
M
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

i

MCF5272 USB SW Developer Manual.

MOTUSB Host Driver for CBI &
Isochronous Transfers.

M5272/USB/HD/CBII
Rev. 0.3 05/2002

m

M

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
ii

CONTENTS

Paragraph Title Page

1. Introduction...1-1

1.1. Overview.. 1-1
1.2. System Requirements... 1-1
1.3. Driver Capabilities... 1-1
1.4. Driver Package Content ... 1-2
1.5. Quick Start Guide... 1-2

1.5.1. System requirements: ... 1-2
1.5.2. Driver installation steps. .. 1-3

2. Driver Model. ...2-1

2.1. Driver Model Overview... 2-1
2.2. USB Driver Stack. .. 2-1
2.3. Communication Model. ... 2-2
2.4. Device Object... 2-3

2.4.1. Default Device Configuration. ... 2-3
2.4.2. Device Interface ID. ... 2-4
2.4.3. Device Enumeration By Client. ... 2-4
2.4.4. Establishing Connection To Device... 2-6
2.4.5. Device Object Functions. ... 2-7

2.5. Pipe Object. .. 2-8
2.5.1. Opening Connection To Pipe. .. 2-8
2.5.2. Pipe Object Functions. ... 2-10

2.6. Attaching and Removing Notifications.. 2-10

3. Programming Interface..3-1

3.1. Transfers... 3-1
3.2. Control Transfers. .. 3-1
3.3. Bulk and Interrupt Transfers .. 3-1

3.3.1. Bulk Write Transfers.. 3-2
3.3.2. Bulk and Interrupt Read Transfers... 3-2

3.4. Isochronous Transfers. ... 3-3
3.4.1. Isochronous Write Transfers. ... 3-4
3.4.2. Isochronous Read Transfers... 3-4
3.4.3. Using Asynchronous I/O.. 3-5

M

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
iii

3.5. Device Requests. .. 3-5
3.5.1. IOCTL_USB_CLASS_OR_VENDOR_REQUEST 3-7
3.5.2. IOCTL_USB_CYCLE_PORT... 3-8
3.5.3. IOCTL_USB_FEATURE_CONTROL... 3-9
3.5.4. IOCTL_USB_GET_CONFIGURATION ... 3-10
3.5.5. IOCTL_USB_GET_DESCRIPTOR.. 3-11
3.5.6. IOCTL_USB_GET_HANDLE.. 3-13
3.5.7. IOCTL_USB_GET_INTERFACE .. 3-14
3.5.8. IOCTL_USB_GET_STATUS ... 3-15
3.5.9. IOCTL_USB_LINK_PIPE .. 3-16
3.5.10. IOCTL_USB_LOCK_DEVICE... 3-17
3.5.11. IOCTL_USB_RESET_DEVICE ... 3-18
3.5.12. IOCTL_USB_RESET_PIPE.. 3-19
3.5.13. IOCTL_USB_SET_CONFIGURATION.. 3-20
3.5.14. IOCTL_USB_SET_INTERFACE ... 3-21
3.5.15. IOCTL_USB_UNCONFIGURE_DEVICE... 3-22

3.6. Structures. .. 3-23
3.6.1. USB_CLASS_OR_VENDOR_REQUEST ... 3-23
3.6.2. USB_DESC_REQUEST.. 3-24
3.6.3. USB_FEATURE_REQUEST.. 3-26
3.6.4. USB_GET_CONFIGURATION_REQUEST ... 3-27
3.6.5. USB_HANDLE_INFO.. 3-28
3.6.6. USB_INTERFACE_SETTING ... 3-29
3.6.7. USB_ISO_PACKET.. 3-30
3.6.8. USB_ISO_XFER ... 3-31
3.6.9. USB_LOCK_REQUEST ... 3-32
3.6.10. USB_SET_CONFIGURATION_REQUEST.. 3-33
3.6.11. USB_STATUS_REQUEST... 3-34

3.7. Types. ... 3-35
3.7.1. REQUEST_TARGET.. 3-35
3.7.2. USB_DEVICE_DESCRIPTOR... 3-36
3.7.3. USB_ENDPOINT_DESCRIPTOR ... 3-37
3.7.4. USB_CONFIGURATION_DESCRIPTOR... 3-38
3.7.5. USB_INTERFACE_DESCRIPTOR ... 3-39
3.7.6. USB_STRING_DESCRIPTOR ... 3-40

3.8. Enumeration Types. ... 3-41
3.8.1. USBReceipients ... 3-41
3.8.2. LockFlags... 3-42
3.8.3. RequestsTypes. .. 3-43

3.9. Constants. ... 3-44
3.9.1. MOTUSB Defined Constants. ... 3-44
3.9.2. USB Specification Defined Constants. .. 3-45

3.10. Error codes... 3-47

4. MOTUSB Library. ..4-1

M

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
iv

4.1. Library Overview... 4-1
4.2. Compiling And Linking. .. 4-1
4.3. Handles. ... 4-1
4.4. Error codes... 4-2
4.5. Notes about overlapped I/O. .. 4-2
4.6. Functions Descriptions... 4-2

4.6.1. USBBuildIsoXfer... 4-5
4.6.2. USBCancelIO... 4-6
4.6.3. USBClassOrVendorRequest.. 4-7
4.6.4. USBClearFeature ... 4-8
4.6.5. USBCloseDevice ... 4-9
4.6.6. USBClosePipe.. 4-10
4.6.7. USBCyclePort.. 4-11
4.6.8. USBGetConfigDesc... 4-12
4.6.9. USBGetConfiguration.. 4-13
4.6.10. USBGetDeviceDesc... 4-14
4.6.11. USBGetDeviceList... 4-15
4.6.12. USBGetEndpointDesc ... 4-16
4.6.13. USBGetErrorText .. 4-18
4.6.14. USBGetInterface.. 4-19
4.6.15. USBGetInterfaceDesc.. 4-20
4.6.16. USBGetStatus .. 4-22
4.6.17. USBGetStringDesc .. 4-23
4.6.18. USBIoCtrl .. 4-24
4.6.19. USBLockDevice .. 4-26
4.6.20. USBOpenDevice.. 4-27
4.6.21. USBOpenPipe .. 4-28
4.6.22. USBPipeGetDescriptor .. 4-29
4.6.23. USBReadPipe .. 4-30
4.6.24. USBRegisterDevNotify ... 4-31
4.6.25. USBReleaseDeviceList.. 4-32
4.6.26. USBResetDevice.. 4-33
4.6.27. USBResetPipe.. 4-34
4.6.28. USBSetConfiguration.. 4-35
4.6.29. USBSetFeature... 4-36
4.6.30. USBUnconfigureDevice .. 4-37
4.6.31. USBUnregisterDevNotify.. 4-38
4.6.32. USBWaitIO.. 4-39
4.6.33. USBWritePipe.. 4-40

5. Registry Settings...5-1

6. Driver Installation. ...6-1

6.1. Installation Procedure. ... 6-1
6.2. Setup (INF) File. .. 6-3

M

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
v

6.2.1. Setup (INF) File Template. .. 6-4
6.3. Updating Or Uninstalling. .. 6-6

7. Appendix 1: USB Audio Sample for MCF5272.7-1

7.1. Introduction. ... 7-1
7.1.1. Overview.. 7-1
7.1.2. System Requirements... 7-1
7.1.3. Application Capabilities... 7-1

7.2. Application overview... 7-2
7.2.1. Sample Model. ... 7-2
7.2.2. Audio System Setup. .. 7-3
7.2.3. Interaction With Sample. ... 7-4
7.2.4. Missing Frames Emulation. ... 7-6
7.2.5. Known Issues. .. 7-6

8. Appendix 2: USB File Transfer Sample for MCF5272.8-1

8.1. Introduction. ... 8-1
8.1.1. System Requirements... 8-1
8.1.2. Application Capabilities... 8-1

8.2. Application overview... 8-2
8.2.1. Starting Application. .. 8-2
8.2.2. Main Window. ... 8-2
8.2.3. Application Operations. ... 8-3

