. “Isochronous data IN stream” means
uninterruptible sending of data to the Host. It includes an infinite (while Device is
powered) number of calls to the usb_t x_dat a() function. Sending a buffer, passed to
each usb_t x_dat a() is a“transfer”. Each transfer consists of limited number of packets
(the last packet may be short — in order to setup the required sample rate). Data on
isochronous endpoints is generally streaming data. Therefore it can be assumed, that all
transfers on each isochronous endpoint belong to corresponding stream, that was started
much earlier on and never finishes.

To start write “to the stream”, the Client program must call the usb_t x_dat a() function
every time it wants to transfer a data buffer. This function initializes the
ep[epnuni . buf fer structure and places data to the FIFO buffer. When this function
returns control to the Client program, no data is sent yet — the earliest an IN token can be
received is in the next frame, hence the first packet will only be sent in the next frame.

The mechanism of sending a data buffer with an isochronous endpoint is mostly similar
to CBI transfers, but there are some distinctions.
1. Datais sent in packets (which is aso common with CBI). However isochronous
packets are guaranteed to be sent once per USB frame and they are never resent.
2. Isochronous endpoints support packet sizes up to 1023 bytes. Which means that
the FIFO size can be less than twice the packet size. Therefore to send each
packet, a FIFO level interrupt must be used.

So, in each frame the Driver places only one packet into the FIFO (or initial bytes of
packet if it is larger than the FIFO buffer, and when FIFO-level interrupt occurs, the
Driver placestherest of the current packet to the FIFO).

When the last packet of transfer is sent to the Host (Driver received EOP interrupt and
FIFO is empty), the Driver notifies the Client application about completion of transfer, by
calling its usb_ep_t x_done() function and passing a status of transfer to it (see next
section). After this it frees up the ep[epnuni . buf f er structure. The Client program may

mN—1 | sochronous Data Transfer 4-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

track the end of transfer either by using the usb_ep_t x_done() notification or by calling
the usb_ep wait() (usb_ep_is_busy()) function. The Client program may cal
usb_tx_dat a() with the next buffer.

In order to work in a rea-time, the Client program must call usb_t x_dat a() every time
before the next SOF interrupt occurs.

Two remarks are necessary concerning the sending of data to the Host.

1. The Driver sends buffers to the Host in maximum size packets (while this is
possible). If the last packet of the buffer is short, the Driver sends short packet —it
does not fill it with data from the next buffer. If the Client application must supply
data with a varying (adaptive) rate, it may cal usb_t x_dat a(), passing a buffer
to it that contains only one short packet (the length of which may vary from one
transfer to the next).

2. If usb_tx_data() iscaled in the current frame, data, placed in FIFO buffer, can
be sent to the Host not earlier than in the next frame. This function can be called
only after occurrences of the SOF interrupt. And delay between SOF interrupt and
receipt of an IN token, is less than the time needed for calling usb_t x_dat a()
and reaching the point in this function in which it starts gacing data to the FIFO
buffer.

4.2. Monitoring Host Software During IN Transfers
There is a wide class of audio Devices, which steadily produce (source Devices) a fixed
amount of data. Devices such as a microphone serve as an excellent example. The ADC
of a microphone produces a fixed amount of samples per some period of time. Hence, the
Device has to send al of this data during a given time period (or at least, the buffer must
be freed by the end of that period).

Assuming the example that the Device tries to send a buffer of 5 packets to the Host. The
buffer must be freed after 5 milliseconds since the ADC produces new data for the next 5
packets that must be sent during the next 5 milliseconds. If Host does not issue IN tokens
(because of problems with real-time which can arise sometimes, for example), the
transfer buffer will require more than the 5 ms allowed. Hence buffer overlapping may
occur in such cases.

The Driver is able to address this problem by moving the internal pointer in the buffer
(like it sends data to the Host), even if the Host does not issue an IN token. In effect the
Driver guarantees that the buffer will be freed in a given time, thus assuring deterministic
behavior of the system. Moreover, when the Host resumes sending the tokens, it will
receive not old data (that ought to have been sent in the previous frames), but actual data.

If the Client application wants the Driver to perform transfer monitoring, it must call the
usb_set _start_franme_nunber () function. The Driver starts anayzing transfer from a
given frame, the number of which was passed as a parameter to that function. It must be

N~——"1 | sochronous Data Transfer 4-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

the number of a frame in which the first data packet is to be sent to the Host. All the
transfers after this frame will then be monitored. When the last transfer is completed, data
monitoring must be stopped (in order to properly start new one, or properly continue data
transfer without monitoring).

To stop monitoring, the Client program must call the usb_set _fi nal _frame_nunber ()
function, passing the number of the frame in which data monitoring must be stopped. It
must be in a frame following the frame in which the last data packet was sent to the Host
(or at least, not earlier) — the SOF interrupt handler of the next frame checks missed EOP
interrupts in previous frame. In such a case, the Driver can correctly handle the situation,
when the last packet was not sent to the Host.

The Driver monitors whether the Host s/'w is working in real time while accepting data
from the Device, using the following mechanism. A data packet, i.e. EOP interrupt,
occurs once per USB frame. SOF interrupt also occurs once per frame (it is a start of
frame interrupt). If the Host Sw misses some frames (does not send IN tokens to Device),
EOP interrupt will not occur during those frames.

The Driver increments counter in usb_i sochronous_transfer_servi ce() function:

i f (iso_ep[epnuni. transfer_nonitoring_started ==

{

TRUE)

i so_ep[epnuni.sent_packet watch ++;
/[* 1t nust be 1, now */

and clear itinusb_i n_servi ce() handler, if EOP interrupt occurred:

i so_ep[epnuni.sent_packet _watch = 0;

When the next SOF interrupt occurs, usb_i sochronous_transfer_service() tests

i so_ep[epnunj. sent_packet_watch field to determine whether EOP interrupt
occurred during the previous frame:

if (iso_ep[epnuni.sent_packet watch > 1)

/* Renove unsent packet from FI FO buffer */
MCF5272_WR USB EPCFE i mm epnum MCF5272 RD USB EPCFE i mm epnum);

/* Reset the counter */
i so_ep[epnuni.sent_packet _watch = 0;

/* Set up corresponding status for dient program*/
i so_ep[epnuni.status | = NOT_SENT_PACKET;

N~——"1 | sochronous Data Transfer 4-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

If a data packet was not sent to the Host, the FIFO buffer must be cleared in order to send
the next portion of data (not unsent packet!) in the next frame. In such a case, the Device
is still being synchronized with the USB clock. After that it assigns NOT_SENT_PACKET

status to the transfer, and this status will be passed to usb_t x_done() function after
completion of the buffer transfer.

As the next step, the Driver moves interna pointers on to the next packet. There are three

cases here, al of which must be handled differently. Assuming that the Client application
sends data to the Host in buffers using five packets.

Case 1. Any packet, except for the last and the next to last, was not sent to Host (assume,
it was packet 2).

ep[epnum].buffer.position iso_ep[epnum].packet_position

< v
| Packetl | Packet? Packet3 | Packet4 | Packet5 |
SOF1 EOP1 SOF2 - SOF3 EOP3 SOF4 EOP4 SOF5 EOP5

When SOF3 interrupt occurs, usb_i sochronous_t ransfer_servi ce() determines that
packet 2 was not sent to the Host (EOP2 interrupt did not occur). It removes all data from
the FIFO buffer (there is data from packet 2 there only). In fact, packet 3 must now be
placed into the FIFO, however the token for the third packet is missed by this time by the
Device (similar situations are described in section 4.1, remark 2). Thus, data from packet
4 must be placed into the FIFO instead, and that packet will be sent to the Host in the
fourth frame.

Therefore, the usb_i sochronous_transfer_service() function points
ep[epnuni . buf f er. posi ti on to the beginning of fourth packet:

ep[epnuni . buf f er. posi ti on
ep[epnun] . packet _si ze;

i so_ep[epnuni . packet position +

and pointsi so_ep[epnuni . packet _posi ti on to the end of fourth packet:

i so_ep[epnunj . packet _position += (ep[epnuni.packet_size <<
1);
if (iso_ep[epnuni.packet_position > ep[epnuni.buffer.|engt h)
i so_ep[epnunj . packet position
ep[epnuni . buffer. | ength;

Nr~—1 | sochronous Data Transfer 4-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Following this, the function places packet 4 into the FIFO. If the packet is larger than the
FIFO, the copying will be continued by usb_i n_service() after raising a FIFO level
interrupt.

Therefore, if the Host misses one frame, it does not receive the data that had to be sent in
that frame, and it does not receive data in the next frame either (even if it issued IN
token). In the next frame Host may recelve only a few bytes of garbage — bytes that were
sent before starting to clear the FIFO. Thus, EOP3 interrupt may occur, but this is a
spurious interrupt — i so_ep[epnuni . packet _position should not be modified in
usb_i n_service(). To distinguish between spurious and norma EOP, the endpoint data
present register must be tested. In the case of a spurious interrupt the register contains
nonzero vaue (the next packet is dready written to the FHFFO by
usb_i sochronous_t ransfer_service()), and is otherwise cleared.

Nr~—1 | sochronous Data Transfer 4-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Case 2. Next to last packet was not sent to the Host (packet 4).

ep[epnum].buffer.position iso_ep[epnum].packet_position

\
| Packetl | Packet2 | Packet3 | Packet4 Packet5 |
SOFL EOPL SOF2 EOP2 SOF3 EOP3 SOF4 - SOF5 EOP5

When SOF5 interrupt occurs, usb_i sochronous_t ransfer_servi ce() determines that
packet 4 was not sent to the Host (EOP4 interrupt did not occur). It removes all data from
the FIFO buffer (there is data from packet 4 there only). In fact, packet 5 must now be
placed into the FIFO, but the token for the fifth packet is missed by this time by the
Device (which is the situation like that one described in section 4.1, remark 2). Thus, the
transfer of this buffer must be completed.

The Function assigns a DEFAULT value to the interna state field. This means, that
usb_t x_dat a() must start transferring the next buffer from the first packet.

i so_ep[epnuni.state = DEFAULT,;
usb_i sochronous_transfer_servi ce() completesthe current transfer:

usb_ep_t x_done(epnum i so_ep[epnuni . st at us,
ep[epnuni . buffer.length);

ep[epnun] . buffer.start = 0;
ep[epnuni . buffer.length = 0;
ep[epnun] . buffer. position = 0;

i so_ep[epnuni. status = SUCCESS,;
i so_ep[epnunj . packet _position = 0;

So, if the Host misses one frame, it does not receive data that had to be sent in that frame,
and it does not receive data in the next frame either (even if it issued IN token). Then in
the next frame the Host may receive a few bytes of garbage — bytes that were sent before
starting to clear the FIFO. Thus an EOP5 interrupt may occur, however this is a spurious
interrupt. If this interrupt occurs, it will occur immediately following the SOF5 interrupt.
Next the usb_tx_data() has not been called yet, so usb_in_service() properly
handles this situation — the ep[epnuni . buf f er structure is cleared. Even if EOP5 occurs
after the cal to usb_tx_data(), this situation will also be handled (see case 1).

N~——"1 | sochronous Data Transfer 4-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Case 3. Last packet was not sent to the Host (packet 5).

ep[epnum].buffer.position iso_ep[epnum].packet_position

<
N

\Z
| Packet3 | Packet4 | Packeth | Packetl | Packet2 |

SOF3 EOP3 SOF4 EOP4 SOF5 - SOF6 EOP1 SOF7 EOP2
| | I I I I | | I I

When SOF6 interrupt occurs, usb_i sochronous_t ransfer_servi ce() determines that
packet 5 of the previous buffer was not sent to the Host (EOP5 interrupt did not occur,
thus the transfer of that buffer was not completed yet). It removes al data from the FIFO
buffer (there is data from packet 5 there only). usb_i sochronous_transfer_servi ce()
completes the transfer of that buffer:

usb_ep_t x_done(epnum i so_ep[epnuni . st at us,
ep[epnuni . buffer. | ength);

ep[epnun] . buffer.start = O;
ep[epnun] . buffer.length = 0;
ep[epnuni . buffer. position = 0;

i so_ep[epnuni. status = SUCCESS,;
i so_ep[epnunj . packet _position = 0;

Following this, the Client application is able to call usb_tx_dat a() to transfer a new
buffer. SOF6 occurred, therefore no data will be sent in this frame (similar situation to the
one described in section 4.1, remark 2). Thus, usb_t x_dat a() must step over the first
packet in a new buffer and start placing a second packet into the FIFO. This second
packet will be sent in the seventh frame. usb_i sochronous_transfer_service()
function sets the appropriate status for the usb_t x_dat a() :

i so_ep[epnuni.state = STEPOVER Fl RST_PACKET;

So, if the Host misses severa frames, it does not receive data in these frames and does
not receive data in the next frame either (even if it issued an IN token). In the next frame
the Host may receive a few bytes of garbage — bytes that were sent before starting to clear
the FIFO. Thus, EOPL interrupt may occur, but it will be a spurious interrupt. If this
interrupt occurs, it occurs immediately following the SOF6 interrupt. However
usb_tx_data() has not been caled yet, so usb_i n_service() properly handles this
situation — ep[epnuni . buf f er structure is cleared. Even if EOP1 occurs after the call to
usb_t x_dat a() , this situation will be handled properly as well (see case 1).

If the Host misses only two frames and misses them one after the other, it does not
receive garbage bytes and the Device does not overstep the third packet (this takes place
in all cases).

Nr~—1 | sochronous Data Transfer 4-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

4.3. Monitoring the Device-side Application

During IN Transfers.
In addition to other functions the Driver monitors whether the Device-side Client
program is working in real time. If the SOF interrupt occurred but no buffer is alocated,
the Driver sets the appropriate status (in usb_i sochronous_transfer_service ()
function):

if (ep[epnuni.buffer.start == 0)
i so_ep[epnuni.status | = M SSED_FRAME;

By using this status, the Client application may check in the development and debugging
stage how fast the transfer is.

4.4. Host-to-Device Data Transfer.

This subsection describes the concepts of isochronous OUT transfer. The following two
sections describe how the Driver monitors whether Host software and Device-side the
Client application are working in real-time. It also describes how the Driver sustains
samplerateif the Host s/'w misses frames.

For OUT transfers, alike for IN, the following is true:

1. Isochronous packets are guaranteed to occur once per USB frame and they are
never resent.

2. Isochronous endpoints support packet sizes up to 1023 bytes. Which means that
the FIFO size can be less than twice the packet size. Thus, during packet
reception, a FIFO level interrupt can occur. Using this interrupt, the Driver reads
the initial bytes of a packet. Then (using the FIFO level interrupt again or EOP
interrupt), it reads the rest of the packet.

Data on isochronous endpoints is generally streaming data. So it can be assumed that all
such transfers on each isochronous endpoint belongs to a corresponding stream, that was
started much earlier and will never finish. When data arrives at a USB module, the FIFO
level or/and EOP interrupts occur. At this moment the Client program should allocate a
buffer for data, by calling theusb_r x_dat a() or usb_rx_frane() function.

The USB Driver operates using two different methods for isochronous OUT transfer.