9. Appendix 3: Test Suite for MCF5272 USB Protocol Stack.9-1

9.1. Introduction. ... 9-1
9.1.1. System Requirements... 9-1
9.1.2. Test Suite content. .. 9-2

9.2. Application Overview.. 9-2
9.2.1. Selecting a Device.. 9-3
9.2.2. Automatic Standard Requests Testing. .. 9-4
9.2.3. DeviceTests.. 9-5
9.2.4. Configuration Tests.. 9-5
9.2.5. Interface Tests. ... 9-6
9.2.6. Endpoint test. ... 9-6
9.2.7. Other Tests. .. 9-6

9.3. Automatic Standard Requests Results. .. 9-7
9.4. Manual Testing .. 9-8

9.4.1. Get Configuration. ... 9-8
9.4.2. Set Configuration... 9-9
9.4.3. Get Status. .. 9-9
9.4.4. Set Feature.. 9-9
9.4.5. Clear Feature. ... 9-10
9.4.6. Get Interface... 9-10

M

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
vi

9.4.7. Set Interface. .. 9-10
9.5. File Transfer Firmware Testing. .. 9-11

9.5.1. Algorithm description. ... 9-11
9.5.2. Transfer Testing Page. ... 9-13

9.6. Isochronous Transfers Testing. .. 9-15
9.6.1. Tests Description.. 9-15
9.6.2. Performing Tests. ... 9-16
9.6.3. Other tests. ... 9-17

10. Appendix 4: USB FILE TRANSFER LIBRARY.................................10-1

10.1. Introduction. ... 10-1
10.1.1. System Requirements .. 10-1
10.1.2. UFTP library content. .. 10-1

10.2. Programming interface... 10-2
10.2.1. Function Descriptions. ... 10-3

10.2.1.1. Uftp_Connect ... 10-3
10.2.1.2. Uftp_Disconnect.. 10-4
10.2.1.3. Uftp_SetProgressRoutine .. 10-5
10.2.1.4. Uftp_SendFile .. 10-6
10.2.1.5. Uftp_GetFile .. 10-7
10.2.1.6. Uftp_GetFileInfo ... 10-8
10.2.1.7. Uftp_ReadDir... 10-9
10.2.1.8. Uftp_SetTransferLength..10-10
10.2.1.9. Uftp_DelFile ..10-11
10.2.1.10. Uftp_GetLastError..10-12
10.2.1.11. Uftp_GetErrorText ...10-13

10.2.2. Types used in library. ... 10-14
10.2.2.1. PROGRESS_ROUTINE ...10-14
10.2.2.2. PROGRESS_STRUCT..10-14

10.2.3. Error codes... 10-15

M

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
vii

ILLUSTRATIONS

Figure Title Page

Fig 2.1 USB Stack.. 2-1
Fig 2.2 Communication model... 2-2
Fig 3.1 Isochronous Transfer Buffer Format. .. 3-3
Fig 7.1 Sample model. ... 7-2
Fig 7.2 Playback properties.. 7-3
Fig 7.3 Recording properties.. 7-4
Fig 7.4 “Device is not connected” Message Box. .. 7-4
Fig 7.5 Main Application Window.. 7-5
Fig 7.6 Main Application Window (running). ... 7-5
Fig 8.1 “Device doesn't connected” Message Box. ... 8-2
Fig 8.2 Application Main Window.. 8-3
Fig 8.3 “Error while transfer” message box... 8-3
Fig 8.4 Transfer Length Dialog. ... 8-4
Fig 8.5 Browse for folder dialog. ... 8-5
Fig 8.6 Folder tree window.. 8-5
Fig 9.1 Device Selection Page. .. 9-3
Fig 9.2 Standard requests (Automatic) page. ... 9-4
Fig 9.3 Standard requests (Automatic) results. .. 9-7
Fig 9.4 Manual requests page. ... 9-8
Fig 9.5 Set Configuration Dialog. .. 9-9
Fig 9.6 Get Status Dialog. .. 9-9
Fig 9.7 Set Feature Dialog. .. 9-9
Fig 9.8 Get Feature Dialog. .. 9-10
Fig 9.9 Get Interface Dialog. ... 9-10
Fig 9.10 Set Interface Dialog. .. 9-11
Fig 9.11 File Transfer Page. ... 9-13
Fig 9.12 File Transfer Test Parameters. ... 9-14
Fig 9.13 Isochronous Transfers Test Page. .. 9-15
Fig 9.14 Other tests page.. 9-17

M

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
viii

About this document.
This document describes the functionality of the MOTUSB Device Driver and user mode
library, and how it is employed in user applications.

Audience.
This document targets USB software developers on the Windows 2000 Host platform.

Suggested reading.
[1] Microsoft Platform SDK, Windows 2000 DDK Documentation
[2] Universal Serial Bus 1.1 Specification

Definitions, Acronyms, and Abbreviations.
The following list defines the acronyms and abbreviations used in this document.

USB Universal Serial Bus
MOTUSB Name of this Driver
Win32 Microsoft Windows 32 bit platform
ZLP Zero Length Packet
WDM Windows Driver Model
USBDI USB Driver Interface
HID Human Interface Device class
API Application programming interface
HCD Host Controller Driver
GUID Global Unique Identifier
PnP Plug and Play
SDK Software Development Kit
DDK Driver Development Kit
PC Personal Computer
I/O Input / Output
OS Operating System

M Introduction.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
1-1

1. Introduction.

1.1. Overview
MOTUSB is a generic Universal Serial Bus (USB) Device Driver for Windows 2000,
whose main purpose is to provide access to USB for user mode Win32 applications. This
Driver is not Device specific; so that various classes of USB Devices can use it. Support
for the USB is built into the Windows 2000 operating system, and developers can either
use the Device Driver provided, or create a USB Client Driver manually if the OS does
not provide the Driver for that particular Device class.

By using the generic MOTUSB Device Driver it is possible to perform new USB Device
development without the necessity to spend time and effort developing a new Device
Driver. This may prove to be especially useful during development or testing of a new
Device.

1.2. System Requirements.
Hardware platforms:

• Single CPU Intel x386 based PC with Open Host Controller or Universal Host
Controller.

Operation systems:

• Windows 2000 Professional

Driver Client developer software:

• Visual C++ 6.0 Professional Edition
• Microsoft Platform SDK for Windows 2000 (Recommended)

Driver developer software:

• Visual C++ 6.0 Professional Edition
• Microsoft Windows 2000 Driver Development Kit

1.3. Driver Capabilities.
• Complies with WDM
• Provides interface to access USB Device from user mode Win32 Client

application
• Supports control, bulk, interrupt and isochroous transfer types
• Data transmission on pipes is similar to the data flow on file
• Supports asynchronous (overlapped) I/O
• Can manage connections to several Devices at the same time
• Can be used from multiple threads (processes) at the same time

M Introduction.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
1-2

1.4. Driver Package Content
The Driver package is divided into 3 parts:
1) User Part. Several binary modules are provided: Driver, library and installation file
 for a sample USB Device on the Motorola ColdFire5272 Evaluation Board.

\ bin
 motusb.sys - Kernel mode Driver
 motusb.dll - User mode library
 mcf5272.inf - Setup (INF) file for sample USB Device

2) Client software. Headers and libraries required for the MOTUSB Client software
developer are provided; located at.
\inc
 motioctl.h - defines MOTUSB I/O controls and structures
 motstatus.h - defines MOTUSB Driver and library errors codes.
 motusb.h - defines motusb.dll library programming interface
 usb100.h - defines USB1.0 spec. constants and structures (provided by
Microsoft DDK).

\lib
 motusb.lib - static library required for linking with Client application, which
use motusb.dll library API functions.

3) Driver and library source code.
\ src
\sys - MOTUSB Driver source code
\dll - MOTUSB dynamic library source code.

(All paths are specified relative to the MOTUSB package installation directory).

1.5. Quick Start Guide.
This section is intended as a quick MOTUSB Driver INSTALLATION GUIDE for the
USB MCF5272 Development Board Firmware

1.5.1. System requirements:

• Single CPU Intel i386 based PC with USB Ports.
• Windows 2000 Professional OS.

M Introduction.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
1-3

NOTE: The Firmware must be downloaded and started prior to Driver installation. The
installation will be initiated by the system automatically when connecting the Device to
the PC.
1.5.2. Driver installation steps.

1. Logon to Windows 2000 using an administrator account.

2. Ensure that the following 3 files are all contained in the Driver installation

directory: motusb.sys, motusb.dll, mcf5272.inf

3. Ensure that the VendorID and ProductID members of the Device descriptor on
Device have not changed. If you have to change them, it is necessary to make a
new installation (INF) file for the VendorID and ProductID member values
combination. (See MOTUSB Driver Guide, Chapter 4 for detailed information on
the INF file).

4. Connect the Host PC with the UFTP Device running on the MCF5272

development board via a USB cable.

5. “Found New Hardware Wizard” dialog with string “USB Device” will appear.

Select “Next” button.

6. Select the radio button labeled "Search for a suitable Driver for your Device

(Recommended)" and then hit the "Next" button.

7. “Locate Driver Files” page will appear, click the "Next" button

8. “Insert manufacturer installation disk on the drive…” file prompt dialog will

appear. Specify the folder where all Driver files are located and click ok.

9. “Driver Files Search Result” page should appear. If the Driver path is specified
correctly “Windows found a Driver for this Device” and the path to mcf5272.inf
strings will be shown at the center of the page.

10. Hit the "Next" button, whereupon the "copying Files" message box will be seen

briefly; then once again the "Found New Hardware Wizard" box, now displaying
the subheading "Hardware Install: The hardware installation is complete". Hit the
"Finish" button.

11. A copy of motusb.sys should be in the %SystemRoot%\System32\Drivers

directory, and the motusb.dll in the %SystemRoot%\System32 directory. If the
final "Add New Hardware Wizard" box indicates any error, or if the OS indicates
that a reboot is required in order to finish the installation of this Device,
something has gone wrong. Check the Inf file or Install directory, follow the
instructions again for a ‘clean’ install, and start over.

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-1

2. Driver Model.

2.1. Driver Model Overview.
The MOTUSB Driver is based on the Windows Driver Model (WDM) architecture. The
latest Microsoft Windows operating systems family has begun USB support in WDM.
They include USB Device Drivers for hubs, Host controllers and some Device classes
(audio, mass-storage, HID, etc.). As well as built-in software components, these systems
provide a programming interface for USB Device Drivers, called Universal Serial Bus
Driver Interface (USBDI). However USBDI can only be used by kernel-mode
components (Drivers), and none of the USB functionality is available in user-mode.

2.2. USB Driver Stack.
All USB Device Drivers in WDM are USBDI Client Drivers. WDM Client Drivers are
technically layered and organized as a Driver stack. A USB Client Driver overlays the
Drivers USBD.SYS, USBHUB.SYS, and either UHCD.SYS or OPENHCI.SYS. The
relationship between these Drivers is illustrated in Figure 2-1. The USB Client Drivers
call USBD.SYS to perform the Device configuration and perform the various transfer
types. MOTUSB handles the Device configuration calls and the details of communication
with the bus Drivers. However, it is of interest to know something more about how
communication occurs between the Client Driver and the bus Drivers.

 Hardware

 Kernel mode

 User mode

Fig 2.1 USB Stack

USB Host Controller

UHCI Hub Driver
(UHCD.SYS)

Open HCI Hub Driver
(OPENHCI.SYS)

USB Hub Driver
(USBHUB.SYS)

USB Bus Driver
(USBD.SYS)

USB Driver Interface (USBDI)

MOTUSB Client Driver
(MOTUSB.SYS)

Win32 Application

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-2

2.3. Communication Model.
MOTUSB Driver communication with the user mode Client application consists of
connections to Device and pipe objects. Connection to Device or pipe objects is similar to
opening file objects. For each physical Device connected for which MOTUSB installed,
the Driver creates a Device object. The Client application can perform a Device
enumeration procedure, select the required Device and open a handle to this Device or
other pipe objects.

The MOTUSB Device Driver is not limited by the Client application handles opened to
the Device. Several threads or processes can use the same handle to the same Device;
also a single thread (process) can open several handles. The MOTUSB Driver is not
responsible for actual Device requests and data flow logic and is represented as an
operational block only, providing the gate to take control of the USB Device from within
the user mode Client application.

User Mode

USB Stack

Kernel Mode

Hardware

Fig 2.2 Communication model

MOTUSB.SYS

Client application #1

Client application #2

Device
Object #1

Device
Object #2

Device
Object #3

1.1.1.1. USBDI Hub & Bus
Device

Objects #1

Hub & Bus
Device

Objects #3

Device #1 Device #2 Device #3

Hub & Bus
Device

Objects #2

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-3

2.4. Device Object.
The USB Client Driver is loaded by the system components when connecting a USB
Device to a USB port. The PCI Enumerator component performs USB Driver selection,
according to the Drivers installed on the system, which loads and invokes the Driver
AddDevice dispatch table routine. As a result of this routine the MOTUSB Device Driver
itself creates a Device object and attaches this Device object to the USB Driver stack.

Each MOTUSB Device object is associated with a physical USB Device that is connected
to the USB. Due to this fact, MOTUSB can handle more than one Device connection.

Table 2.1 Device object states from Client point of view.
State Description
Disconnected No physical Device connection. Device object not created or destroyed.

All handles opened to Device became invalid and user mode Client is
responsible to close them.

Connected Physical Device connection exists. Device object created. Device became
configured (unconfigured) depending on the MOTUSB registry settings.
No invalid handles to Device became valid.

Opened The handle to the Device object opened. Client application can perform Device
request on the Device.

Configured Active configuration for Device selected. Client application can perform Device
request on the Device, open pipes and perform and interrupt transfers on those
pipes.

Unconfigured No active configuration for Device selected. Client application can perform only
limited set of requests. No pipe connections can exist.
Note: Application developers should not use this state. The purpose of this state
provided in MOTUSB is for USB test software only.

Locked Lock access to Device for other owners with handle for the same Device.
Client application can lock access to the Device in two ways:
for 100% of working time, to monopolize access to the Device
lock on demand ensuring that some requests or data flow sequences will not be
interrupted by another USB Client application.

2.4.1. Default Device Configuration.
When Device object creation occurs the Driver saves the Device and all configuration
descriptors. Following this the Driver performs SET_CONFIGURATION requests for
the configuration #0, and configures all the interfaces in that configuration.

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-4

2.4.2. Device Interface ID.
MOTUSB registers ”Device Interface ID“ for every Device object it creates. The “Device
Interface ID” (henceforward “Device interface”) itself is a global unique identifier
(GUID). The MOTUSB Device Interface GUID is defined in the motioctl.h header file.

#define GUID_CLASS_MOTUSB \
{0x239d60c9, 0xccaf, 0x11d5, \
{0xac, 0x21, 0x20, 0x4c, 0x4f, 0x4f, 0x50, 0x20}}

The operating system uses this GUID to generate a unique Device name for each Device
object in the system. By using such a Device naming scheme, the OS solves all Device
naming issues across the entire system.

2.4.3. Device Enumeration By Client.
The OS provides enumeration of Devices by Device Interface ID with the Setup API
functions:

SetupDiGetClassDevs
SetupDiEnumDeviceInterfaces
and others

These functions require the Device Interface GUID, which can be found in motioctl.h
header file as a GUID_CLASS_MOTUSB definition constant. This GUID is shared
across all components based on MOTUSB, since each Device object created by
MOTUSB has the same Device Interface ID.

As a result of Device enumeration functions SetupDiGetClassDevs and
SetupDiEnumDeviceInterfaces, the Client application retrieves a list of all Device
objects. In order to differentiate between the Devices an application should query the
Device descriptor or string descriptors. In this way, each Device instance can be
identified unambiguously.

For a detailed function description see Microsoft Platform SDK documentation.