1. The first is similar to CBI transfers. As for this method, the Client application
must call usb_rx_data(). The Driver does not return control until all the datais
received. But this method of reading is not synchronized with USB timing. Thus,
usng this method (READ DATA), the Client program may have a problem to
determine the USB datarate.

2. The second method (READ FRAMES) is synchronized with the USB clock. In this
mode the Client program must cal the usb_r x_frame() function to get data from

N~——"1 | sochronous Data Transfer 4-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

a given number of frames (refer to Chapter 7 for detailed description of this
function). The Client program knows the time (it passes the frame number, i.e.
number of milliseconds, to the Driver), and the Driver fills the buffer with data
that it recelved from the Host during a given period. It frees up the
ep[epnuni . buf f er structure, when a given number of frames (not an amount of
data!) is received. (the Client application must take care of buffer’s lengths — the
safest way is to anticipate al packets to be of maximum size). By means of this
the data rate can be easily determined. If the data rate does not suit the Client
program, the application may send feedback to the Host, asking for a desired
sample rate, or implement a sample rate conversion — Client dependant. The use
of this method of reading datais strongly recommended for isochronous transfers.

Regardless of the method chosen by the program, the Driver notifies the Client
application by calling it's usb_ep_rx_done() function, passing a status of reading (see
next section), and the number of read bytes to it. Following this the Driver frees up the
ep[epnuni . buf f er structure. In order to work in real-time, the Client program must call
usb_rx_frane() or usb_rx_data() before a FIFO level or EOP interrupt for the
following packet occurs.

If usb_rx_franme() or usb_rx_data() returns control, it does not mean that al
frames/data are received. To know when the transfer is completed, the Client application
must use the usb_rx_done() notification or the usb_ep_wai t () (usb_ep_is_busy())
function.

4.5. Monitoring the Host Software During OUT

Transfers.
There is a wide class of audio Devices, which steadily consume (sink Devices) a fixed
amount of data (e.g. headphones). The DAC of a headphone supplies a fixed amount of
digital samples during some period of time. Therefore the Device has to receive al of this
data during a given time period (or at least, a buffer in which data is placed must be freed
by the end of that period).

Let's assume that the Device must receive 5 packets of 16 bytes from the Host and then
output the received data to headphones during 5 ms. If the Host missed a frame (in some
frames did not send a packet), the Device needs more than 5 ms to receive the 5 packets,
but the data must be output to headphones exactly after a given period.

The Driver is able to address this problem. The Driver guaranties that the buffer will be
freed after arequired time, even if the Host missed packets. If the Host did not send some
the packets, the Client application will know about it, by means of the natification
(usb_ep_rx_done() function), and may interpolate missed samples or mute the output.
In any case, the program may synthesize the required amount of samples and output them
to the headphones in the required time.

N~——"1 | sochronous Data Transfer 4-S
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

If the Client application requests the Driver to perform transfer monitoring, it must first
cal the usb_set_start_frane_nunber () function. The Driver starts anayzing the
transfer from a given frame, the number of which was passed as a parameter to that
function. It must be the number of the frame in which the first data packet has to be
received from the Host. All the transfers after this frame will be monitored. When the last
transfer is completed, data monitoring must be stopped (in order to correctly start a new
one, or to properly continue data transfer without monitoring).

In order to stop monitoring, the Client programn must cal the
usb_set _final _franme_nunber () function, passing the number of the frame in which
data monitoring must be stopped. This must be done in the frame following the one, in
which the last data packet has to be sent by the Host (or at least, not earlier). The SOF
interrupt handler of the next frame checks missed EOP interrupt in the previous frame. In
such a case, the Driver can properly handle the situation, when the last packet was not
received by the Device.

The Driver monitors Host s/w activity anly in the READ _FRAMES mode. It increments
the counter intheusb_i sochr onous_transfer _servi ce() function:

if(iso_ep[epnum. transfer_nonitoring started == TRUE)

i so_ep[epnunj.sent _packet watch ++;
/* It must be 1, now */

and clearsitintheusb_out _servi ce(), if an EOP interrupt occurred:
i so_ep[epnuni.sent_packet _watch = 0;

If an EOP interrupt did not occur during the frame, the Driver sets the corresponding bit
in the status (next call to usb_i sochronous_t ransfer _servi ce() function):

if (iso_ep[epnuni.sent_packet watch > 1)

/* Reset the counter */
i so_ep[epnuni.sent_packet _watch = 1;

/* Set up corresponding status for dient program*/
i so_ep[epnuni.status | = NOT_RECEI VED PACKET;

If the Host misses frames in the OUT transfers, the Driver does not make gaps in the
buffer, i.e. it does not know the size of the expected packet. If it does not suit the Client
application, the last one may call the usb_rx_f rame() function for each frame (passing 1
into itsf r ames parameter).

N~——"1 | sochronous Data Transfer 4-1C
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

4.6. Monitoring the Device-side Application
During OUT Transfers.

The Driver aso monitors whether the Client program is working in real time or not. If the
FIFO level or EOP interrupt occurred but no buffer is alocated, the Driver sets the
appropriate status (in usb_out _ser vi ce() function):

if ((ep[epnun].ttype == | SOCHRONOUS) &&
((ep[epnum . buffer.start = 0) |] (iso_ep[epnuni.state ==
M SS_PACKET)))

{
/* Cear FIFO buffer */

MCF5272_WR_USB_EPCFQi mm epnum
MCF5272_RD USB EPCFE i mm epnum);

if ((fifo_data = 0) &&
(i so_ep[epnun].transfer_nonitoring _started == TRUE))
i so_ep[epnuni.status | = M SSED PACKET;

if (event & MCF5272_USB EPN SR FI FO LVL)
i so_ep[epnun.state = M SS_PACKET;

if (event & MCF5272_USB_EPN SR _EOP)
i so_ep[epnun].state = DEFAULT;

read pernmtted = FALSE;
}

If a FIFO level interrupt occurs, the Driver clears the FIFO buffer and sets the state field
to M SS_PACKET. This done where the Client program may call the usb_rx_xxxx()
function before FIFO level end EOP interrupts. In the case of the READ_FRAMES mode, the
function cannot receive only “half of packet”. Moreover, the first sample in the FIFO
buffer can be damaged after previous clearing. Thus, the whole packet must be read out.

Before assigning a M SSED_PACKET value to status, fifo_data, it must first be tested
to ensure it is not equal to zero. In the case of the READ DATA mode, the following
situation can happen: The FIFO module accepts data from the USB and generates a FIFO
level interrupt. Assuming that one or two bytes remain to receive the whole packet. Until
the Driver reaches the place where it determines the number of bytes in the FIFO buffer,
the FIFO module receives the rest of bytes. EOP is masked by the hardware, while
FIFO LVL isin service, so it does not occur immediately. usb_out _servi ce() reads
out whole packet and then frees up the ep[epnuni. buffer structure. Then an EOP
interrupt occurs, ep[epnuni . buffer.start is cleared, and M SSED_PACKET is assigned
to the status (if fi f o_dat a isnot tested for being equal to zero).

The Driver assigns MISSED_PACKET status only if it performs transfer monitoring.
Using this status, the Client application may check the speed, for development and
debugging purposes.

Nr~—1 | sochronous Data Transfer 4-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

N~——"1 | sochronous Data Transfer 4-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

5. Vendor Request Handling.

For most of the standard Device requests, the MCF5272 USB module handles them
automatically. GET_DESCRI PTOR (string descriptors only) and SYNC_FRAME requests are
passed to the user (Driver) as a vendor specific request, and in those cases the Driver
handles them like any other vendor specific request. This chapter describes how the
Driver accepts different types of request (data IN, data OUT, and NO data stage) from the
Host and passes them to the Client application.

5.1. Accepting arequest from the Host.

The Driver responds to requests from the Host on the Device's Default Control Pipe.
These requests are made using control transfers. The request and the request’s parameters
are sent to the Device in the Setup packet.

VEND_REQ interrupt is used to notify the Device about accepting a request. When the
Driver detects assertion of VEND REQ interrupt, it calls the usb_vendreq_servi ce()
function from the interrupt handler for endpoint number zero:

usb_vendreq_servi ce(

(ui nt 8) (MCF5272_RD_USB_DRR1(i nm) & OxFF),
(ui nt 8) (MCF5272_RD _USB_DRR1(i nm) >> 8),

(ui nt 16) (MCF5272_RD_USB_DRR1(i mm) >> 16),
(ui nt 16) (MCF5272_RD_USB_DRR2(i nm) & OXFFFF),
(uint16) (MCF5272_RD USB DRR2(im) >> 16));

Device request data registers are used to notify that a standard, class-specific, or vendor-
specific request has been received and to pass the request type and its parameters. The
interrupt handler for endpoint number zero reads bnRequest Type, bRequest, and
wval ue parameters from register DRR1, and wi ndex, wLengt h parameters from register
DRR2 and passesthem to usb_vendr eq_ser vi ce() .

The usb_vendreq_service() function determines the type of request (data IN
command, data OUT command, no data stage) and handles it appropriately.

The Callback usb_accept _command() function is used to pass a request and command
block to the Client application. This function is defined by the Driver but must be
implemented in the Client program. Upon receiving a new command, the Driver calls that
function, passing a pointer to DEVI CE_COVMAND structure as a parameter. The definition of
this structure is shown below:

/* Structure for Request */
typedef struct {
ui nt 8 bnRequest Type;
ui nt 8 bRequest ;
ui nt 16 wwval ue;
ui nt 16 w ndex;
ui nt 16 wiLengt h;
} REQUEST;

N1 Vendor Request Handling. 5-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

/* Structure for Command Buffer for Cient*/
typedef struct {
uint8 * cbhuffer; [/* Pointer to command bl ock
buffer */
REQUEST request; /* Request from Host*/
} DEVI CE_COMMAND;

REQUEST structure contains regquest parameters, the cbuf f er field points to the start of the
command block. The length of the command block is equa to the request.wLength
field. cbuffer field is used only if a request has a data stage and the direction of data
transfer is from Host to Device. Otherwise, cbuf fer is not initialized. A more detailed
description of request handling is given in following subsections.

5.2. Data OUT request handling

The direction of data transfer is determined by the bnRequest Type[D7] parameter [1]. If
that bit is cleared (bnRequest Type < 128) and thereis adata stage in arequest, it isa case
of Data OUT command:

if ((brmRequest Type < 128) && (wLength > 0))
/* Al'locate nenory for a new command */

/[* There is a data stage in this request and direction of
data transfer is from Host to Device */

NewC = (DEVICE COWAND *) mal | oc(si zeof (DEVI CE_COVVAND) +
wLengt h) ;
/[* Store the address where new command will be placed */

NewC -> cbuffer = (uint8 *) NewC + si zeof (DEVI CE_COWAND) ;
}

The Driver allocates memory for the request itself and for the command that will be
received in the data stage (the length of the command is determined by wiengt h).

If the Driver is unable to alocate memory, it sends a STALL response to the Host by
calling the usb_vendr eq_done() function

if (NewC == NULL)
{

usb_veﬁdreq_done(MNJIILERRO%;

After alocating memory, the Driver stores request parameters into the structure NewC - >
request.

N—1 Vendor Request Handling. 5-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Finally, the usb_vendreq_servi ce() function initializes the ep[0] . buf f er structure to
accept a command in the data stage. When data (command block) occurs on endpoint
number zero, theusb_out _servi ce() function will be called and receive a command.

When a command is received, the Driver calls usb_accept _comand() callback function
(implemented in the Client program) to notify the Client application about the new
command and passes a pointer to that command (request and command block):

if (i == ep[epnuni.buffer.Ilength)
{
if ((epnum == 0) && (NewQ))
{
status = usb_accept _conmand(NewC) ;

/* Call the Rx Handler */
usb_vendr eq_done(st at us);

free(NewC) ;
NewC = NULL;

To access a command, the Client application must use the cbuf fer field (defined in
DEVI CE_COMVAND structure). The program may check if it supports that command, it may
execute it immediately or put it into the Queue for later execution. In any event,
usb_accept _command() must return a status that indicates whether the Client application
accepts a command or not. This is not a status of command execution, but is rather a
status of accepting a command, and it will be sent in the status stage of command
transfer. The Client program must return status as soon as possible — the time for sending
status of accepting a command in status stageis limited by USB 1.1 specification.

Having that satus, the Driver cals usb_vendreg done() function from
usb_out _service() to complete a command transfer. If status is not zero,
usb_vendr eq_done() sendsa STALL response.

N—1 Vendor Request Handling. 5-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

5.3. Data IN request handling.
If the direction of data transfer is from Device to Host, the Driver alocates memory for
DEVI CE_COMVAND structure only:

/* Direction of data transfer is from Device to Host, or no data stage
*/
NewC = (DEVI CE_COWAND *) mal | oc(si zeof (DEVI CE_COVNVAND)) ;

If the Driver is unable to allocate memory for any reason, it sends a zero-length packet to
indicate end of transfer (no datawill be provided) and STALL handshake to the Host:

if (NewC == NULL)
{

if ((wength !'= 0) && (bnRequest Type > 127))
/* The direction of data transfer is from Device to
Host ,
send zero-length packet to indicate no data wll be
provi ded */
MCF5272_WR_USB_EPOCTL(i nm MCF5272_RD USB_EPOCTL(i nm)
& (~ MCF5272_USB EPOCTL_I N _DONE));

usb_vendreq_done(MALLOC ERROR);

After alocating memory, the Driver stores request parameters into the structure NewC - >
request.

Then, the Driver cdls the usb_accept _command() function passing a pointer to the
request as a parameter.

The Client application must decide if it either accepts a command or not. If it does not
accept a command, the usb_accept _comand() function must return a non-zero status.
As aresult, the Driver will send a zero-length packet and a single STALL handshake to
the Host indicating that no data will be provided and that the command failed:

status = usb_accept _conmand(NewC) ;
if (status != 0)
{

/* The direction of command bl ock transfer is fromDevice to
Host, but dient application does not accept a request (no data is
provi ded) */

MCF5272_WR_USB_EPOCTL(i nm MCF5272_RD USB_EPOCTL(i mm)

& (~ MCF5272_USB EPOCTL_I N_DONE)) ;
usb_vendr eq_done(st at us);

}

N—1 Vendor Request Handling. 5-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

If the Client program accepts a command (status is equal to zero), it may answer with
data immediately (call usb_t x_dat a(0, ..) function) from the usb_accept _conmmand()
function (endpoint number zero is now free), or put it into the Queue for later execution.
In any case, the Client application must call the usb_t x_dat a() function, passing O into
its first parameter (endpoint number zero), to transfer data upon request. Also the Client
program must do it as soon as possible — the time for sending a command in the data
stage from Device to Host is limited by the USB 1.1 specification. Sending data will
invoke the calling theusb_i n_ser vi ce() function, which completes command transfer:

if ((epnum == 0) && (ep[epnuni .”t;uffer.start) && (NewQ))

{
usb_vendr eq_done(SUCCESS) ;

A user notification is provided about completion of the command transfer (started by
usb_t x_dat a(0, ..)) by calingtheusb_ep_t x_done() function.