Sample of Device enumeration:
#include <windows.h>
#include <dbt.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <setupapi.h>
#include "motioctl.h"

const GUID _GuidMotUSB = GUID_CLASS_MOTUSB;

HDEVINFO USBGetDeviceList()
{
 HDEVINFO devInfo;

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-5

 devInfo = SetupDiGetClassDevs(
 (LPGUID)&_GuidMotUSB, // LPGUID ClassGuid,
 NULL, // PCTSTR Enumerator,
 NULL, // HWND hwndParent,
 DIGCF_DEVICEINTERFACE | DIGCF_PRESENT // DWORD Flags
);

 return (devInfo != INVALID_HANDLE_VALUE) ? devInfo : NULL;
}

int main(int argc, char* argv[])
{
 HDEVINFO hDevInfo;
 SP_DEVINFO_DATA DeviceInfoData;
 DWORD i;

 hDevInfo = USBGetDeviceList();

 if (hDevInfo == INVALID_HANDLE_VALUE) {
 // Insert error handling here.
 return 1;
 }

 // Enumerate through all Devices in Set
 DeviceInfoData.cbSize = sizeof(SP_DEVINFO_DATA);
 for (i=0;SetupDiEnumDeviceInfo(hDevInfo,i,&DeviceInfoData);i++)
 {
 DWORD DataT;
 LPTSTR buffer = NULL;
 DWORD buffersize = 0;

 while (!SetupDiGetDeviceRegistryProperty(hDevInfo,
 &DeviceInfoData,
 SPDRP_DEVICEDESC,
 &DataT,
 (PBYTE)buffer,
 buffersize,
 &buffersize)) {
 if (GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
 // Change the buffer size.
 if (buffer) LocalFree(buffer);
 buffer = (LPTSTR) LocalAlloc(LPTR,buffersize);
 }
 else {
 // Insert error handling here.
 break;
 }
 }

 printf("Result:[%s]\n",buffer);
 if (buffer) LocalFree(buffer);
 }

 if (GetLastError()!=NO_ERROR &&
 GetLastError()!=ERROR_NO_MORE_ITEMS) {

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-6

 // Insert error handling here.
 return 1;
 }
 // Cleanup
 SetupDiDestroyDeviceInfoList(hDevInfo);
 return 0;
}

2.4.4. Establishing Connection To Device.
The setup API function SetupDiGetDeviceInterfaceDetail application finds the
Device name in the DevicePath member of the
SP_DEVICE_INTERFACE_DETAIL_DATA structure parameter. Having this name
the Client application can open a handle to the Device object using the CreateFile
Win32 API function.

After the application has received one or more handles for the Device, operations can be
performed on the Device by using a handle. If there is more than one handle to the same
Device, it makes no difference which handle is used in order to perform a certain
operation. All handles that are associated with the same Device behave in the same
manner.

Sample of establishing a Device connection function:

HANDLE
USBOpenDevice(
 HDEVINFO devList,
 int devNum
)
{
 BOOL bOK;
 DWORD len;
 DWORD Status;
 SP_DEVICE_INTERFACE_DETAIL_DATA *InterfaceData;
 SP_DEVICE_INTERFACE_DATA DevData = {0};
 HANDLE hDevice = INVALID_HANDLE_VALUE;

 DevData.cbSize = sizeof(SP_DEVICE_INTERFACE_DATA);
 bOK = SetupDiEnumDeviceInterfaces(devList, NULL,
 (LPGUID)&_GuidMotUSB, devNum, &DevData);
 if (!bOK) {
 return INVALID_HANDLE_VALUE;
 }

 // get length of the detailed information, allocate buffer
 SetupDiGetDeviceInterfaceDetail(devList, &DevData,
 NULL, 0, &len, NULL);
 InterfaceData = (SP_DEVICE_INTERFACE_DETAIL_DATA*) calloc(1, len);
 if (!InterfaceData)
 return INVALID_HANDLE_VALUE;

 // now get the detailed Device information

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-7

 InterfaceData->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);
 bOK = SetupDiGetDeviceInterfaceDetail(devList, &DevData,
InterfaceData, len, &len, NULL);
 if (!bOK) {
 free(InterfaceData);
 return INVALID_HANDLE_VALUE;
 }

 hDevice = CreateFile(
 InterfaceData->DevicePath,
 GENERIC_READ | GENERIC_WRITE, // access mode
 FILE_SHARE_WRITE | FILE_SHARE_READ, // share mode
 NULL, // security desc.
 OPEN_EXISTING, // how to create
 NULL, // file attributes
 NULL // template file
);

 return (hDevice);
}

To close a connection handle on a particular Device object use CloseHandle Win32 API
function, specifying the opened handle for the Device object in question.

See the Microsoft Platform SDK documentation for further information.

2.4.5. Device Object Functions.
The Device object represents a physical Device. It provides Default Control Pipe
transfers, pipe connections, and some system control (Power Management, PnP, etc.).
Some Win32 API functions should be used to interact with the MOTUSB Device object.

Table 2.2 Win32 API operations list for a Device object.
Function Name Description
CreateFile Opens handle to Device object
CloseHandle Close handle to Device object
DeviceIoControl Performs requests on Device object

All operations involving Device object handles can be requested through the
DeviceIoControl function, while CreateFile and CloseHandle functions are used for
Device object connections only. Note that no data flow operations via ReadFile and
WriteFile can be performed. All data transmission to the Default Control Pipe requires
DeviceIoControl usage.

The following tasks can be performed using MOTUSB Device object:

• Descriptor retrieval
• Configuration control
• Setting / Clear Feature for specified recipient

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-8

• Getting status of specified recipient
• Device locking / unlocking
• Interface Alternate Setting control
• Sending Class or Vendor Requests
• Device replugging emulation
• Device resetting

For a full description of Device requests, refer to the Programming Interface section.

2.5. Pipe Object.
Pipe objects provide the ability to perform data flow transactions through the pipes on the
Device. Each pipe object points to a particular Device endpoint. The USB 1.1
specification defines control, bulk, interrupt and isochronous endpoint types. The bulk
and isochronous endpoints specify the data flow direction from Device to PC, or from PC
to Device. A MOTUSB pipe object can be used for any endpoint type except for control.
The interface with the MOTUSB endpoint object is the same for any endpoint type.

Once the Device becomes configured, the Client application can open handles to pipe
objects. Each interface configuration on the Device defines a particular set of endpoints
through which data transmission can be performed. So only handles for pipes supported
by an active configuration, and interfaces configured within it can be obtained. No pipe
handles can be valid or opened on an unconfigured Device. Note that 'Set Configuration'
and 'Set Interface' requests will fail if pipe connections to a Device exist.

2.5.1. Opening Connection To Pipe.
MOTUSB represents pipe object connections as for the Device objects, but with a
somewhat different naming scheme. A pipe object connection can be created
independently of a Device object connection. So in order to establish a connection to a
pipe object, the programmer may use a procedure similar to the one described above, but
specifying a different file name.

NOTE: As mentioned above USDI monopolizes endpoint #0, so no pipe connection to
this endpoint can be established. MOTUSB Device objects expose functionality that can
be applied to this endpoint.

The file name format for pipe objects is as follows:
<Device instance name> \ <decimal endpoint address>, where

 Device instance name is string obtained from the SetupDiGetDeviceInterfaceDetail
 Setup API call in DevicePath member;

 decimal endpoint address is an endpoint address for which a pipe should be open.