5.4. No data request handling.

If there is no data stage in a request, the Driver alocates memory for
DEVI CE_COWVIVAND structure only:

/* Direction of data transfer is from Device to Host, or no
data stage */
NewC = (DEVI CE_COMVAND *) mal | oc(si zeof (DEVI CE_COMVAND)) ;

If the Driver is unable to alocate memory, it sends a STALL response to the Host by
calling usb_vendr eq_done() function:

if (NewC == NULL)
{

usb_vendreq_done(MALLOC ERROR);

After alocating memory, the Driver stores request parameters into the structure NewC - >
request.

Then the usb_vendreq_servi ce() function calls the usb_accept _conmand() callback
function passing a pointer to the request as a parameter. The Client application may
accept or rgect a command, execute it immediately or put into the Queue for later
execution. In any case, the calback function must return a status, which indicates
whether the Client program accepts the request, or not. The Driver cals the
usb_vendreq_done() function to complete acommand transfer, passing the status:

N—1 Vendor Request Handling. 5-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

status = usb_accept _conmand(NewC) ;
if (wength == 0)

/* The request has no data stage, so it can be conpleted */
usb_vendr eq_done(st at us);

N—1 Vendor Request Handling.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

6. Miscellaneous Operations.

This chapter describes how the Driver handles port-reset, change configuration,
halt/unhalt endpoint events and how it notifies the Client application.

6.1. Port Reset Handling.

When a reset event occurs, the Driver cals usb_bus_state _chg_service() function
from the interrupt handler for endpoint number zero, passing the RESET value as a
parameter into it. The reset event handler clears the ep[epnuni . buf f er structure for al
endpoints, sets the state of each endpoint to USB_DEVI CE_RESET, and deletes a
command if NewC variable pointsto it.

It then calls the usb_reset _notice() function to notify the Client application about the
reset event. This function is defined by the Driver, but it must be implemented in the
Client application. The Client program may delete it's queue, reset structures/variables or
do some other Client specific work.

A reset event may occur a any time — during execution of usb_tx_data(),
usb_rx_data(), usb_in_service(), or usb_out_service(). To ensure each routine
will be completed properly, RESET interrupt must be disabled before starting to work with
buffers, and restored after data copying is completed. Otherwise, the RESET event handler
may be called during data copying. In this case, it clears the pointer to an intermediate
buffer, and then the interrupted function will read/write from/to zero address.

The reset event handler clearsthe ep[epnuni . buf f er structure:
for (i=0; i< NUMENDPQO NTS; i ++)

{
ep[i].buffer.start = 0;
ep[i].buffer.length = O;
ep[i].buffer.position = 0;

ep[i].state = USB_DEVI CE_RESET;

The global structure must be set up to its default value (no buffers allocated). This
prevents usb_in_service() and usb_out_service() from copying data (a way to
terminate transfers that are in progress).

The reset event handler sets the st at e field of each endpoint to the USB_DEVI CE_RESET
value. This prevents the Client application from starting new transfers on an unconfigured
Device. It does not extend to endpoint number zero — according to [1], transfers to
endpoint number zero are permitted for an unconfigured Device.

N1 Miscellaneous Operations. 6-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Functions usb_tx_data(), usb_rx_data(), usb_ep_wait (), and
usb_ep_i s_busy() examinethe st at e field if they are called for a non zero endpoint. If
the Deviceisreset but not yet configured, they return the USB_DEVI CE_RESET value.

6.2. Change of Configuration Handling.

A DEV_CFG interrupt may occur at any time — during execution of usb_t x_dat a(),
usb_rx_data(), usb_in_service(), oOr usb out_service(). To ensure each
routine is completed properly, this interrupt must be disabled before starting working
with buffers, and restored after data copying is finished. Otherwise the set configuration
event handler may be caled during data copying, which clears the pointer to an
intermediate buffer, and then the interrupted function will read/write from/to zero
address.

To handle the set configuration event (dev_cfg interrupt), the Driver calls the
usb_devcfg_service() function. This function clears the ep[epnuni . buf f er structure
for al endpoints. This prevents usb_in_service() and usb_out_service() from
operating with data (a way to terminate current data transfers). The function then sets
ep[epnuni . st ate field to USB_CONFI GURED. S0, new transfers will be permitted for al
endpoints from then on.

Next, the Driver cals the usb_devcfg_noti ce() function to notify the Client application
that a new configuration/interface/alternate setting is set up, passing the number of the
configuration into its first parameter, and number of interface/alternate setting — into the
second (refer to Chapter 6 for the specification of this function):

usb_devcfg_notice(new config, MCF5272 RD USB ASR(imm);

The Driver defines the prototype of this routine, but it must be implemented in the Client
application to properly handle those events in Client specific manner.

6.3. Halt/Unhalt Endpoint Handling.

USB has the ability to halt endpoints when errors occur. An endpoint can be halted
for avariety of reasons:
SET_FEATURE request with the endpoint halt feature selector set.

usb_ep_stall () was called by the Client application. This function should be
called only when thereisacritical error on the endpoint.

On control endpoint, an error processing a request (Driver stalls endpoint number
zero, if it is unable to alocate memory for the request, or when

usb_accept _command() returned anon-zero value).

An endpoint can be cleared (unhalted) in several different ways:

N—1 Miscellaneous Operations. 6-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

CLEAR_FEATURE request with the endpoint halt feature selector set.
A USB reset signal.

A SET_CONFIGURATION or SET_INTERFACE request.

On control endpoint, a SETUP token for the next request.

When the endpoint is halted, the Client program should abort the current transfer and
reinitiadlize the FIFO for the endpoint, by caling the usb_ep fifo_init() function.
When an endpoint is halted, the Driver notifies the Client application about it by calling
the usb_ep_hal t () function. And the Driver cals the usb_ep_unhal t () function when
the halt is cleared. The Driver defines the prototypes of these functions, however the
Client application must implement them to do program specific work.

N—1 Miscellaneous Operations. 6-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7. USB Device Driver Function
Specification.

This chapter describes functions implemented in the USB Device Driver.

Function arguments for each routine are described as i n, i nout.An i n argument means
that the parameter value is an input only to the function. An i nout argument means that
the parameter is an input to the function, but the same parameter is aso an output from
the function. | nout parameters are typically input pointer variables in which the caler
passes the address of a pre-allocated data structure to a function. The function stores its
result within that data structure. The actual value of the i nout pointer parameter is not
changed.

7.1. usb_bus_state chg_service

Call(s):
void usb_bus state chg_service(uint32 event);
Arguments:
Table 7-1. usb_bus_state _chg_service arguments
| event lin | Occurred event such as RESET, SUSPEND, €tc.

Description: This function handles RESUME, SUSPEND, and RESET interrupts. Is
cdled from the interrupt handler for endpoint number zero
(usb_endpoi nt 0_i sr() function).

Returns No value returns.

Code example:

if (event & MCF5272_USB_EPOI SR_RESET)

{
usb_bus_state chg_servi ce(RESET) ;

N—1 USB Device Driver Function Specification. 7-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.2. usb_devcfg_service

Call(s):
void usb_devcfg_service (void);

Arguments: No arguments.

Description: This function handles DEV_CFG interrupt. It is called from the interrupt
handler for endpoint number zero (usb_endpoi nt 0_i sr() function) when
the Host sets or changes the configuration.

Returns No value returns.

Code example:

if (event & MCF5272_USB_EPOI SR DEV_CFG
{

usb_devcfg_service();

N—1 USB Device Driver Function Specification. 7-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.3. usb_endpointO_isr
Call(s):
void usb_endpointO_isr (void);
Arguments: No arguments.
Description: Thisfunction handles all interrupts that occur for endpoint number zero.

Returns; No value returns.

Code example:

__interrupt__
voi d usb_endpoi nt 0_handl er (void)

{
/* Call handler in USB Driver */

usb_endpoi nt 0_i sr();

N—1 USB Device Driver Function Specification.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7-3

7.4. usb_endpoint_isr

Call(s):
void usb_endpoint_isr (uint32 epnum);
Arguments:
Table 7-2. usb_endpoint_isr arguments
| epnum lin | Number of endpoint on which an interrupt occurred. |

Description: This function handles all interrupts for al endpoints available in the
current configuration except for endpoint number zero.

Returns No value returns.

Code example:

__interrupt__
voi d usb_endpoi nt1_handl er (void)

{
/* Call handler in USB Driver */

usb_endpoint _isr(1);

~—"1 USB Device Driver Function Specification. 7-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.5. usb_ep_fifo_init

Call(s):
void usb_ep fifo_init(uint32 epnum);
Arguments:
Table 7-3. usb_ep_fifo_init arguments
epnum in Number of endpoint, whose FIFO buffer must be

reinitialized.

Description: This function initializes (reinitializes) the FIFO buffer for a given
endpoint. It causes the loss of data (if they are) in the FIFO buffer for a
selected endpoint only.

Returns No value returns.

Code example:

usb_ep fifo_init(1);

N—1

USB Device Driver Function Specification.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.6. usb_ep _is_busy

Call(s):
uint32 usb_ep is busy(uint32 epnum);
Arguments:
Table 7-4. usb_ep_is_busy arguments
| epnum lin | Number of tested endpoint for being busy.

Description: This function tests an endpoint for being busy. The endpoint is still being
busy while a non-zero value is assigned to ep[epnuni. buffer.start

field.

Returns

Table 7-5. usb_ep_is_busy returned values

USB_DEVICE_RESET

Deviceisreset

USB_EP IS BUSY

Endpoint is busy

USB_EP IS FREE

Endpoint isfree

Code example:

ui nt 32 ep_st at us;

ep_st at”L'JS = usb_ep_is_busy(1);
if (ep_status == USB EP | S FREE)

/* Endpoint is free. New transfer can be started */

N—1 USB Device Driver Function Specification.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.7. usb_ep_stall

Call(s):
void usb_ep_stall (uint32 epnum);
Arguments:
Table 7-6. usb_ep_stall arguments
| epnum lin | Number of endpoint to be halted.

Description: This function hats a non-zero endpoint. It causes the endpoint to return
STALL handshake when polled by either an IN or OUT token by the USB
Host controller.

Returns; No value returns.

Code example:

usb_ep stall(1);

~—"1 USB Device Driver Function Specification. 1-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.8. usb_ep_wait

Call(s):
uint32 usb_ep_wait (uint32 epnum);
Arguments:
Table 7-7. usb_ep_wait arguments
| epnum lin | Number of tested endpoint for being busy.

Description: This function does not return control while endpoint is busy (the function
waits for the endpoint). The endpoint is still busy while a non-zero valueis
assigned to the ep[epnuni . buffer. start field.

Returns:

Table 7-8. usb_ep_wait returned values

USB_DEVICE RESET

Deviceisreset

USB_EP IS FREE

Endpoint isfree

Code example:

ui nt 16 st at us;

usb_ep_wai t (| NTERRUPT) ;

usb_tx _data(l NTERRUPT, (uint8 *)(&status), 2);

N—1 USB Device Driver Function Specification.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.9. usb_fifo _init
Call(s):
void usb_fifo_init(void);

Arguments: No arguments.

Description: This function initializes the FIFO for current configuration. It calculates
the start address and the length of FIFO buffer for each endpoint and stores
these values into a corresponding configuration register.

Returns; No value returns.

Code example:

usb_fifo init():

N—1 USB Device Driver Function Specification. 7-S
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.10. usb_get desc
Call(s):
uint8* usb_get desc(int8 config, int8 iface, int8 setting, int8 ep);
Arguments:
Table 7-9. usb_get_desc arguments
config in | Number of configuration
iface in | Number of interface
Setting in | Number of aternate settings
ep in | Endpoint number

Description: This function returns a pointer to the required descriptor. If config

Returns

parameter is equal to —1, it returns a pointer to the Device descriptor. If
i face and setting are equa to —1 but confi g contains the number of the
configuration, it returns a pointer to the configuration descriptor of the
configuration having number confi g. If ep is equal to —1, but al previous
parameters are properly initialized, the function returns a pointer to the
corresponding interface descriptor for given configuration. If all
parameters are initialized by anon —1 value, then usb_get _desc() returns
a pointer to the endpoint descriptor for the given configuration, interface
and aternate setting. The ep parameter is the offset and not the physica
endpoint number.

Pointer to required descriptor.

Code example:

USB_CONFI G _DESC * pCf gDesc;

/* Get pointer to active Configuration descriptor */
pCf gDesc = (USB_CONFI G DESC *)usb_get desc(new config, -1, -1, -1);

N—1

USB Device Driver Function Specification. 7-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.11. usb_get frame number
(Implemented in CBI & Isochronous Driver only)
Call(s):
uintl6 usb _get frame _number(void);

Arguments:
No arguments.

Description and returned value:
Function returns the contents of FNR (Frame Number Register). This value is in

the range 0 to 2047.

Code example:

uint16 start_frame_nunber

start_frame_nunber = usb _get frane nunber() + 70
if (start_frame_nunber > 2047)
start_frame_nunber -= 2048;

~—"1 USB Device Driver Function Specification. 7-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.12. usb_init

Call(s):
void usb_init(DESC_INFO * descriptor_info);

Arguments:

Table 7-10. usb_init arguments

descriptor_info | in | Pointer to the structure that contains pointers to Device
descriptor and string descriptors and size of Device
descriptor

Description: This function initialize the USB Device Driver. It stores initial values to
global variables, initializes interrupts, loads descriptors to configuration
memory and initializes the FIFO buffer.

Returns; No value returns.

Code example:

DESC | NFO Devi ce_desc;

Devi ce_desc. pDescriptor = (uint8 *) &Descriptors;
Devi ce_desc. DescSi ze = usb_get _desc_si ze();

usb_init(&Devi ce_desc);

~—"1 USB Device Driver Function Specification. 7-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.13. usb _in_service

Call(s):
void usb_in_service(uint32 epnum, uint32 event);
Arguments:
Table 7-11. usb_in_service arguments
epnum in | Number of endpoint
event in | Events occurred for epnumendpoint

Description: This function handles FIFO_LVL, EOP and EOT interrupts for all IN
endpointsin the current configuration.

Assembler version is also provided.

Returns; No value returns.

Code example:

if (event & (MCF5272_USB_EPNI SR_EOT
| MCOF5272_USB_EPNI SR_EOP
| MCOF5272_USB_EPNI SR_FI FO LVL))

/* I N Endpoi nt */
i f (MCF5272_RD _USB_EPI SR(i mm epnum &
MCF5272_USB_EPNI SR DI R)
usb_in_service(epnum event);

~—"1 USB Device Driver Function Specification. 7-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.14. usb_isochronous_transfer_service
(Implemented in CBI & Isochronous Driver only)

Call(s):
void usb_isochronous_transfer_service(void);

Arguments: No arguments.

Description: This function is used to properly start and stop an IN/OUT isochronous
data stream. It aso performs monitoring of the Host s’w and the Device
side Client application to determine if they are working in real time.

Returns; No value returns.

Code example:

if (event & MCF5272_USB_EPOI SR _SOF)

/* Clear this interrupt bit */
MCF5272_WR USB EPOI SR(i nm MCF5272_USB EPOI SR_SOF) ;

usb_i sochronous_t ransfer_service();

~—"1 USB Device Driver Function Specification. 7-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.15. usb_isr_init
Call(s):
void usb_isr_init(void);
Arguments: No arguments.
Description: Thisfunction initializes interrupts for the USB module.

Returns: No value returns.

Code example:

usb_i s?”_i nit();

~—"1 USB Device Driver Function Specification. 7-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.16. usb_make_power_of two

Call(s):
void usb_make power_of two(uint32 *size);
Arguments:
Table 7-12. usb_make_power_of two arguments
| size | inout | Pointer to the value that must be power of two |

Description: This function makes a power of two of the vaue pointed by the size
parameter. If the pointed value is not a power of two, the function
increases it to the nearest available power of two. If the result is larger than
256, then 256 is assigned to the result value.

Returns: No value returns.

Code example:

/* Make sure FIFO size is a power of 2; if not, nmake it so */
for (i =0; i <nIN i++)
usb_make _power of two(& pINi]->fifo_length));

~—"1 USB Device Driver Function Specification. 7-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.17. usb _out_service

Call(s):
void usb_out_service(uint32 epnum, uint32 event);
Arguments:
Table 7-13. usb_out_service arguments
epnum in | Number of endpoint
event in | Events occurred for epnumendpoint

Description: This function handles FIFO_LVL, EOP and EOT interrupts for al OUT
endpointsin the current configuration.

The assembler version is also provided. The assembler version of this
function does not test the buffer for overflow. The buffer may be
overflowed because of an error in the Host software (not on the Device
side). Hence in the C version this test is done only as an aid in Host
software development.

Returns; No value returns.

Code example:

if (event & (MCF5272_USB_EPNI SR_EOT
| MCOF5272_USB_EPNI SR_EOP
| MCOF5272_USB_EPNI SR_FI FO LVL))

{
/* I N Endpoi nt */
if (MCF5272_RD _USB_EPI SR(i nm epnum) & MCF5272_USB_EPN SR DI R)
usb_i n_service(epnum event);

/* QUT Endpoint */
el se
usb_out _servi ce(epnum event);

~—"1 USB Device Driver Function Specification. 7-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.18. usb rx_data

Call(s):
uint32 usb_rx_data(uint32 epnum, uint8 * start, uint32 length);

Arguments:
Table 7-14. usb_rx_data arguments
epnum in Number of endpoint through which data will be received
from Host
start inout | Pointer to buffer where Driver will place received data
from Host
length in Number of bytesto receive

Description: This function initializes the ep[epnuni. buffer structure with vaues
start and | ength. It then copies the contents of the FIFO buffer for
endpoint epnum to the destination buffer pointed to by start. If al the
expected data was sent, it clears the ep[epnun].buffer structure.

Assembler version is also provided.

Returns:
Table 7-15. usb_rx_data returned values
USB DEVICE RESET Deviceisreset
USB EP IS BUSY Endpoint is busy
USB COMMAND_FAIL Parameters passed to function are not

properly initialized or given endpoint is not
ready to receive new data
USB_ COMMAND_SUCCESS The function completed successfully

Code example:

usb_rx_data(BULK QUT, bufptr, size);

~—"1 USB Device Driver Function Specification. 7-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.19. usb _rx_frame
(Implemented in CBI & Isochronous Driver only)

Call(s):
uint32 usb_rx_frame(uint32 epnum, uint8 * start, uint32 frames);
Arguments:
Table 7-16. usb_rx_frame arguments
epnum in Number of endpoint through which data will be received
from Host
start inout | Pointer to buffer where Driver will place received data
from Host
frames in Number of framesto read

Description: This function initializes the ep[epnuni.buffer.start field with the
value start. It sets the ep[epnuni.buffer.length vaue to -1 (the
Client program must take care of the buffer length to prevent overflow).
Also it sets up a corresponding read mode and the number of frames to
read.

Assembler version is also provided.

Returns:
Table 7-17. usb_rx_frame returned values
USB DEVICE RESET Deviceisreset
USB EP IS BUSY Endpoint is busy
UuSB COMMAND_FAIL Parameters passed to function are not

properly initialized or given endpoint is not
ready to receive new data
USB COMMAND_ SUCCESS The function completed successfully

Code example:

usb_rx_frame(l SO QJT, rx_db, 5);

~—"1 USB Device Driver Function Specification. 7-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.20. usb_sendZLP

Call(s):
void ush_sendZL P(uint32 epnum);

Arguments:

Table 7-18. usb_sendZLP arguments
| epnum lin | Number of endpoint. |

Description: This function sets ep[epnuni . sendzLP filed to TRUE. It provokes the
sending of a zero length packet to indicate the end of transfer, if the last
packet of the transfer is of maximum size. If the last packet is short, a call
to this function has no effect. The ep[epnuni . sendzLP filed is cleared by
the Driver at the end of each transfer, regardiess of the previous contents
of thefield.

Returns; No value returns.

Code example:

usb_seﬁ.dZLP() ;

~—"1 USB Device Driver Function Specification. 7-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.21. usb_set final frame number
(Implemented in CBI & Isochronous Driver only)
Call(s):
void ush_set fina_frame_number(uint32 epnum, uintl6 frame_num);

Arguments:

Table 7-19. usb_set final_frame_number arguments

epnum in Number of endpoint.
frame_num in Number of frame in which stream will be closed.

Description:

This function sts a frame, in which a data stream will be closed. When the data
stream is closed, the Driver does not monitor either the Host s/w activity or the
Device-side application. The function also permits the correct start
(synchronoudy with the Host) of a new data stream.

Returns
No value returns.

Code example:

uint16 final _frame_nunber;
final _frame_nunber = usb_get frane nunber() + 11;
if (final _frame_nunber > 2047)
final _frane_nunber -= 2048;

usb_set final _frame_nunber (I SOIN, final _frane_nunber);

~—"1 USB Device Driver Function Specification. 7-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.22. usb_set start frame number
(Implemented in CBI & Isochronous Driver only)
Call(s):
void ush_set start_frame_number(uint32 epnum, uintl6 frame_num);

Arguments:

Table 7-20. usb_set_start_frame_number arguments

epnum in Number of endpoint.
frame_num in Number of frame in which stream will be started.

Description:

This function sets a frame in which a data stream will be started. It permits the
start of data transfer, synchronoudy with the Host.

Returns
No value returns.

Code example:

uintl1l6 start_frame_nunber;
start_frame_nunber = usb_get frane _nunber() + 70;
if (start_frame_nunber > 2047)
start_frane_nunber -= 2048;

usb_set _start_frame_nunber (I SO IN, final _frane_nunber);

~—"1 USB Device Driver Function Specification. 1-22
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.23. usb_sort_ep_array

Call(s):
void usb_sort_ep array(USB_EP_STATE *list[], int n);
Arguments:
Table 7-21. usb_sort_ep_array arguments
list inout | Pointer to the array of USB_EP_STATE elements
n in Number of elementsin the array pointed by | i st

Description: This function sorts elements in the array pointed by 1i st in descending
order.

Returns No value returns.

Code example:

/* Sort the endpoints by FIFO |l ength (decending) */
usb_sort_ep_array(plN, nIN);

~—"1 USB Device Driver Function Specification. 7-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.24. usb_tx data

Call(s):
uint32 usb_tx_data(uint32 epnum, uint8 * start, uint32 length);

Arguments:
Table 7-22. usb_tx_data arguments
epnum in Number of endpoints through which data will be
transferred to Host
start inout | Pointer to buffer from where Driver will place data to
FIFO buffer
length in Number of bytes to send

Description: This function initiaizes the ep[epnun].buffer structure with values st art
and | engt h. It aso copies the contents of the source buffer to the FIFO
buffer.

Assembler version is also provided.

Returns:
Table 7-23. usb_tx_data returned values
USB DEVICE RESET Deviceisreset
USB EP IS BUSY Endpoint is busy
USB COMMAND_FAIL Parameters passed to function are not

properly initialized or given endpoint is not
ready to receive new data
USB COMMAND_ SUCCESS The function completed successfully

Code example:

usb_t x_dat a(l NTERRUPT, (uint8 *)(&status), 2);

~—"1 USB Device Driver Function Specification. 1-24
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.25. usb_vendreq_done

Call(s):
void usb_vendreq_done(uint32 error);
Arguments:
Table 7-24. usb_vendreq_done arguments
| error |in | Statusof command completion |

Description: Controls the status stage response for vendor and class specific requests.
This function sets the EPOCTL[CMD_OVER] bit if error is zero and
EPOCTL[CMD_OVER], EPOCTL[CMD_ERR], bits if error contains a
nor-zero value.

Returns; No value returns.

Code example:

status = usb_accept _conmand(NewC) ;
usb_vendr eq_done(st at us);

~—"1 USB Device Driver Function Specification. 7-25
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7.26. usb_vendreq_service

Call(s):
void usb vendreg service(uint8 bmRequestType, uint8 bRequest, uintl6
wValue,
uintl6 windex, uint16 wLength);
Arguments:
Table 7-25. usb_vendreq_service arguments

bmRequestType | in

bRequest in Standard request parameters.

wVaue in For more information refer to USB 1.1 specification

windex in | (Chapter 9.3)

wLength in

Description: This function receives a request from the Host, and allocates memory for

the request.

Returns No value returns.

Code example:

usb_vendreq_servi ce(

(ui nt 8) (MCF5272_RD_USB_DRRL(i nm) & OXFF),
(ui nt 8) (MCF5272_RD_USB_DRRL(i nm) >> 8),

(ui nt 16) (MOF5272_RD_USB_DRRL(i mm) >> 16),

(ui nt 16) (MOF5272_RD_USB_DRR2(i nm) & OXFFFF)
(ui nt 16) (MOF5272_RD_USB_DRR2(i nm) >> 16));

N—1 USB Device Driver Function Specification.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7-26

8. Application Specific Function
Prototypes.

This chapter provides a specification of the functions that must be implemented in the
Client application. The Driver assumes that the Client program implements these
functions according the given specification and calls them at the appropriate times.

All function arguments for each routine are described as i n, meaning that the parameter
valueisan input only to the function.

The Driver does not define names of function arguments. This specification uses ar g1,
ar g2, etc. names for convenience.

N—1 Application Specific Function Prototypes. 8-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8.1. usb_accept_command

Call(s):
uint32 usb_accept_ command(DEVICE_COMMAND * argl);

Arguments:
argl —isapointer to command.

Client program may extract some useful parameters using following fields.

Bit number 7 of argl -> request.bmRequestType field determines the data transfer
direction (if bit 7 is set — the direction is from Device to Host, if bit 7 is cleared —from
Host to Device).

argl -> request.wL ength field contains the length of command block.

argl -> cbuffer is a pointer to command block.

Returns:

Function must return status to Driver that indicates either that the Client program
accepts a command or not. If the usb_accept _command() function returns SUCCESS
(zero) value, it means that the Client accepts a command. For any other (non-zero) value,
the Driver considers as an error and sends a STALL response to the Host in the status
stage of command transfer.

Description:

The Driver cals this function when it completes receiving a command from the
Host. The Client application must determine if it either supports a command or not and
return the corresponding status to the Driver as soon as possible. The Client program may
execute a command immediately or put the command to the Queue for later execution.

~—"1 Application Specific Function Prototypes. 8-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8.2. usb_devcfg notice

Call(s):
void usb_devcfg_notice(uint32 argl, uint32 arg2);

Arguments:
argl — number of configuration;
arg2 —number of interface/aternate setting.

argl contains configuration number set by the Host.

arg2 parameter contains interface number and number of alternate setting for every active
interface. In fact, the Driver passes the contents of the ASR register in this parameter. For
detailed description of thisregister refer to [2].

Returns
No value returns.

Description:
The Driver cdls this function when the Host sets a new configuration or
interface/alternate setting.

~—"1 Application Specific Function Prototypes. 8-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8.3. usb_ep halt

Call(s):
void usb_ep halt(uint32 argl);

Arguments:
argl — number of halted endpoint.

Returns:
No value returns.

Description:
Driver calls this function when endpoint is halted.

N—1 Application Specific Function Prototypes.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8.4. usb_ep _rx_done

Call(s):
void usb_ep rx_done(uint32 argl, uint32 arg2, uint32 arg3);

Arguments:
ar g1 —number of endpoint on which data transfer is completed;
ar g2 — status of completed data transfer;
ar g3 — number of received bytes;

Driver passes OVERFLOW ERRCR in ar g2 parameter if the Host sent more data than the
Client application expected (if the enount of received data is larger than Client program
passes in the | engt h parameter to usb_rx_dat a() function). Otherwise, the value of
ar g2 parameter is equal to SUCCESS.

Returns
No value returns.

Description:
Driver calls this function when a Host-to-Device (OUT) transfer is completed.

N—1 Application Specific Function Prototypes. 8-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8.5. usb_ep_tx _done

Call(s):
void usb_ep_tx_done(uint32 argl, uint32 arg2, uint32 arg3);

Arguments:
ar g1 —number of endpoint on which data transfer is completed;
ar g2 — status of completed data transfer;
ar g3 — number of sent bytes,

Thevaue of ar g2 parameter is always equal to SUCCESS.

Returns:
No value returns.

Description:
Driver callsthis function when Device-to-Host (IN) transfer is completed.

N—1 Application Specific Function Prototypes.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8.6. usb_ep _unhalt
Call(9):
void usb_ep_unhalt(uint32 argl);

Arguments:
ar g1 — number of unhalted endpoint.

Returns
No value returns.

Description:
Driver cals this function when an endpoint is unhalted.

N—1 Application Specific Function Prototypes.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8.7. usb_reset _notice
Call(s):
void usb_reset_notice(void);

Arguments:
No arguments.

Returns:
No value returns.

Description:
Driver callsthis function when Device isreset (port reset occurred).

N—1 Application Specific Function Prototypes.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9. Appendix 1: File Transfer Application.

9.1. Introduction.

This appendix describes a Device-side USB File Transfer Application. This program is
used only for demonstration purposes. The program illustrates some useful techniques
(see section 1.2) and gives an example of working with the USB Device Driver.

9.1.1. Important Notes.

The stand-alone version of the Client application works in much the same way as the
uCLinux Client application. The only difference lies in the file system. The stand-alone
version alocates a structure for each file and uses read _file(), wite file()
functions to access the file. This is done in order to easily remake the application for
uCLinux. Therefore under the OS, the fread() function is used instead of read file(),
and the fwrite() function is used instead of wite file(). In addition, the Linux file
system is used instead of structures for files. In other words, the stand-alone version
emulates the work with files in the same way the OS does.

The Client goplication (descriptors and program) is designed to mostly support the CBI
Transport specification. From this the following may be inferred:
a) Endpoints are used according the CBI Transport specification (see section 2.1).
b) Descriptors are defined according the CBI Transport specification.
¢) The Interrupt data block is defined according the CBI Transport specification.
d) The Host uses 'Accept Device-Specific Command' (ADSC) request for a Control
endpoint (endpoint number 0), to send a command block to the Device, as defined
by the CBI Transport specification.

However the Client application does not support any standard command set (such as UFI,
RBC, etc.) and so a simple UFTP command set was designed and used to achieve this
goa. The UFTP command set represents a very close fit for the file transport task. It
works on a file level (in file system (section 3.1)), and not on a level of blocks of data.
Hence, the Client application does not need to construct a file from blocks (numbers of
which it recelves from the Host) of data, asin the case with UFI, RBC and other standard
command sets. The program gets the name of a file using the UFTP protocol and requests
the OS do the routine work (access required sector, block, etc.) to access the required
data. In this way the Client application is smplified and makes for transparent
communication with the Driver.