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-9

Assuming that the Device instance name returned from the
SetupDiGetDeviceInterfaceDetail calls are the following:

\\?\USB#Vid_abcd&Pid_1234#5&e752ac&0&1#{239D60C9-CCAF-11d5-AC21-
204C4F4F5020}

Then for the endpoint address 0x81, the user application would call CreateFile with the
following file name input:

\\?\USB#Vid_abcd&Pid_1234#5&e752ac&0&1#{239D60C9-CCAF-11d5-AC21-
204C4F4F5020}\129

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-10

In addition the Client application must link pipe objects to a Device object. This
guarantees that ReadFile / WriteFile to pipes that belong to the same Device handle,
will not be blocked when this Device handle is locked by the Device. So pipe linking is a
mandatory condition to ensure pipe objects connection. The following sample illustrates
pipe linking (assumes that Device hDevice is already opened, and pipe handle hPipe is
also open):

USB_HANDLE_INFO handleInfo; // Kernel-mode handle to pipe object

// Get the opened pipe kernel-mode handle
DeviceIoControl (hPipe, IOCTL_USB_GET_HANDLE, NULL, NULL,
 &handleInfo, sizeof(USB_HANDLE_INFO), NULL);

// Link pipe handle hPipe to Device hDevice
DeviceIoControl (hDevice, IOCTL_USB_LINK_PIPE, &handleInfo,
sizeof(USB_HANDLE_INFO), NULL, 0, NULL);

2.5.2. Pipe Object Functions.
The pipe object represents a physical channel on the Device through which data flow
transactions can be performed. The ReadFile and WriteFile functions are responsible
for requests for data transactions on an opened pipe handle. The CancelIO routine should
be used to abort all outstanding transactions on a pipe object. CreateFile and
CloseHandle are used for Device object connection only.

Table 2.3 Win32 API operations list for a pipe object.
Function Name Description
CreateFile Creates pipe object
CloseHandle Closes pipe object handle
WriteFile, WriteFileEx Performs data transmission to Device. Used on bulk or isochronous

OUT pipes.
ReadFile, ReadFileEx Performs data transmission from Device. Used on bulk IN, interrupt

and isochronous IN pipes.
CancelIO Cancels all pending input and output operations that were issued by

the calling thread for the specified pipe handle.
DeviceIoControl Performs requests on pipe object.

2.6. Attaching and Removing Notifications.
The Microsoft Windows operating system provides service routines for attaching a PnP
Device or removing handling. Several API functions can be found in the dbt.h header

M Driver Model.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
2-11

file in the Microsoft SDK. In order to use notifications, the Client application should
register the automatic RegisterDeviceNotification API function. The caller can be
notified by a window handle. The notification transforms to a WM_DEVICECHANGE
window message, where the lParam parameter points to the buffer with
DEV_BROADCAST_DEVICEINTERFACE structure, from which the Client application
can extract the required fields concerning notification.

To be notified about Device attachment or removing events, the caller must specify the
MOTUSB Interface ID to the RegisterDeviceNotification function.

Example:

#include <dbt.h>
……………

HDEVINFO RegisterDevNotify(HWND hWnd)
{
 HDEVINFO hDevNotify;
 DEV_BROADCAST_DEVICEINTERFACE filter;

 if (!hWnd)
 return NULL;

 ZeroMemory(&filter, sizeof(filter));
 filter.dbcc_size = sizeof(DEV_BROADCAST_DEVICEINTERFACE);
 filter.dbcc_Devicetype = DBT_DEVTYP_DEVICEINTERFACE;
 filter.dbcc_classguid = g_GuidMotUSB;
 hDevNotify = RegisterDeviceNotification(
 hWnd,
 &filter,
 DEVICE_NOTIFY_WINDOW_HANDLE
);

 return hDevNotify;
}

NOTE: This sample requires the Microsoft SDK for Windows 2000 to be installed.
However the developer can use libraries and headers provided with Microsoft Visual C++
6.0. In this case the “/DWINVER=0x0500” C compiler directive should be specified.

The Client application should use the UnregisterDeviceNotification Win32 API
function when it no longer needs notification.

For further information about notifications, refer to the Microsoft Windows 2000 SDK.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-1

3. Programming Interface.

3.1. Transfers.
The USB specification defines 4 transfer types: control, bulk, interrupt, and isochronous.
The MOTUSB Device object handle is required for control transfers, while the others
require a MOTUSB pipe object handle to perform data I/O operations.

3.2. Control Transfers.
All USB Devices must support the control transfer type for configuration, command, and
status information. Control transfer applies to the default endpoint (zero) and
monopolized by USBDI. From the programmer point of view, the control transfers are
not represented as data flow, but rather “Device control commands”. All the control
transactions on the bus are under the responsibility of USBDI. The USB specification
defines a set of standard requests on the Default Control Endpoint. Thus, although
USBDI provides a mechanism for direct access to the default endpoint, the MOTUSB
Driver does not make this functionality available in the user mode, and only provides a
set of standard requests.

The Client application can perform control transactions using the DeviceIoControl
Win32 API function on the Device handle, specifying some I/O control code and
parameters block. The following list of MOTUSB requests perform control transfer (for a
detailed requests description see Device requests section):

IOCTL_USB_CLASS_OR_VENDOR_REQUEST
IOCTL_USB_CYCLE_PORT
IOCTL_USB_FEATURE_CONTROL
IOCTL_USB_GET_CONFIGURATION
IOCTL_USB_GET_DESCRIPTOR
IOCTL_USB_GET_INTERFACE
IOCTL_USB_GET_STATUS
IOCTL_USB_RESET_DEVICE
IOCTL_USB_RESET_PIPE
IOCTL_USB_SET_CONFIGURATION
IOCTL_USB_SET_INTERFACE
IOCTL_USB_UNCONFIGURE_DEVICE

3.3. Bulk and Interrupt Transfers
Bulk and interrupt transfers may be applied through the pipes opened up on the Device.
For interrupt and bulk transfers the buffer size can be larger than the maximum packet
size of the endpoint, as reported in the endpoint descriptor.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-2

The MOTUSB Driver does not limit the transfer size. Each endpoint object should be
configured to the preferred transfer size. This value is specified in the MaxTransferSize
member of the USBIO_INTERFACE_SETTING on the IOCTL_USB_SET_CONFIGURATION or
IOCTL_USB_SET_INTERFACE requests. If an application request to transfer a data buffer
that is larger that the endpoint transfer size is received, the MOTUSB Driver performs a
staging I/O which breaks the data buffer into parts which fit into the maximum transfer
size and requests a data I/O operation for each such part.

3.3.1. Bulk Write Transfers.
A write operation on a bulk-out endpoint performs bulk data transfer from the Host (PC)
to the Device. To perform bulk write transfers the Client application should first establish
a connection to the pipe and to call WriteFile (WriteFileEx) Win32 API functions,
specifying the pipe object handle into the hFile argument. The data buffer and buffer
size should be specified in the corresponding lpBuffer and nNumberOfBytesToWrite
arguments.

The transfer consists of packets. These packets are sent to the USB Device. If the last
packet of the buffer is smaller than the maximum packet size of the endpoint, a smaller
data packet is transferred. If the size of the last packet of the buffer is equal to the
maximum packet size this packet is sent. No additional zero length packet is sent by the
Driver. In order to send a zero length data packet, it is necessary to set the buffer length
to zero and use a NULL buffer pointer.

3.3.2. Bulk and Interrupt Read Transfers.
A read operation on bulk-in or interrupt endpoints performs a bulk or interrupt data
transfer from the Device to the Host (PC). To issue bulk or interrupt read transfers the
Client application should first establish a connection to the pipe and to call ReadFile (
ReadFileEx) Win32 API functions, to perform transfers specifying the pipe object
handle in the hFile function argument. The data buffer and buffer size should be
specified in the corresponding lpBuffer and nNumberOfBytesToRead arguments.

A read operation will be completed if the whole buffer is filled or a short packet is
transmitted. A short packet is a packet that is shorter than the maximum transfer size of
the endpoint. To read a data packet with a length of zero, the buffer size has to be at least
one byte. A read operation with a NULL buffer will be completed with success by the
system without performing a read operation on the USB. The behavior of short packets
depends on the registry parameter ShortTransferOk. If this parameter value is set, a read
operation that returns a data packet that is shorter than the maximum packet size of the
endpoint is completed with success. Otherwise, every data packet from the endpoint that
is smaller than the maximum packet size causes an error.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-3

3.4. Isochronous Transfers.
Isochronous transfers can be applied through the pipes opened on the Device. The Client
application should specify the special structure buffer to perform an isochronous transfer
operation using ReadFile / WriteFile Win32 API functions. The buffer should consist
of a fixed header and a variable length packets header and data parts. The isochronous
transfer buffer format is shown in the figure below:

Fig 3.1 Isochronous Transfer Buffer Format.