9.1.2. Capabilities of File Transfer Application.

Some useful techniques are highlighted below, which the program uses during file
transfers:

Simultaneous data transfer and data processing. The Client application processes
data (reads/writes data from/to the file) during transfer (reception) of the previous

N—1 Appendix 1: File Transfer Application. 91
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

(next) portion of data. It uses two intermediate buffers — first to transfer (receive)
the data, and second — to read/write the next portion of data. When the first buffer
becomes empty (full), the buffers switch places.

Using the SRAM module for alocating intermediate buffers makes for a faster
execution speed of the program during transfer or reception of afile.

9.1.3. Related Files.
The following files are relevant to the Client Program:
cbi . h — Client application types and global constant definitions;
cbi . ¢ —main program, executes commands from the Host, hold files;

cbi _desc.c — contains Device, configuration, interface, endpoint, and string
descriptors.

uf t p_def . h — operation code and status values definitions for UFTP protocol.

The Client application requires the following files:
alloc.c — program uses dynamic memory dlocation, so the module
containing mal | oc() andfree() functionsis needed;

printf.c — in debug mode the program calls the printf () function to output
debug information;

stdlib. c —the program works with strings and calls some related functions.

Therest of thefilesinthei ni t group are used to initialize the board and the processor.

9.2. UFTP Protocol Description.

This section describes USB usage by the UFTP protocol and specifies the structure of
commands that the Host sends to the Device.

9.2.1. USB Usage.
The UFTP Device and Host, support USB requests and use the USB for the transport of
command blocks, data, and status information, as defined by the CBI Transport
specification, but including the following restrictions:
A UFTP Device implements an Interrupt endpoint and uses that interrupt endpoint
to indicate a possibility of command execution.

The Hogt uses a Control endpoint (endpoint number 0) to send a command block
to the Device.

A UFTP Device implements a Bulk In endpoint, to transfer data to the Host; and a
Bulk Out endpoint to receive data from the Host.

~—"1 Appendix 1: File Transfer Application. 9-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.2.2. Status Values.
The following status values are defined by UFTP protocol:

Table 9.1 Status values defined by UFTP protocol.

Status Value Description

UFTP_SUCCESS 0000h | The command can be completed
successfully

UFTP _FILE DOES NOT_EXIST 0011h | Required file does not exist on Device

UFTP_MEMORY_ALLOCATION_FAIL 0021h | Not enough memory for intermediate
buffers allocation

UFTP_NO_POSITION_FOR _NEW_FILE 0031h | No free postion in the array of file
structures

UFTP_NOT ENOUGH _SPACE FOR FILE | 0041h | Not enough memory for anew file

9.2.3. UFTP Command Descriptions.

Commands that are used in the UFTP protocol do not have a fixed-length structure. Only
the first field is common for all commands — Operation Code. The rest of the fields
depend upon the command.

9.2.3.1. UFTP_READ command: 01h.
The Host sends the UFTP_READ command to get arequired file from the Device.

Table 9.2 UFTP_READ command.

Byte Description of value
0 Operation code (01h)
1 Length of file name
2
3 Name of file
(not NULL-terminated string)
[ength_of file nane - 1

The command specifies a file, which the Device must send to the Host. It has two
parameters — length of file name and name of file. The length of the file name fidd is
used to properly fetch the name of the file from the command. The name of afileisnot a
NULL-terminated string.

~—"1 Appendix 1: File Transfer Application. 9-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

UFTP_READ data: Upon receiving this command, the Device sends status to the Hot,
and if that status was UFTP_SUCCESS, sends the contents of given file to the Host (on
Bulk In endpoint).

9.2.3.2. UFTP_WRITE command: 02h.
The Host sends the UFTP_READ command to send arequired file to the Device.

Table 9.3 UFTP_WRITE command

Byte Description of value
0 Operation code (02h)
1 (LSB)
2 Length of file
3
4 (MSB)
5 Length of file name
6
- Name of file
length_of _file_nanme - 1 (not NULL-terminated string)

The command specifies a file, which the Device must receive from the Host. It has three
parameters — length of file, length of file name and name of file. The length of file name
field is used to properly fetch the name of the file from the command. The name of the
fileisnot aNULL-terminated string.

UFTP_WRITE datac Upon receiving this command, the Device sends status to the Hogt,

and if that status was UFTP_SUCCESS, it receives the data from
the Host (on Bulk Out endpoint).

9.2.3.3. UFTP_GET_FILE_INFO command: 03h.
The Host sendsthe UFTP_GET_FILE_INFO command to get asize for agiven file.

Table 9.4 UFTP_GET_FILE_INFO command.

Byte Description of value
0 Operation code (03h)
1 Length of file name
2
3 Name of file
- (not NULL-terminated string)
length_of _file_nanme - 1

N—1 Appendix 1: File Transfer Application. 9-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

The command specifies a file, the size of which the Device must send to Hogt. It has two
parameters — length of file name and name of file. The length of the file name field is
used to properly fetch the name of the file from the command. The name of the file is not
aNULL-terminated string.

UFTP_GET_FILE INFO data Upon receiving this command, the Device sends
satus to the Host and if that satus was
UFTP_SUCCESS, Device sends the length of the
given file to the Host (L SB first).

9.2.3.4. UFTP_GET_DIR command: 04h.
The Host sends the UFTP_GET_DIR command to receive the names of all files held on a
given Device.

Table 9.5 UFTP_GET_DIR command.

Byte Description of value

0 Operation code (04h)

The command has no parameters.

UFTP_GET_DIR data: Upon receiving this command, the Device sends status to
the Host and if that status was UFTP_SUCCESS, it sends
two buffersto the Host.

The first buffer contains information about the directory — length of the buffer that holds
thelist of files (length of second buffer), and the number of files.

Table 9.6 Buffer containing information about directory.

Byte Description of value
0 (LSB)
1 Length of buffer that contains list of files
2
3 (MSB)
4 (LSB)
5 Number of files
6
7 (MSB)

The second buffer contains alist of files.

N—1 Appendix 1: File Transfer Application. 9-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Table 9.7 Buffer containing list of files

Byte Description of value
0 Length of filel name
1 Name of filel

(not NULL-terminated string)

length of filel nane - 1

length_of filel nane Length of file2 name

length of filel nane + 1 Name of file2
(not NULL-terminated string)

[ength_of file2 nane - 1

9.2.3.5. UFTP_SET TRANSFER_LENGTH command: 05h.
The Host sends the UFTP_SET TRANSFER LENGTH command to set the length of
transfer.

Table 9.8 UFTP_SET_TRANSFER_LENGTH command.

Byte Description of value
0 Operation code (05h)
1 (LSB)

2 Length of transfer
3
4 (MSB)

Upon receiving this command, the Device sends UFTP_SUCCESS status to the Host.

The length of the transfer is used during execution of UFTP_READ and UFTP_WRITE
commands. Files are sent between Host and Device by blocks. The length of each block
is equa to the length of a transfer. Thus, a given command sets up the length of the block
on which transferred file will be divided up.

~—"1 Appendix 1: File Transfer Application. 9-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.2.3.6. UFTP_DELETE command: 06h.
The Host sends the UFTP_DEL ETE command to delete arequired file on the Device.

Table 9.9 UFTP_DELETE command

Byte Description of value
0 Operation code (06h)
1 Length of file name
2
3 Name of file
- (not NULL-terminated string)
length_of _file_nanme - 1

Upon receiving this command, the Device sends either
UFTP_FILE DOES NOT_EXIST or UFTP_SUCCESS dtatus to the Host.

The command specifies a file, which must be deleted by the Device. It has two
parameters — length of file name and name of file. The length of the file name field is
used to properly fetch the name of the file from the command. The name of the file is not
aNULL-terminated string.

N—1 Appendix 1: File Transfer Application. 9-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.3. Implementation of File Transfer Application.
This section explains how the Client application implements the file system and executes
commands from the Host.

9.3.1. Implementation of File System.
Each file is represented by a structure, which holds the name d file, size of file, and
pointer to the data:

#defi ne FI LE_NAME_LENGTH 256

typedef struct {

uint8 file_name[FILE_ NAME LENGTH]; /* nane of file */
uint32 file_ |l ength; /* length of file */
uint8 * file_data; /* pointer to data */
} FILE_SYSTEM | TEM

The file itself (the data contained in a file) has a flat memory model (it is a buffer in
memory). The memory for the structure and file data is allocated dynamically upon
receipt of anew file.

A file system is a dtatic array of pointers to the structure. It has a fixed length and is
limited by the MAX_FI LES_COUNT constant:

#defi ne MAX_FI LES_COUNT 512

/* Array of pointers to files */
FI LE_SYSTEM | TEM * pfil es[MAX_FI LES_COUNT] ;

NULL can be between elementsin the array.

9.3.2. Initializing the Driver.

To start working with the Driver, the Client application must first initialize it. Before
calling the usb_init () function (which initializes the Driver), the Client application
needsto fill the DESC_| NFOstructure (defined in usb. h file):

extern USB DEVI CE_DESC Descri ptors;
ISESC_I NFO Devi ce_desc;

Devi ce_desc. pDescriptor = (uint8 *) &Descriptors;
Devi ce_desc. DescSi ze = usb_get _desc_si ze();

Thevariable Descri pt or s isallocated in the cbi _desc. c file.

~—"1 Appendix 1: File Transfer Application. 9-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Following this action, the Client application initializes the Driver:

usb_ini t (&Devi ce_desc);

9.3.3. Program Execution.
The Client program consists of two important parts: usb_accept _command() function
and the mai n() function.

The usb_accept _conmand() is called by the Driver every time the Driver receives a
command from the Host. If it is a request for a string descriptor, the Client executes that
request immediately (refer to Chapter 3.3.7). If the Client program does not support the
received command, it returns NOT_SUPPORTED_COMMAND (norn-zero) value to the Driver.
Otherwise, the Client application puts a command into the Queue and returns a

SUCCESS (zero) value to the Driver.

In the mai n() function, the Client program calls the f et ch_conmmand() routine, passing
the address of the buffer, to get a new command (fetch next command from the Queue).
If the Queue was not empty (fetch_conmand() returned COMVAND SUCCESS), the
program finds the appropriate handler for that command, using “switch” operator, and
calsit.

In addition, the Client program implements callback functions, required by Driver:
usb_reset _notice() — it deletes the command queue and sets the variable
Devi ce_reset to TRUE. This variable is used by the most of command handlers to
properly complete their task, if the Device was reset.

usb_devcfg_notice() — clears the variable Devi ce _reset, and permits execution of
new commands from the Host.

The Client application implements the rest of the calback functions
(usb_ep_rx_done(), usb_ep_tx_done(), usb_ep_halt(), usb_ep_unhalt()), but
they in fact do not do anything.

The following subsections describe in detail how the Client program executes each
command.

9.3.3.1. UFTP_READ command execution.

In the first instance, the UFTP_READ command handler tries to find a given file. If the
file does not exist, it reports an error to the Host on an interrupt endpoint. Otherwise, it
allocates intermediate buffers.

~—"1 Appendix 1: File Transfer Application. 9-¢
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

To transfer a file from Device to Host, two intermediate buffers are used (detailed
description of their purpose is described below). In order to increase the execution speed
of the program during file transfers, these buffers must both be 4-byte aligned. The first
buffer is aways 4-byte aligned, regardless of whether it was dynamically allocated (in
this case mal | oc() will return a 4-byte aigned address) or alocated in SRAM (a start
address of SRAM module is always 4byte aligned). To find the nearest 4-byte aligned
address for the second buffer, some calculations are necessary.

The handler calculates the remainder of the division of transfer length (the length of each
intermediate buffer) by 4. Then the function finds the number of bytes which need to be
padded:

padded_bytes = (transfer_|length & 0x3);

i f (padded_bytes !'= 0)
padded_bytes = 4 - padded_byt es;

Thus, the address of the second intermediate buffer will be equa to the sum of the
transfer length and the number of padded bytes added to the start address of the first
buffer:

buffer2 = bufferl + transfer_| ength + padded_bytes;

However, at first the first intermediate buffer (pointed by buf f er 1) must be alocated. If
the length of the transfer is less than or equal to 2048 bytes and the variable
pl ace_buffers_to_sram is TRUE, the buffers will be alocated in SRAM module,
otherwise the memory for these buffers will be allocated dynamically:

i f ((transfer_length <= (1 NT_SRAM SI ZE >> 1)) &&
(place_buffers to _sram == TRUE))
bufferl = (uint8 *) ncf5272_ranbar();
el se

bufferl = (uint8 *) mal | oc(2*transfer_| ength +
padded_byt es);

As the next step, the handler sends the status to the Host on an interrupt endpoint. If there
was enough memory for the buffers (in the case that it was alocated dynamically, not in
SRAM module), the function starts to send data to the Host.

The buf ptr variable is used to point to the current intermediate buffer. The si ze
variable will contain the number of bytes that was copied from the file to the current
intermediate buffer (read_file() function returns this amount). Now it is set up to
transfer_| engt h in order to enter the loop.

~—"1 Appendix 1: File Transfer Application. 9-10
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

A fileis sent to the Host according the following algorithm:

The handler reads the required portion of the data from the file, into the current
temporary buffer, then waits while the required endpoint is busy. Then it starts
transferring data to the Host by cling the usb_t x_dat a() function. This function places
in the FIFO buffer only the initial 256 bytes and then returns control. The rest of the data
(from this transfer, not the file) will be sent using an EOP interrupt handler [4]. When
usb_t x_data() returns control, a new portion of data can be copied from the file, but
now into the second intermediate buffer, thus data processing (copying of next portion of
data) and transferring data from the first buffer is occurring in parallel. A more detailed
description of thisis provided below.

The handler attempts to read transfer_| engt h bytes from the file into the intermediate
buffer pointed to by the buf pt r variable:

size = read_file(fpos, bufptr, transfer_|ength, pos);

The f pos variable contains an index of the file (it was found earlier during testing, that is
provided the required file exists), pos —is an offset in the file, the position of the next
data to be read. The function returns the number of read bytes from the file. If the number
of read bytesislessthan t ransf er I engt h it indicates that the end of the file is reached,
and the function must then complete the operation. Then it increments pos for the
number of read bytes.

Before transferring this data to the Host, the program must wait until the required
endpoint (BULK IN) becomes free:

if (! Device_reset)
usb_ep_wai t (BULK_I N);

A transfer isthen initiated:

if (! Device reset)
usb_tx_data(BULK IN, bufptr, size);

Finally, the buffers switch places,

if (bufptr == bufferl)
buf ptr = buffer2;
el se
buf ptr = bufferl

The same operations but with new buffers will be performed on a new iteration of the
loop (if the end of fileis not reached).

~—"11 Appendix 1: File Transfer Application. 9-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

The Device_reset variable is tested for a TRUE value. If port reset occurred on a
particular Device, in this case the program finishes all operations and returns control to
thenmai n() function.

9.3.3.2. UFTP_WRITE command execution.

In the first instance, the UFTP_WRITE command handler tries to find a given file. If the
file does not exist it finds the first free position in the array of pointers to the file. If there
is no free pogition in the array, it reports an error to the Host, on an interrupt endpoint.
Then it begins to alocate intermediate buffers.

To transfer a file from Host to Device, two intermediate buffers are used (a detailed
description of their purpose is given below). In order to the increase execution speed of
the program during file transfers, these buffers must both be 4-byte aligned. The first
buffer is always 4-byte aligned regardless of whether it was dynamically allocated (in this
case mal | oc() will return a4-byte aligned address) or alocated in SRAM (a start address
of SRAM module is always 4byte aligned). To find the nearest 4-byte aligned address
for the second buffer, some calculations are necessary.

The handler calculates the remainder of division of the transfer length (the length of each
intermediate buffer) by 4. Then the function finds the number of bytes to be padded:

padded bytes = (transfer length & 0x3);

i f (padded_bytes !'= 0)
padded bytes = 4 - padded_ byt es;

Thus, an address of the second intermediate buffer will be equal to the sum of the transfer
length and the number of padded bytes added to the start address of the first buffer:

buffer2 = bufferl + transfer_| ength + padded_bytes;

However the first intermediate buffer (pointed to by buf f er 1) must first be allocated. If
the length of the transfer is less than or equal to 2048 bytes, and the variable
pl ace_buffers_to_sramis TRUE, the buffers will be allocated in the SRAM module,
otherwise the memory for these buffers will be alocated dynamically. If the length of the
file is less than or equal to the length of the transfer, only one write operation from the
temporary buffer to the file will be performed and the second buffer will not be used. In
this case memory must be allocated for the first intermediate buffer only:

i f ((transfer_length <= (1 NT_SRAM SI ZE >> 1)) &&
(pl ace_buffers_to_sram == TRUE))
bufferl = (uint8 *) ncf5272 ranbar();

~—"1 Appendix 1: File Transfer Application. 9-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

el se

if (flength <= transfer_I| ength)
bufferl = (uint8 *) malloc(flength);
el se
bufferl = (uint8 *) mal | oc(2*transfer _length +
padded_byt es);

Then, handler attempts to allocate memory for the file structure and the file data:

/* Try to allocate nmenory for the new file */
ptenp_file = (FILE_SYSTEM | TEM *) mall oc(si zeof (FI LE_SYSTEM | TEM
+ flength);

The function sends status to the Host. If the status was UFTP_SUCCESS, the Host can
start to transfer thefile.

Memory will now be alocated for a new file, therefore if the file with the given name
exists on Device, it can now be removed:

if (file_exists)
free(pfiles[fpos]);

Then, the handler initializes a structure for thefile.
A fileisreceived from the Host according the following agorithm:

The program waits while the required endpoint is busy, after that it starts receiving data
from the Host by calling the usb_rx_dat a() function. This function reads data from the
FIFO buffer into the current buffer. If not al expected data for this transfer (not file) was
sent, the rest of the data will be received using an EOP interrupt [4]. When
usb_rx_data() returns control, the writing of data from the second buffer (previoudy
received data) to the file can be started. Thus the actions of, receiving the data into
current buffer and writing data from the previous buffer into the file are occurring
simultaneously. A more detailed description is provided below.

The function then enters the loop, waiting until the required (BULK OUT) endpoint
becomes free. Following this it calls the usb_rx_dat a() function to start receiving the
file:

if ((int32)(flength - pos - size) >= transfer_| ength)
size = transfer_| ength;

el se
size = flength - pos - size;

usb_rx_data(BULK QUT, bufptr, size);

~—"1 Appendix 1: File Transfer Application. 9-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

buf pt r points to the current intermediate buffer, while si ze contains the amount of bytes
to be received.

Then, the buffers change places:

/* Change pointer to previous buffer. */
if (bufptr == bufferl)

buf ptr = buffer2;
el se

buf ptr = bufferl

Now, the EOP interrupt handler copies the data to the first buffer, and data from the
second buffer (pointed now by buf pt r) can be written to thefile:

/* Wite data fromprevious buffer into the file. */
wite file(fpos, bufptr, buf_size, pos);

The buf _si ze variable contains the number of bytes written to the previous buffer, while
size — is a number of bytes to be written into the current buffer. pos in an offset
(position) where to start to write a new portion of data. Then, pos is increased by
buf _si ze and the Size value is stored into the buf _si ze variable.

The same operations but with new buffers will be performed on a new iteration of the
loop (if al the expected data was not received).

The Devi ce_reset variable is tested for TRUE value. If a port reset occurred on a Device,
the program finishes all operations and returns control to the mai n() function.

9.3.3.3. UFTP_GET_FILE_INFO command execution.

To begin with, the UFTP_GET_FILE INFO command handler tries to find a given file,
following which it sends status to the Host. If the status sent was UFTP_SUCCESS, the
program sorts bytes of file length in reversed order (PC Host will read it as DWORD).
Then it sends the value obtained to the Host on aBULK IN endpoint.

9.3.3.4. UFTP_GET_DIR command execution.

Execution of the UFTP_GET_DIR command handler starts from counting the length of
the buffer (t ot al _f name_| en variable is used), needed to hold the name of files and size
of name of files. In addition, it counts the number of files(fi | es_count variable).

After this is completed, the function reorders the values with reversed byte order (each
value independently) for the PC Host (it reads them as DWORD), and stores them into
thei nf o_buf f er . Having the size, memory can be allocated dynamically for the buffer:

~—"11 Appendix 1: File Transfer Application. 9-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

/* Allocate buffer to store length of file name and file name for
each file in it */
dir _buffer = (uint8 *) malloc(total fname_len);

The program then sends status to the Host upon an interrupt endpoint. If the status was
UFTP_SUCCESS, the handler starts to fill the directory buffer with length of file name
and name of file for each file. It then sends i nf o_buf f er to the Host upon a BULK IN
endpoint.

If the buffer that contains the list of files is not empty, the program sends it to the Host
upon a BULK IN endpoint.

As a further remark concerning the execution of the UFTP_GET _DIR command: the
Host has no way to obtain the list of files from the Device, if the Device is not able to
alocate the buffer. Changing the length of transfer has no affect upon this. The situation
may be considered as a limitation, but it is done consciously in order not to over
complicate the Client application. The main purpose is after al, demonstration only. In
the above case, the Device must be restarted.

9.3.3.5. UFTP_SET TRANSFER_LENGTH command
execution.

The UFTP_SET TRANSFER LENGTH command handler sends UFTP_SUCCESS

status to the Host indicating that it started to process the command. Then it a fetches new

length of transfer from the command buffer and assigns it to the transfer_I ength

variable. Thisvariable is used while transferring a file between Host and Device.

9.3.3.6. UFTP_DELETE command execution.

Once execution of this command starts, the UFTP_DELETE command handler tries to
find a given file. If the file exists, the program deletes it. Then, the function sends status
to the Host.

9.3.3.7. Request for string descriptor handling.
This section provides a memory layout for string descriptors and describes how the Client
application sends a given descriptor to the Host.

9.3.3.7.1. Memory layout for string descriptors.

According to the documentation of the USB module, the request processor does not
handle requests for string descriptors automatically. GET_DESCRI PTOR requests for string
descriptors are passed as a vendor specific request. The string descriptors must be stored
in externa memory and not in the configuration RAM.

The memory layout for string descriptorsis shown in Fig 5-1 below.

~—"11 Appendix 1: File Transfer Application. 9-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

String descriptors are stored in an array of descriptors. Each element of this array is a
structure (defined in the cbi . h file):

/* Definitions for USB String Descriptors */
#defi ne NUM_STRI NG_DESC 4
#defi ne NUM_LANGUAGES 2

typedef struct ({
ui nt 8 bLengt h;
ui nt 8 bDescri pt or Type
uint8 bString[256];
} STR_DESC,

typedef STR DESC USB_STRI NG DESC [NUM STRI NG DESC * NUM LANGUAGES + 1];

string_desc

NUM_STRI NG_DESC NUM_STRI NG_DESC
‘ A A
/ N ™
6 18 54 | 26 | 88 18 | 54 | 26 88 | bLength
3 3 3 3 3 3 3 3 3 | bDescriptorType
Ox09 | s S S S S S S S
A9lenguagelDIsrmt v L v |t ot |t |t]t |t
407 language ID | X7 | T r r r r r r r
ox04 | ! ! ! ! ! ! : || bString[256]
n n n n n n n n
g g g g g g g g
1 2 3 4 1 2 3 4
Strings written on language Strings written on language
having 0x409 1D having 0x407 1D
- J
N

NUM_LANGUAGES

Fig 9-1. Memory layout for string descriptors.

The Client application alocates USB_STRING DESC [NUM STRI NG _DESC*
NUM LANGUAGES + 1] array. The first element in the array (an element with index zero)
is a string descriptor that contains an array of two-byte LANGID codes, supported by the
Device (0x409 and 0x407 1Ds). Next NUM_STRI NG_DESC descriptors are string descriptors
written using language with 0x409 ID, following NUM STRI NG _DESC descriptors - with
0x407 language ID. The position of string descriptors must correspond to the order of
language IDs that are contained in the string descriptor, having index zero. Thus, if the
first language 1D is 0x409, then the first four (NUM_STRI NG _DESC) descriptors (having
indices 1, 2, 3, and 4 in the array) must be written with a language having 1D 0x409.

~—"1 Appendix 1: File Transfer Application. 9-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Then, the four descriptors must be written with a language having 1D 0x407. Language
IDs not required to be sorted. Bytes in each Language ID are reverse ordered.

Thevariable st ri ng_desc pointsto the array containing string descriptors.

9.3.3.7.2. Sending the string descriptor to the Host.
When the usb_accept _conmand() function is called, it tests the request. If it is a request
for astring descriptor, the function callstheget _stri ng_descri ptor () routine:

status = get_string_descriptor(dc -> request.wal ue & OxFF,
dc -> request.w ndex,
dc ->request.wLength);

Theget _string_descriptor () function accepts three parameters:

desc_i ndex - index of string descriptor;
| anguagel D—language ID;
| engt h — number of bytesto send.

According to the USB 1.1 specification, the Driver must send a short or zero length
packet to indicate the end of transfer if the descriptor is shorter than the | engt h
parameter, or only theinitial bytes of the descriptor, if it islonger.

This function finds the array index (variable i is used) of the desired language ID for
non-zero indexed string (language 1D 0x409 has index zero in a string with index zero,
language ID 0x407 has index 1 in that string). It reorders bytes in the | anguagel D
parameter, to prepare it for comparison, since IDs in the array are stored with reversed
byte order.

If the string descriptor with the required index or given language ID is not supported, the
function returns NOT_SUPPORTED COMMAND Vvalue. usb_accept _conmand() function
returns this value to the Driver, and the Driver compl etes the corresponding request.

Otherwise it starts to prepare data for Host. If the desc_i ndex parameter is zero, the
Driver returns a string descriptor that contains an array of two-byte LANGID codes,
supported by the Device regardless of the | anguagel D parameter. This string descriptor
has index zero in the array. Otherwise, the string with the appropriate index and language
ID will be found.

The get _string_descriptor() function points the stdesc variable to the required
descriptor:

i f (desc_index)

~—"11 Appendix 1: File Transfer Application. 9-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

i *= NUM STRI NG _DESC,
i += desc_i ndex;
st desc = (uint8 *)
& (*usb_string_descriptor)[i]);
}

el se
st desc = (uint8 *)
& (*usb_string descriptor)[0]);

and gets the size of that descriptor:

size = *stdesc

If the descriptor islonger than the number of requested bytes, it modifiesthe si ze:

if (size >= length)
size = |l ength;
el se
usb_sendZLP(0);

If the Host requested more bytes than the length of the descriptor, the situation may arise
where the Driver must indicate an end of transfer by sending zero length packet (this
happens when the length d descriptor is a multiple of the maximum size of packet, for
endpoint number zero). Thus, the usb_sendzLP() function must be caled in such a case,
with zero endpoint as a parameter (string will be sent on endpoint number zero). This
does not mean that a zero length packet will necessarily be sent. If the last packet is short
(but not zero length), a zero length packet will not in fact be sent.

Then, the get _string_descriptor () function initiates transfer of the descriptor to the
Host:

usb_tx data(0, stdesc, size);

Finally, it returns a SUCCESS vaue to the usb_accept _command() function, and that
function returns this value to the Driver. The Driver compl etes the corresponding request.

9.4. USB File Transfer Application Function

Specification.
This section describes the functions implemented in the USB Client program.

Function arguments for each routine are described as in, inout. An in argument
implies that the parameter value is an input only to the function. An i nout argument
implies that a parameter is an input to the function, but the same parameter is also an

~—"1 Appendix 1: File Transfer Application. 9-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

output from the function. 1 nout parameters are typically input pointer variables in which
the caller passes the address of a pre-allocated data structure to a function. The function

stores the result within that data structure. The actual value of the inout pointer
parameter is not changed.

~—"1 Appendix 1: File Transfer Application. 9-19
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.1. do_command_delete.

Call(s):
void do_command_delete(uint8 * combuf);

Arguments:

Table 9-10. do_command_delete arguments.
| Combuf | in | Pointer to the buffer that contains a command |

Description: ThisfunctionisaUFTP_DELETE command handler. Deletes a given file.
Returns: No value returns,

Code example:

case UFTP_DELETE:
#i f def DEBUG
printf("Conmand UFTP_DELETE has been recognized by
Cient\n");
#endi f

do_command_del et e(conmand. cbuf fer);

br eak;

~—"1 Appendix 1: File Transfer Application. 9-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.2. do_command_get_dir.

Call(s):
void do_command_get_dir(void);

Arguments. No arguments.

Description: This function isa UFTP_GET_DIR command handler. Sends a list of files
to the Host.

Returns; No value returns.

Code example:

case UFTP_CGET D R
#i f def DEBUG
printf("Command UFTP_CGET DIR has been recognized by
dient\n");
#endi f

do_command_get _dir();

br eak;

~—"1 Appendix 1: File Transfer Application. 9-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.3. do_command_get file info.

Call(s):
void do_command_get file info(uint8 * combuf);

Arguments:

Table 9-11. do_command_get_file_info arguments.

| Combuf | in | Pointer to the buffer that contains a command

Description: This function is a UFTP_GET_FILE INFO command handler. Sends a

size of given file to the Host.

Returns No value returns.

Code example:

case UFTP_GET_FI LE | NFO
#i f def DEBUG

printf("Command UFTP_CGET _FILE INFO has been recognized

dient\n");
#endi f

do_command_get _file_i nfo(conmand. cbuffer);

br eak;

N—1 Appendix 1: File Transfer Application.
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

by

9-22

9.4.4. do_command_read.

Call(s):
void do_command_read(uint8 * combuf);
Arguments:
Table 9-12. do_command_read arguments.
| combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_READ command handler. Sends a given file to
the Host.

Returns; No value returns.

Code example:

case UFTP_READ:
#i f def DEBUG
printf("Conmand UFTP_READ has been recognized by

Cient\n");
#endi f
do_command_r ead(conmmand. cbuf fer);
br eak;
~—"1 Appendix 1: File Transfer Application. 9-23

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.5. do_command_set_transfer_length.