Hence, the buffer that follows the header is divided into packets. Each packet is
transmitted within one USB frame (1 ms). The size of the packet can be different in each
frame. This allows support for any data rate of the isochronous data stream.

The isochronous transfer buffer is described by the USB_ISO_XFER structure. This
structure contains an array of USB_ISO_PACKET structures, which provide information
about packet data buffers. The PacketCount member of USB_ISO_XFER determines the
packet count in a given transfer.

USB_ISO_XFER
 StartFrame
 Flags
 ErrorCount
 PacketCount

USB_ISO_PACKET …

#2 Offset Length Status

#3 Offset Length Status

#N Offset Length Status

……………………………

F
ixed

H
eader

P
ackets

H
eader

Packet #1 Buffer

Packet #2 Buffer

Packet #3 Buffer

……………………………

Packet #N Buffer

P
ackets
D

ata
P

ac
ke

t
C

ou
nt

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-4

Each USB_ISO_PACKET hold Offset member indicates the offset of the packet data buffer
(in Packets Data section), from the beginning of the buffer. The Length member
determines the size of a packet buffer. The Status member indicates the I/O operation
result returned when the Driver completes the whole transfer.

An isochronous transfer may not be started immediately. The Client application can
specify the 11-bit StartFrame number in the Fixed Header part of the buffer. In this case
the transfer begins in this frame. Otherwise the USB_ISO_TRANSFER_ASAP bit mask
should be set in the Flags field of USB_ISO_XFER. In such a case the Driver puts the
request in the queue and begins transmitting as soon as possible. This makes the Client
application capable of implementing a double buffering scheme. In this scheme the Client
should request a new transfer without waiting for the previous one to complete, by
specifying the USB_ISO_TRANSFER_ASAP flag.

When the MOTUSB Driver completes I/O requests the StartFrame member of
USB_ISO_XFER will specify the actual frame number when a transmission was started, the
ErrorCount member of USB_ISO_XFER will specify the total error count in this transfer.
The Status field of each USB_ISO_PACKET will be zero, for each successfully transmitted
packet, or 0x9 if an error occurred (or short packet processed).

NOTE:
No more than 255 packets can be processed within a single isochronous transfer request.

3.4.1. Isochronous Write Transfers.
A write operation on isochronous–out endpoints performs isochronous data transfer from
the Host (PC) to the Device. To perform isochronous write transfers the Client
application should first establish connection to the pipe, build an isochronous transfer
buffer and specify it to WriteFile (WriteFileEx) Win32 API routines. The sizes of the
packets have to be less than or equal to the maximum packet size of the endpoint. There
must be no gaps between the data packets in the transfer buffer. The Offset and Length
member of the USB_ISO_PACKET structures have to be initialized correctly before the
transfer is started.

When the MOTUSB Driver completes write I/O requests, it changes the Length member
of each packet according to the actual bytes which were processed in that packet.
Normally this field should be zero, indicating that all packet data was sent, otherwise this
field will contain the number of bytes remaining in the packet buffer as not sent.

3.4.2. Isochronous Read Transfers.
A read operation on isochronous–in endpoints performs an isochronous data transfer from
the Device to the Host (PC). In order to perform isochronous read transfers the Client
application should first establish a connection to the pipe, build an isochronous transfer
buffer and specify it to ReadFile (ReadFileEx) Win32 API routines. The sizes of the

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-5

packets have to be less than or equal to the maximum packet size of the endpoint. There
must be no gaps between the data packets in the transfer buffer. The Offset and Length
member of the USB_ISO_PACKET structures have to be initialized correctly before the
transfer is started. Note that because the size of the received packets may be less than the
maximum packet size, data packets are not arranged continuously within the transfer
buffer.

When the MOTUSB Driver completes read I/O requests, it changes the Length member
of each packet according to the actual bytes which were processed in that packet.
Normally this field should specify the total number of bytes read for a particular pipe.

3.4.3. Using Asynchronous I/O.
Using asynchronous (Overlapped) I/O means a thread does not need to wait for a request
completion, to be able to perform some task while the Driver processes the I/O request.
Overlapped I/O can be applied to any transfer type. If a Client wants to perform
overlapped operations, it should open a pipe by specifying the FILE_FLAG_OVERLAPPED
file attribute parameter to the CreateFile function. Then for each Win32 API call
related to the Device or pipe object, the caller should specify the OVERLAPPED structure
buffer pointer.

Overlapped I/O is very important for isochronous transfers. The major issue with these
transfers is that for the most part the Client application should deliver or receive data in
real time. When the application performs Read or Write request to the MOTUSB Driver,
the I/O System does not guarantee that this request will be available in the frame time
limit (1 millisecond normally). The only possible solution is to put several requests to the
Driver, wait until some of them complete and then put further requests with the
USB_ISO_TRANSFER_ASAP flag set.

3.5. Device Requests.
The I/O Control requests are submitted to the Driver using the Win32 function
DeviceIoControl.

The DeviceIoControl function is defined as follows:

BOOL DeviceIoControl(

HANDLE hDevice, // handle to Device object
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer
LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive

// output byte count

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-6

LPOVERLAPPED lpOverlapped // pointer to overlapped structure
// for asynchronous operation

);

Refer to the Microsoft Platform SDK documentation for more information. The following
sections describe the I/O Control codes that may be passed to the DeviceIoControl
function as dwIoControlCode and the parameters required for lpInBuffer,
nInBufferSize, lpOutBuffer, and nOutBufferSize.

Table 3.1 Device requests summary.
Request code Description
IOCTL_USB_CLASS_OR_VENDOR_REQUEST Performs class or vendor request
IOCTL_USB_CYCLE_PORT Emulates port connecting,

disconnecting
IOCTL_USB_FEATURE_CONTROL Clear or sets feature on the Device
IOCTL_USB_GET_CONFIGURATION Request the configuration from the

Device
IOCTL_USB_GET_DESCRIPTOR Request the descriptor from the

Device
IOCTL_USB_GET_HANDLE Returns the kernel mode handle
IOCTL_USB_GET_INTERFACE Requests interface alternate setting
IOCTL_USB_GET_STATUS Returns status for spec. recipient
IOCTL_USB_LINK_PIPE Links pipe handle to Device
IOCTL_USB_LOCK_DEVICE Locks the Device
IOCTL_USB_RESET_DEVICE Resets Device
IOCTL_USB_RESET_PIPE Resets specified pipe
IOCTL_USB_SET_INTERFACE Selects interface setting on the

Device
IOCTL_USB_SET_CONFIGURATION Selects configuration on the Device
IOCTL_USB_UNCONFIGURE_DEVICE Puts Device into unconfigured state

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-7

3.5.1. IOCTL_USB_CLASS_OR_VENDOR_REQUEST
Performs class or vendor request to the USB.

DeviceIoControl parameters:

lpInBuffer
Pointer to the buffer containing USB_CLASS_OR_VENDOR_REQUEST structure.

nInBufferSize
Specify input buffer size in bytes. Must be equal to size of
USB_CLASS_OR_VENDOR_REQUEST structure.

lpOutBuffer
Points to the data buffer if request has IN or OUT data stage (nOutBufferSize != 0).
In case of IN data stage the data from the Device will be placed in this buffer, in case of
OUT data stage the data in this buffer will be transmitted to the Device. Must be NULL if
class or vendor request does not require a data stage.

nOutBufferSize
Specify data buffer size in bytes in case of class or vendor request with IN or OUT data
stage. Must be 0 if class or vendor request does not require a data stage.

Comments:
A SETUP request appears on the default pipe (endpoint zero) of the USB Device with the
given parameters. If a data phase is required an IN or OUT token appears on the bus and
the successful transfer is acknowledged by an IN or OUT token with a zero length data
packet from the Device. If no data phase is required an IN token appears on the bus and
the Device acknowledges with a zero length data packet.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-8

3.5.2. IOCTL_USB_CYCLE_PORT

The operation requests Device re-enumeration.

DeviceIoControl parameters:

lpInBuffer
Not used with the operation. Must be NULL.

nInBufferSize
Not used with the operation. Must be 0.

lpOutBuffer
Not used with the operation. Must be NULL.

nOutBufferSize
Not used with the operation. Must be 0.

Comments:
This request has the same effect as disconnecting and connecting a Device to/from the
port. During this operation the MOTUSB Driver should be unloaded and loaded again by
USBDI.

When the USBI unloads the Driver all Device and pipe handles became invalid. The
Client application receives a PnP notification about the Device being removed and should
close all handles to that Device.

During Device re-enumeration the following requests appear on the bus:

• Device Reset
• GET_DEVICE_DESCRIPTOR
• Device Reset
• SET_ADDRESS
• GET_DEVICE_DESCRIPTOR
• GET_CONFIGURATION_DESCRIPTOR

NOTE: Additional requests can appear depending on the descriptors for the Device.

After the re-enumeration process, the operating system loads the MOTUSB Driver again.
The Client software receives a PnP notification about the Device being attached and can
reopen the required handles. This request does not work if the system-provided multi-
interface Driver is used. This Driver expects that all functional Device Drivers to send a
CYCLE_PORT request within 5 seconds.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-9

3.5.3. IOCTL_USB_FEATURE_CONTROL

Requests set or clear specified feature.

DeviceIoControl parameters:

lpInBuffer
Pointer to the buffer containing USB_FEATURE_REQUEST structure. The buffer must be
completely filled by the caller to specify request parameters.

nInBufferSize
Specify input buffer size in bytes. Must be equal to size of the USB_FEATURE_REQUEST
structure.

lpOutBuffer
No output information will be returned. Must be NULL.

nOutBufferSize
No output information will be returned Must be 0.

Comments:
This request clears or sets a specified feature to the recipient. CLEAR_FEATURE or
SET_FEATURE request appears on the bus depending upon the bClear flag of the
USB_FEATURE_REQUEST input request.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-10

3.5.4. IOCTL_USB_GET_CONFIGURATION

Requests current Device configuration value.

DeviceIoControl parameters:

lpInBuffer
No input information specified. Must be NULL.

nInBufferSize
No input information specified. Must be 0.

lpOutBuffer
Driver returns a current configuration value into USB_GET_CONFIGURATION_REQUEST
structure.

nOutBufferSize
Specifies size of output buffer. Must be equal to the size of the
USB_GET_CONFIGURATION_REQUEST structure.

Comments:
The bConfigurationValue member of the descriptor of the current configuration is
returned in bConfigValue of the USB_GET_CONFIGURATION_REQUEST structure. A value
of zero returned, should be considered as an unconfigured Device state. Within this
request no action on the bus occurred. The MOTUSB Driver maintains an internal
variable to track the active configuration index, and change it along with changing
configuration requests.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-11

3.5.5. IOCTL_USB_GET_DESCRIPTOR

Requests specified descriptor from Device.

DeviceIoControl parameters:

lpInBuffer
Pointer to the buffer containing USB_DESC_REQUEST structure. The buffer must be
completely filled by the caller to specify requested descriptor parameters.

nInBufferSize
Specify input buffer size in bytes. Must be equal to size of USB_DESC_REQUEST structure.

lpOutBuffer
Pointer to the descriptor buffer. The type of this buffer varies depending of requested
descriptor type specified in lpInBuffer (DescriptorType member of
USB_DESC_REQUEST structure).

Description by Desciptor type:

• for Device descriptor, Driver returns a USB_DEVICE_DESCRIPTOR structure.

• for String descriptor, Driver returns the string descriptor in a
USB_STRING_DESCRIPTOR structure. The string itself is found in the variable-
length bString member of the string descriptor.

• for Configuration Descriptor, the Driver returns the configuration descriptor in a

USB_CONFIGURATION_DESCRIPTOR structure, followed by the interface and
endpoint descriptors for that configuration. The Driver can access the interface
and endpoint descriptors as USB_INTERFACE_DESCRIPTOR, and
USB_ENDPOINT_DESCRIPTOR structures. The Driver also returns any class-specific
or Device-specific descriptors.

• for Endpoint Descriptor, Driver returns a USB_ENDPOINT_DESCRIPTOR structure

for requested endpoint.

• for Interface Descriptor, Driver returns a USB_INTERFACE_DESCRIPTOR structure

for requested interface.

This buffer is completely filled by the Driver and specifies the requested descriptor
information if the request was successful.

nOutBufferSize
Specifies output buffer size in bytes. For configuration descriptor this member must be
equal to the size of the USB_CONFIGURATION_DESCRIPTOR or greater (if the caller also

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-12

inquires of other descriptors for this configuration). For any other descriptor type this
member must be equal to the size of the corresponding lpOutBuffer structure (see
lpOutBuffer description).

Comments:
For all descriptors except the string descriptor no action on the bus occurs. They are
cached after the Device object is created. The request for Device, configuration and string
descriptors can be performed on an unconfigured Device in order to retrieve information
for further configurations and alternate interface setting selection.

To be able to request interface or endpoint descriptors, the Device must be configured
and the current configuration index must be specified in the ConfigIndex member of
USB_DESC_REQUEST structure, otherwise the request returns an error. When the
configuration descriptor and other descriptors for that configuration are acquired in a
single request, the size of the output buffer should be a multiple of the packet size of the
default pipe.

For USB_DESC_REQUEST structure members refer to the USB_DESC_REQUEST structure
description.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-13

3.5.6. IOCTL_USB_GET_HANDLE

Requests kernel mode handle by user mode handle

DeviceIoControl parameters:

lpInBuffer
None.

nInBufferSize
None.

lpOutBuffer
Points to the USB_HANDLE_INFO structure buffer.

nOutBufferSize
Must be equal to size of USB_HANDLE_INFO structure.

Comments:
The Client application should use this request for pipe linking. The request should appear
on a pipe object handle and should return a kernel mode pipe object for linking.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-14

3.5.7. IOCTL_USB_GET_INTERFACE

Requests specified interface alternate setting.

DeviceIoControl parameters:

lpInBuffer
Pointer to the buffer containing USB_INTERFACE_SETTING structure.

nInBufferSize
Specify input buffer size in bytes. Must be equal to the size of USB_INTERFACE_SETTING
structure.

lpOutBuffer
Pointer to the buffer containing USB_INTERFACE_SETTING structure.

nOutBufferSize
Specify input buffer size in bytes. Must be equal to size of USB_INTERFACE_SETTING
structure.

Comments:
The GET_INTERFACE request appears on the bus. The InterfaceIndex member of the
input structure should specify the interface descriptor index within the selected
configuration for which the request is issued. On successful completion, the Driver fills
the AltSettings member of this structure with the current alternate setting for the
interface The pointers to lpInBuffer and lpOutBuffer may refer to the same buffer.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-15

3.5.8. IOCTL_USB_GET_STATUS

Requests status from the specified recipient.

DeviceIoControl parameters:

lpInBuffer
Pointer to the buffer containing USB_STATUS_REQUEST structure. The buffer must be
completely filled by the caller to specify request parameters.

nInBufferSize
Specify input buffer size in bytes. Must be equal to size of USB_STATUS_REQUEST
structure.

lpOutBuffer
Pointer to the buffer containing USB_STATUS_REQUEST structure.

nOutBufferSize
Specify input buffer size in bytes. Must be equal to size of USB_STATUS_REQUEST
structure.