Call(s):
void do_command_set_transfer_length(uint8 * combuf);

Arguments:

Table 9-13. do_command_set_transfer_length arguments.
| combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_SET TRANSFER LENGTH command handler.
Sets a given by Host length of transfer.

Returns No value returns.

Code example:

case UFTP_READ:
#i f def DEBUG
printf("Command UFTP_READ has been recognized by

dient\n");
#endi f
do_comrand_r ead(conmand. cbuffer);
br eak;
~—"1 Appendix 1: File Transfer Application. 9-24

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.6. do_command_write.

Call(s):
void do_command_write(uint8 * combuf);
Arguments:
Table 9-14. do_command_write arguments.
| combuf | in | Pointer to the buffer that contains a command |

Description: This function is a UFTP_WRITE command handler. Receives a file from
Host.

Returns No value returns.

Code example:

case UFTP_WRI TE
#i f def DEBUG
printf("Command UFTP_WRITE has been recognized by

dient\n");
#endi f
do_command_write(conmand. cbuffer);
br eak;
~—"1 Appendix 1: File Transfer Application. 9-25

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.7. fetch_command.

Call(s):
uint32 fetch_command(uint8 * dcb);
Arguments:
Table 9-15. fetch_command arguments.
| dcb | inout | Pointer to the buffer where to place command |

Description: This function copies command into the given buffer and deletes request
with a command from the Queue.

Returns: Function returns status.
Status NO_NEW COMMVAND means that command queue is empty, so buffer
pointed by dcb is not initialized with a command.
Status COMVAND_SUCCESS indicates, that buffer pointed by dcb contains a
new command.

Code example:

i f (fetch_conmmand(conmand_bl ock) == COVMAND_ SUCCESS)
{

switch (conmand_bl ock[0])

~—"1 Appendix 1: File Transfer Application. 9-26
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.8. get_string_descriptor.

Call(s):
uint32 get_string_descriptor(uint8 desc_index, uint16 languagel D, uint16 length);
Arguments:
Table 9-16. get_string_descriptor arguments.
desc_index in Index of required descriptor
languagel D in Language ID
Length in Number of bytes to send

Description: This function sends string descriptor to Host having given index and
written with alanguage having given ID.

Returns: Function returns status.
Status NOT_SUPPORTED COWWAND means that program does not support
required descriptor.
Status SUCCESS indicates, that required descriptor was sent to Host.

Code example:

if ((dc -> request. bnRequest Type == 0x80) &&
(dc -> request. bRequest == CGET_DESCRI PTOR) &&
((dc -> request.wal ue >> 8) == STRING)

status = get_string _descriptor(dc -> request.wal ue & OxFF,
dc -> request.w ndex,
dc ->request.wLength);

return status;

~—"1 Appendix 1: File Transfer Application. 9-27
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.9. read file.

Call(s):
uint32 read_file(uint32 fnum, uint8* dest, int32 length, int32 position);
Arguments:
Table 9-17. read_file arguments.

Fnum in Index of file from which data must be read

Dest inout | Pointer to buffer where place read data

Length in Number of bytesto be read

position in Offset in agiven file. It is a position in afile from which

function must start copying the data.

Description: This function copies | engt h bytes from a file having index f numto the
buffer pointed by the dest parameter. A reading from file starts from
posi ti on offset.

Assembler version is also provided.
Returns: Number of read bytes.

Code example:

/* Copy next portion of data fromfile into the buffer */
size = read_file(fpos, bufptr, transfer_|ength, pos);

~—"1 Appendix 1: File Transfer Application. 9-28
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9.4.10. write_file.

Call(s):
uint32 write_file(uint32 fnum, uint8* dest, int32 length, int32 position);
Arguments:
Table 9-18. write_file arguments.

fnum in Index of file in which data must be written

dest inout | Pointer to buffer from where data must be read

length in Number of bytes to be written

position in Offset in agiven file. It is a position in afile from which

function must start placing the datain it.

Description: This function copies | ength bytes from the buffer pointed by dest
parameter to a file having index fnum A writing to file starts from
posi ti on offset.

Assembler version is also provided.
Returns: Number of written bytes.

Code example:

/* Wite data fromprevious buffer into the file. */
wite file(fpos, bufptr, buf_size, pos);

~—"1 Appendix 1: File Transfer Application. 9-2¢
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10. Appendix 2: Audio Application.

10.1. Introduction.

This appendix describes a Device-side USB Audio Application. This program is used
only for demonstration purposes. It illustrates some useful techniques (see section 1.2)
and gives an example of working with the USB Device Driver.

10.1.1. Important Notes.

The Client application does not support any standard class (i.e. USB Audio class, etc.). A
simple vendor specific command set was designed and used to demonstrate |sochronous
IN/OUT data transfer and accepting/execution of commands from the Host
simultaneoudly with transfers. Also, this program demonstrates the behavior of the
Device-side USB Driver, when the Host s/w does not work in real time (while performing
the test transfers, misses frames).

10.1.2. Capabilities of Audio Application.

The Audio application receives 16 bit mono PCM samples from the Host with 8 kHz and
44.1 kHz rates, reduces their amplitude (the multiplication factor is set by the Host using
a command), and sends processed data back to the Host.

In addition, the Client program performs test transfers (IN, OUT, and simultaneoudly IN
and OUT) both when the Host software works in norma mode, and when the Host
emulates real-time failure.

Some useful techniques are highlighted below, which the program utilizes during file
transfers:

Simultaneous data transfer on IN and OUT endpoints with data processing. The
Client application processes data (reduces the amplitude of each sample) while
performing IN and OUT data transfers.

Using the SRAM module for alocating intermediate buffers, which makes for a
faster execution speed of the program during IN/OUT data transfers.

10.1.3. Related Files.

The following files are relevant to the Client Program:

usb_audi o. h — Client application types and constant definitions;

usb_audi 0. ¢ — main program, executes commands from Host, performs data
transferring;

usb_audi o_desc.c — contains Device, configuration, interface, endpoint, and
string descriptors.

N1 Appendix 2: Audio Application. 10-1
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

The Client application also requires the printf. c file — in test mode, the program calls
theprintf () function to print out data transfer test information.

Therest of thefilesinthei ni t group are used to initialize the board and processor.

10.2. Implementation of USB Audio Application

The following section explains how the Client application performs isochronous transfers
and executes commands from the Host.

10.2.1. USB Usage.

The Host uses Control endpoint (endpoint number 0) to send commands to the Device.

The USB Audio Device implements an Isochronous In endpoint to transfer data to the
Host, and an Isochronous Out endpoint to receive data from the Host.

The USB Audio Device implements four aternate settings:

Alternate setting 0: no bandwidth.

Alternate setting 1: packet size of Isochronous IN/OUT endpointsis 16 bytes.
Alternate setting 2: packet size of Isochronous IN/OUT endpointsis 90 bytes.
Alternate setting 3: packet size of Isochronous IN/OUT endpointsis 160 bytes.

10.2.2. Initializing the Driver.

To start working with the Driver, the Client application must first initialize it. Before
calling the usb_init () function (which initializes the Driver), the Client application
needs to fill the DESC_I NFO structure (defined in the usb. h file):

extern USB DEVI CE DESC Descri ptors;
bESQ_INFO Devi ce_desc;

Devi ce_desc. pDescriptor = (uint8 *) &Descriptors;
Devi ce_desc. DescSi ze = usb_get desc_si ze();

The variable Descri pt or s isallocated in theusb_audi o_desc. c file.

The Client application then initializes the Driver:

usb_ini t (&Devi ce_desc);

~—"1 Appendix 2: Audio Application. 10-2
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.2.3. Program Execution Flow.

The Client program consists of two important parts: usb_accept _command() function
and mai n() function.

The Driver defines the prototype of the usb_accept _command() function and requires
the Client program to implement it. The Driver calls this function every time it receives a
command from the Host.

The Client program implements this function, sets start_main_task,
start_isotest out_stream start_isotest _in_stream and
start _isotest _inout_streamvariables, determines the number of frame in which data
transfers must be started, sends that number to the Host and asks the Driver to start
monitoring transfers from that frame. But it does not execute a command directly. Only a
request for a string descriptor Client application handles immediately.

The mai n() function polls these variables in an infinite loop. If one of the variablesis set,
the program finds and executes the appropriate function to perform the corresponding
task. Thisis one of the best ways to recognize a new command from the Host and execute
it. The main advantage of this method (compared to executing the command directly in
theusb_accept _conmand() function) is described below.

The program may execute permanently some task, such as process and transfer data, etc.
The Hogt, during the execution of that task by the Device, manipulates the Device:
getg/sets attributes of bass control, mixer control, volume control etc., for example.
Hence, this method permits these requests to be handled in real-time (by interrupting the
main process), and without the necessity of writing any extra code in the main task
handler, to see whether the Device received a new command from the Host or not.
(Handling a request for a string descriptor may serve as an example. The Client program
sends a string to the Host simultaneously with executing the main task - data processing
and transferring in both directions. However the mai n_t ask() function knows nothing
about this — no extra code is written in the mai n_t ask() function to recognize a request
for astring descriptor.)

Another case is when the execution of some tasks may take a long time. The time to
receive a reply with status in the status stage of the command transfer, is limited by the
USB 1.1 specification (this is the case when execution of the previous command is in
progress, and a new command is received).

Finaly, there is the case where the Driver calls the usb_accept _conmand() function
from the interrupt handler, for endpoint number zero. When the Driver receives control
from the usb_accept _conmand() function, it sends status in the status stage of the
command transfer to the Host. Therefore, this function must return control (but no
command must be executed!) as soon as possible.

~—"1 Appendix 2: Audio Application. 10-3
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Also, the Client program uses usb_ep_rx_done(), usb_ep_tx_done(), and
usb_devcfg_notice() functions (defined by the Driver but implemented in the
program) to control data transfers. The role of these functions is described in following
sections.

10.2.4. USB_AUDIO_START command execution.

When the Device accepts a USB_AUDI O START command, it must start aloopback task.
The program determines the number of start frame and sends that number to the Host.
Also, the usb_set _start_frane_nunber () function is called for isochronous IN and
OUT endpoints, to inform the Driver from which frame it must start the data stream.
usb_accept _command() then setsthe start _nmai n_t ask variable to start executing this
task in the main() function, after the usb_accept _conmand() returns control. The
mai n() function examines the start_mai n_t ask variable and calls the nmai n_t ask()
function, if that variableis set.

To implement a loopback task with data processing, the program needs three buffers. The
first one - for receiving data from the Hogt, the second — for sending processed data to the
Host, and finally the third one — for data processing (while data IN and OUT transfers are
in progress). The program allocates these buffers in SRAM module (for the best
performance):

bufferl = receive_data buffer = (uint8 *) ntf5272 ranbar();
buffer2 = data processing buffer = (uint8 *) ntf5272 ranbar() + 882;
buffer3 = transnmit_data buffer = (uint8 *) ncf5272 ranbar() + 1764;

It should be noted that the program performs a loopback task for both 8 kHz and 44.1
kHz sample rates. For the 8 kHz rate the size of each buffer must be 160 bytes (10
packets in a buffer * 16 bytes packet size (16 bit, mono)), while for 44.1 kHz the buffer
size must be 882 bytes (9 packets * 90 bytes packet size + 1 packet * 72 bytes packet
sze). Thus, the maximum buffer offset is chosen.

bufferl, buffer2, and buffer3 variables constantly point to the corresponding
buffers. recei ve_dat a_buffer, dat a_processi ng_buffer, and
transnit_data_buffer will switch places.

To send/receive data with the required rate, the Device uses different packet sizes (the
same configuration, the same interface, but different alternate settings). The Host chooses
the desired rate by setting an appropriate aternate setting. The Driver catches it on the
DEV_CFG interrupt and calls the usb_devcfg_notice() function, passng the number
of the new configuration and the number of the interface/dternate setting, in order to
notify the Client application of this. The Client program sets the t r ansf er _si ze variable
in that function, depending upon the required rate (alternate setting):

if (altsetting == 1)
transfer_size = 160;

if (altsetting == 2)

~—"1 Appendix 2: Audio Application. 10-4
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

transfer_size = 882;

The Client program requests the Driver to send transfer_size bytes to the Host.
Regardless of the transfer_size value (160 bytes or 882 bytes), any IN transfer will
take 10 frames (the maximum packet size changes accordingly). And at once, the Client
program requests the Driver to read data from 10 frames:

usb_tx data(l SO IN, transmt_data buffer, transfer_size);
usb_rx _franme(l SO QUT, receive_data buffer, 10);

When usb_r x_frame() returns control, no transmission/reception is started. The Driver
initializes internal structures, placing a first packet into the FIFO buffer (for IN transfer)
and returning control. Moreover, no data monitoring is started. When the Driver receives
a frame, having a number that was passed to the usb_set _start_franme() function, only
then can it start monitoring the transfers. Actual data transmission/reception must be
started by the Host (if it starts sending earlier, it is the fault of the Host).

The goplication then enters a loop, and waits until data transfers will be completed, by
polling out _transfer_finished and i n_transfer_fini shed variables. The variables
new data_received and | ast_data_transnitted are cleared by default, so no data
processing is performed immediately.

When an OUT transfer is complete, the Driver calls the usb_ep_rx_done() function.
The Client program sets the out _t ransf er _fi ni shed variable there. Hence the program
may change buffers (when the OUT transfer completes, not only the
recei ve_dat a_buf f er pointer changes, but the dat a_pr ocessi ng_buf f er aswell). The
next OUT transfer isthen started. Finally, the new dat a_r ecei ved variableis set.

Data processing cannot be started straightaway — it may take a relatively long time,
during which the IN transfer can be completed. IN and OUT transfers will be completed
in the same frame, however the USB is a serial bus, so there is some delay between them.
Hence, to start data processing with received data, both transfers (IN and OUT) must be
finished and new transfers must be started. But starting a new transfer (IN or OUT) must
be done separately, in order to increase the performance of the program. If the first to
finish is an IN transfer, then the next usb_t x_dat a() function can be caled to place the
first packet (or part of it) into the FIFO buffer, while data from the OUT transfer is being
sent over the bus.

When the IN transfer is complete, the Driver cals the usb_ep_t x_done() function. The
Client program sets the i n_transfer_fi ni shed variable. So, the program changes the
buffer (transmt_data_buffer pointer) and dtarts the next IN transfer. The
| ast _data_transnitted variableisthen set.

~—"1 Appendix 2: Audio Application. 10-5
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

When both transfers have completed and the next transfers started, the recelved data can
be processed. The program performs this task iteratively, while the st op_mai n_t ask
variableis cleared (see the following section).

10.2.5. USB_AUDIO_STOP command execution.

On receiving the USB_AUDIO_STOP command from the Hogt, the Device must stop the
loopback task. The usb_accept _command() Sets the st op_mai n_t ask variable, to stop
theloop inthe mai n_t ask() function.

When the Host sends a command, it will still be sending out data during the next 60
frames. However the mai n_t ask() function completes the current IN and OUT transfers
(this will not take more than 10 frames), and calls the usb_set _fi nal _f r ame_nunber ()
function, passing the number of the next frame as a parameter into it:

final _frame_nunber = (usb_get frane_nunber() + 1) & 2047,

/* Tell Driver fromwhat nunber of frame stop data | N OQUT streans. */
usb_set final _franme_nunmber (1 SO IN, final franme_nunber);
usb_set _final _frame_nunber (I SO QUT, final _frame_nunber);

It is correct to stop monitoring in the next frame, after a frame in which the last packet
was sent/received (or at least not earlier). The handler of that frame checks
sending/receiving of the last IN/OUT packet, and stops monitoring transfers. The Host
continues sending data in the following 60 frames, but the Driver clears the FIFO upon
receipt of a packet, and no Client notification is provided — transfer monitoring is aready
stopped and no buffer is alocated. The Device, in turn, does not send data to the Host.
All interna structures of the Driver are in the default state. Control returns to the mai n()
function.

10.2.6. USB_AUDIO_SET_VOLUME command

execution.
When the Client program receives the USB_AUDI O SET_VOLUME command, it sets the

vol une variable. The vaue was sent by the Host in the data stage of the command
transfer:

volune = *(uintl6 *)dc -> cbuffer;

/* Swap the bytes in nultiplication factor */
volume = (volune << 8) | (volune >> 8);

~—"1 Appendix 2: Audio Application. 10-6
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

The Host sends this value with reversed byte order, so bytes must be swapped over. The
vol une variable is used in the process_dat a() function while modifying the amplitude
of samples.

10.2.7. START_TEST_OUT_TRANSFER command

execution.
Upon reception of this command, the program determines the number of the frame, in
which test data OUT transfer will be started, and of the frame in which it will be
completed. The Device sends the number of the start frame to the Host. The Client
application calls usb_set _start_frame_nunber (), usb_set_final _frame_nunber(),
functions to check the test transfer for missed packets. usb_accept _conmand() then sets

start_isotest_out_stream Vvariable and the main() function cals
test _casel handler().

test _casel_handl er () setsthe test _node variable —the usb_ep_r x_done() function
must accumulate transfer information during test OUT transfer. Then it clears arrays, that
will hold the transfer information, by calling the i nit_test_structures() function.
Thebuffer_init1() function isthen called, to clear the space where the received data
will be stored.

The Client program makes 5 OUT transfers by 5 packets (frames) from the Host. When
each transfer completes, the usb_ep_r x_done() function stores the status of the transfer
and the amount of bytes received to rx_status and rx_si ze arrays correspondingly.

Also, it sets the out_transfer_finished variable, which is being polled in
test _casel handler().

When dl transfers are completed (25 frames, starting from a given frame read),
test _casel_handl er () prints the data received from the Host, and prints information
(status and the amount of received data) concerning each transfer.

10.2.8. START_TEST_IN_TRANSFER command

execution.

Upon recelving this command, the program determines the number of the frames in
which test data IN transfers will be started, and of the frame in which it will be
completed. The Device sends the number of the start frame to the Host. The Client
application cals usb_set_start_frame_nunber () and
usb_set _final _franme_nunber () functions to check the test transfer for missed packets.
usb_accept _command() then sets the start _isotest _in_stream variable and the
mai n() function callstest _case2_handl er ().

~—"1 Appendix 2: Audio Application. 10-7
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

test _case2_handl er () setsthe t est _node variable —the usb_ep_t x_done() function
must accumulate transfer information during test IN transfers. It then clears arrays that
will hold transfer information, by calling the i nit_test_structures() function. The
buf fer _i ni t2() function isthen called to initialize the buffer with data.

The Client program sends 5 buffers by 5 packets to the Host. When each transfer
completes, the usb_ep_t x_done() function stores status of the transfer and the amount
of bytes sent (it will always be 800 bytes) to the corresponding t x_st at us and t x_si ze

arrays. Also, the out _transfer_finished variable set, which is being polled in
test _casel _handl er().

When al transfers are completed, test_case2_handl er () prints the data, which was
sent to the Host, and prints information (status and the amount of received data) for each
transfer.

10.2.9. START_TEST_INOUT_TRANSFER command

execution.

Upon receiving this command, the program determines the number of the frames in
which test data IN and data OUT transfers will be started, and of the frame in which these
transfers will be completed. The Device sends the number of the start frame to the Host.
The Client application cals usb_set _start_frame_nunber () and
usb_set _final _franme_nunber () functions for both endpoints to check the test transfers
for missed packets. usb_accept _command() then sets start _i sotest_i nout _stream
variable and the mai n() function callst est _case3_handl er ().

test case3 handler() sets the test node variable — usb_ep rx_done() and
usb_ep_t x_done() functions must accumulate transfer information during test transfers.
Arrays that will hold the transfer information are then cleared, by calling the
init_test structures() function. After that, the buffer init2() function is called
to initialize the buffer with data.

The Client program makes 5 OUT transfers by 5 packets (frames) from the Host and
sends 5 buffers by 5 packets to the Host simultaneously. When each transfer completes,

usb_ep tx _done() and usb_ep rx_done() functions sore the satus of the
corresponding transfers and the amount of sent/received bytesinto info structures.

When dl transfers are completed, t est _case3_handl er () prints transfer completion
information.

10.2.10. Request for string descriptor handling.
When the Client program receives a request for a string descriptor,
usb_accept _command() sarts handling it immediately by caling the

~—"1 Appendix 2: Audio Application. 10-8
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

get _string_descriptor() function. The status which this function returns, will be
passed to the Driver and sent to the Host in the status stage of the command transfer.

This following section illustrates the memory layout for string descriptors and describes
how the Client application sends a given descriptor to the Host.

10.2.10.1. Memory layout for string descriptors.

According to the documentation of the USB module, the request processor does not
handle requests for string descriptors automatically. GET_DESCRIPTOR requests for
string descriptors are passed as a vendor specific request. The string descriptors must be
stored in external memory and not in the configuration RAM.

The memory layout for string descriptorsis shown in Fig 5-1 below.

String descriptors are stored in the array of descriptors. An element of that array is a
structure (defined in the usb_audi o. h file):

/* Definitions for USB String Descriptors */
#defi ne NUM STRI NG _DESC 4
#defi ne NUM_LANGUAGES 2

typedef struct {
ui nt 8 bLengt h;
ui nt 8 bDescri pt or Type;
uint8 bString[256];
} STR_DESC

typedef STR DESC USB_STRI NG DESC [NUM STRI NG DESC * NUM LANGUAGES + 1];

Client application adlocates the USB_STRI NG DESC [NUM_STRI NG_DESC*
NUM LANGUAGES + 1] array. The first element in the array (an element with index zero)
is a string descriptor that contains an array of two-byte LANGID codes supported by the
Device (0x409 and 0x407 IDs). The next NUM STRI NG DESC descriptors are string
descriptors written using a language with 0x409 ID, the succeeding NUM STRI NG_DESC
descriptors - with 0x407 language ID. The position of string descriptors must correspond
to the order of language IDs that are contained in the string descriptor, having index zero.
Therefore, if the first language ID is 0x409 then the first four (NUM STRI NG DESC)
descriptors (having indices 1, 2, 3, and 4 in the array) must be written using a language
having ID 0x409. The next four descriptors must be written using a language having 1D
0x407. Language IDs are not required to be sorted. Bytes in each Language ID are
reverse ordered.

~—"1 Appendix 2: Audio Application. 10-9
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

string_desc NUM_STRING DESC NUM_STRING_DESC

' —~ N —~ ™
6 18 | 54 | 26 | 88 18 | 54 | 26 | 88 |bLength
3 3 3 3 3 3 3 3 3 | bDescriptorType
Ox09 | s S S S S S S S
A0lenguagelDIermt v L v |t |t |t |t]t |t
407 language 1D | OXO7 | T r r ' ' ' r r
0x04| | b i i Lo || bstring[256]
n n n n n n n n
g g g g g g g g
1 2 3 4 1 2 3 4
Strings written on language Strings written on language
having 0x409 1D having 0x407 1D
- J
N

NUM_LANGUAGES

Fig 10-1. Memory layout for string descriptors

Thestring_desc variable points to the array that contains string descriptors.

10.2.10.2. Sending the string descriptor to Host.
When the usb_accept _conmand() function is called, it tests the request. If it is arequest
for astring descriptor, the function callstheget _stri ng_descri ptor () routine:

status = get_string _descriptor(dc -> request.wal ue & OxFF,
dc -> request.w ndex,
dc ->request.wLength);

Theget _string_descriptor () function accepts three parameters:

desc_i ndex - index of string descriptor;
| anguagel D—language ID;
| engt h — number of bytesto send.

According to the USB 1.1 specification, the Driver must send a short or a zero length
packet to indicate the end of transfer if the descriptor is shorter than the I ength
parameter, or only the initial bytes of the descriptor, if the descriptor islonger.

~—"1 Appendix 2: Audio Application. 10-1C
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

The function finds the index in the array (variable i is used) of the desired language ID
for a non-zero indexed string (language ID 0x409 has index zero in a string with index
zero, language ID O0x407 has index 1 in the same string). It reorders the bytes in the
| anguagel D parameter to prepare it for comparison, because IDs in the array are stored in
reverse byte order.

If astring descriptor with the required index or the given language ID is not supported,
the function returns a NOT_SUPPORTED COWAND value. The usb_accept comand()
function returns this value to the Driver, and the Driver completes the corresponding
request.

In other cases it starts to prepare data for the Host. If the desc_i ndex parameter is zero,
the Driver returns a string descriptor that contains an array of two-byte LANGID codes,
supported by the Device regardless of | anguagel D parameter. This string descriptor has
index zero in the array. Otherwise, the string with the appropriate index and language 1D
will be found.

The get _string_descriptor() function points the stdesc variable to the required
descriptor:

i f (desc_index)

i *= NUM _STRI NG_DESC,

i += desc_i ndex;

stdesc = (uint8 *) &((*usb_string_descriptor)[i]);
}

el se
stdesc = (uint8 *) & (*usb_string descriptor)[0]);

and gets the size of that descriptor:

size = *stdesc

If the descriptor islonger than the number of requested bytes, it modifiesthe si ze:

if (size >= length)
size = length;
el se
usb_sendZLP(0);

If the Host requested more bytes than the length of the descriptor, a Situation may occur
where the Driver must indicate an end of transfer by sending a zero length packet (this
happens when the length of the descriptor is a multiple of the maximum size of the packet
for endpoint number zero). Therefore, the usb_sendzLP() function must be caled in
such a case, with zero endpoint as a parameter (a string will be sent on endpoint number
zero). This does not mean that a zero length packet will necessarily be sent. If the last
packet is short (but not zero length), a zero length packet will not be sent.

~—"1 Appendix 2: Audio Application. 10-11
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

Then, the get _string_descriptor() function initiates a transfer of the descriptor to the
Host:

usb_tx data(0, stdesc, size);
Finally, the SUCCESS value is returned to the usb_accept _conmmand() function, and that
function returns the same value to the Driver. The Driver completes the corresponding
request.

~—"1 Appendix 2: Audio Application. 10-12
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3. USB Audio Application Function

Specification.
This section describes functions implemented in the USB Client program.

Function arguments for each routine are described as either in, or inout. Anin
argument means that the parameter value is an input only to the function. An i nout
argument means that a parameter is an input to the function, but the same parameter is
also an output from the function. 1 nout parameters are typically input pointer variables in
which the caller passes the address of a pre-allocated data structure to a function. The
function stores the result within that data structure. The actual value of the i nout pointer
parameter does not changed.

10.3.1. buffer_initl.

Call(s):
void buffer_initl(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function clears SRAM memory.

Code example:

buffer initl();

~—"1 Appendix 2: Audio Application. 10-13
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.2. buffer_init2.

Call(s):
void buffer_init2(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function initidizes the first 160 bytes in SRAM memory with “100” , next
160 bytes - with*101” value, etc.

Code example:

buffer_init2();

~—"1 Appendix 2: Audio Application. 10-14
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.3. get_string_descriptor.

Call(s):
uint32 get_string_descriptor(uint8 desc_index, uint16 languagel D, uint16 length);
Arguments:
Table 10-1. get_string_descriptor arguments
desc_index in Index of required descriptor
languagel D in Language ID
length in Number of bytes to send

Description: This function sends string descriptor to Host having given index and
written on alanguage having given ID.

Returns: Function returns status.
Status NOT_SUPPORTED COWWAND means that program does not support
requested descriptor.
Status SUCCESS indicates, that required descriptor was sent to Host.

Code example:

if ((dc -> request. bnRequest Type == 0x80) &&
(dc -> request. bRequest == CGET_DESCRI PTOR) &&
((dc -> request.wal ue >> 8) == STRING)

status = get_string _descriptor(dc -> request.wal ue & OxFF,
dc -> request.w ndex,
dc ->request.wLength);

return status;

~—"1 Appendix 2: Audio Application. 10-15
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.4. init_test_structures.

Call(s):
void init_test_structures(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function clears arrays, intended to hold information of test transfers
completion.

Code example:

init _test _structures();

~—"1 Appendix 2: Audio Application. 10-16
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.5. main_task.

Call(s):
void main_task(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function performs loopback task.

Code example:

mai n_t ask();

~—"1 Appendix 2: Audio Application. 10-17
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.6. print_buffer_contents.

Call(s):
void print_buffer_contents(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function prints out to termina the contents of SRAM memory (received
bytes).

Code example:

print_buffer_contents();

~—"1 Appendix 2: Audio Application. 10-18
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.7. print_transfer_status.

Call(s):
void print_transfer_status(uint32 in_print, uint32 out_print);
Arguments:

Table 10-2. print_transfer_status arguments
in_print in If TRUE, print out information of IN transfers
out_print in If TRUE, print out information of OUT transfers

Returns:
No value returns.
Description:

This function prints out to terminal the contents of arrays that hold information of
test transfer completion.

Code example:

print_transfer_status(TRUE, TRUE);

N—1

Appendix 2: Audio Application. 10-19

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.8. process_data.

Call(s):
void process _data(ui nt 8 * dpb);
Arguments:
Table 10-3. process_data arguments
| dpb | inout | Pointer to the data to be processed
Returns:
No value returns,
Description:

This function reduces amplitude of each sample in the buffer by multiplying it by
volume value. If not al expected data was received, function clears whole buffer
or end of buffer.

Code example:

process_dat a(dat a_processi ng_buffer);

~—"1 Appendix 2: Audio Application. 10-20
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.9. test casel handler.

Call(s):
void test_casel handler(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function performs 5 tests OUT transfers, each takes 5 frames; places received
datato SRAM, prints out the received data and transfers status information.

Code example:

test _casel_handl er();

~—"1 Appendix 2: Audio Application. 10-21
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.10. test_case2_handler.

Call(s):
void test_case?2_handler(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function performs 5 test IN transfers by 5 packets, prints out sent data and
transfers status information.

Code example:

test _case2_handl er();

~—"1 Appendix 2: Audio Application. 10-22
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10.3.11. test_case3 handler.

Call(s):
void test_case3 handler(void);

Arguments:
No arguments.

Returns
No value returns.

Description:
This function performs 5 test IN transfers by 5 packets and simultaneoudly 5 test
OUT transfer, each takes 5 frames; prints out transfers status information.

Code example:

test _case3_handler();

~—"1 Appendix 2: Audio Application. 10-23
PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