Comments:
This request appears as a GET_STATUS request on the bus. The Client application must
specify the recipient in a Target member of the input buffer structure. If the request
succeeds, the Driver returns to the recipient, the status in the Status member of the
output structure buffer. The pointers to lpInBuffer and lpOutBuffer may refer to the
same buffer.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-16

3.5.9. IOCTL_USB_LINK_PIPE

Requests to link a pipe object handle to a Device by the given pipe object handle

DeviceIoControl parameters:

lpInBuffer
Pointer to USB_HANDLE_INFO structure buffer. The buffer data contents can be obtained
from IOCTL_USB_GET_HANDLE request.

nInBufferSize
Specify input buffer size in bytes. Must be equal to size of USB_HANDLE_INFO structure.

lpOutBuffer
Not applicable. Should be zero.

nOutBufferSize
Not applicable. Should be zero.

Comments:
The Client application should perform the requests upon the establishment of a
connection to a pipe object. The request informs the Device object that the opened handle
belongs to that Device object. The Client uses this request after IOCTL_USB_GET_HANDLE
on the opened pipe handle, resulting in the kernel mode pipe handle in USB_HANDLE_INFO
structure buffer.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-17

3.5.10. IOCTL_USB_LOCK_DEVICE

Locks access to the Device by a specified Device handle.

DeviceIoControl parameters:

lpInBuffer
Pointer to the buffer with USB_LOCK_REQUEST structure.

nInBufferSize
Must be equal to size of USB_LOCK_REQUEST structure.

lpOutBuffer
Not used with the operation. Must be NULL.

nOutBufferSize
Not used with the operation. Must be 0.

Comments:
By using this operation, the Client application can lock access to a particular Device,
preventing access by other Clients. This function locks the Device by means of the
Device handle. The Device handle specified in the request then becomes a master handle,
so that a request from any other Device handle will be blocked or returned with error.
Only access to those operations that change Device state or perform data transfers will be
blocked.

The request blocks the following operations on the Device:

IOCTL_USB_RESET_DEVICE
IOCTL_USB_UNCONFIGURE_DEVICE
IOCTL_USB_FEATURE_CONTROL
IOCTL_USB_CLASS_OR_VENDOR_REQUEST
IOCTL_USB_CYCLE_PORT
IOCTL_USB_RESET_PIPE
IOCTL_USB_SET_CONFIGURATION
IOCTL_USB_SET_INTERFACE

ReadFile or WriteFile requests to pipe objects linked to different Device objects, will
be blocked or returned with error. The operation should be used when the Host software
allows different threads (processes) to share a single Device. In this case the request is
very useful to synchronize Device request transactions, for different Device and pipe
handle holders.

The Driver tracks the Device lock count, so that the caller must provide the same count of
unlock operations as for lock, until USB_TOTAL_UNLOCK flag is specified.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-18

3.5.11. IOCTL_USB_RESET_DEVICE

Resets Device and parent port objects.

DeviceIoControl parameters:

lpInBuffer
Not used with the operation. Must be NULL.

nInBufferSize
Not used with the operation. Must be 0.

lpOutBuffer
Not used with the operation. Must be NULL.

nOutBufferSize
Not used with the operation. Must be 0.

Comments:
This request sends a USB Reset over the bus. As a result of this all pending transactions
on the bus should be aborted. This request causes all of the status and configuration
values associated with endpoints in the affected interfaces, to be set to their default
values. After resetting the Device, the OS selects the active configuration and the
interfaces within it, so that the Device remains configured. All handles to Device and
pipe objects remain valid. This request should not appear on any unconfigured Device.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-19

3.5.12. IOCTL_USB_RESET_PIPE

Request clears error condition on a pipe.

DeviceIoControl parameters:

lpInBuffer
Not used with the operation. Must be NULL.

nInBufferSize
Not used with the operation. Must be 0.

lpOutBuffer
Not used with the operation. Must be NULL.

nOutBufferSize
Not used with the operation. Must be 0.

Comments:
The Client should use this request if an error occurs while transferring data to or from a
pipe. The Driver halts the pipe and returns an error code. No further transfers can be
performed while the pipe is halted. This request causes a stall condition on an endpoint
to be cleared (except for isochronous pipes). In addition the USB Host controller will be
reinitialized.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-20

3.5.13. IOCTL_USB_SET_CONFIGURATION

Select specified configuration for a Device.

DeviceIoControl parameters:

lpInBuffer
Pointer to the buffer containing USB_SET_CONFIGURATION_REQUEST structure. The buffer
must be completely filled by caller.

nInBufferSize
Specify input buffer size in bytes. Must be equal to size of
USB_SET_CONFIGURATION_REQUEST structure .

lpOutBuffer
No output information will be returned. Must be NULL.

nOutBufferSize
No output information will be returned Must be 0.

Comments:
Within this request, the SET_CONFIGURATION request appears on the bus. Only the
configuration contained in descriptors can be used. This request can be used to configure
multiple interface Devices in a single call. Additionally, the caller can specify only the set
of interfaces that will be configured for a selected configuration. To invoke this request,
the Device must be in the unconfigured state. This request causes all of the status and
configuration values associated with endpoints in the affected interfaces, to be set to their
default values. Note, that to invoke this requests no pipe connections should be open on a
Device.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-21

3.5.14. IOCTL_USB_SET_INTERFACE

Selects interface alternate setting and transfer size

DeviceIoControl parameters:

lpInBuffer
Pointer to the USB_INTERFACE_SETTING structure buffer. The buffer must be completely
filled by caller.

nInBufferSize
Specify input buffer size in bytes. Must be equal to size of USB_INTERFACE_SETTING
structure.

lpOutBuffer
No output information will be returned. Must be NULL.

nOutBufferSize
No output information will be returned Must be 0.

Comments:
The SET_INTERFACE request appears on the USB. This request ensures that all pipes
pending requests on the bus will be aborted. The pipe objects for a specified alternate
setting will be created and will be got ready to open. If an invalid alternate is setting
specified, the Driver generates an error. The previous configuration becomes invalid and
the Client should use the Set Configuration or Set Interface calls again. Note, that to
invoke this request, no pipe connections should be open on a Device.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-22

3.5.15. IOCTL_USB_UNCONFIGURE_DEVICE

This operation requests to put Device into unconfigured state.

DeviceIoControl parameters:

lpInBuffer
Not used with the operation. Must be NULL.

nInBufferSize
Not used with the operation. Must be 0.

lpOutBuffer
Not used with the operation. Must be NULL.

nOutBufferSize
Not used with the operation. Must be 0.

Comments:
The Device will be treated as unconfigured, and only the following set of requests
can then be applied:

IOCTL_USB_GET_DESCRIPTOR
IOCTL_USB_GET_CONFIGURATION
IOCTL_USB_SET_CONFIGURATION
IOCTL_USB_CYCLE_PORT.

Establishing a connection to a pipe object is not permitted while the Device is
unconfigured.

 After this operation the IOCTL_USB_GET_CONFIGURATION request should return a
zero configuration value. The Client software developer should rarely use this
operation, because some issues exist in operating system while working in this state.
However this operation can be useful for new Device testing. In addition the Client
software should use this request before setting a different configuration on the
already configured Device.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-23

3.6. Structures.

3.6.1. USB_CLASS_OR_VENDOR_REQUEST

Definition:

typedef struct {
 REQUEST_TARGET Target;
 UCHAR Type;
 UCHAR ResBits;
 UCHAR Request;
 USHORT Value;
} USB_CLASS_OR_VENDOR_REQUEST, *PUSB_CLASS_OR_VENDOR_REQUEST;

Members:
Target
Request recipient defined by REQUEST_TARGET type.

Type
Specifies the type and direction of request.
Direction can be specified by ORing with USB_REQUEST_IN_MASK constant (defined in
motioctl.h) for IN – class or vendor requests (Device should return data). If this mask
is not applied, the Driver performs OUT – class or vendor request (Device returns no
data). The request target must can be one of values defined in 3.8.3.

ResBits
Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the
USB-defined setup packet. This value is defined by the USB spec. for a class request or
the vendor for a vendor request.

Request
Specifies the class or vendor-defined request code for the Device, interface, endpoint, or
other Device-defined target.

Value
Is a value, specific to a request, that becomes part of the USB-defined setup packet for
the target. This value is defined by the creator of the code used in the request. Check
Device class specification for this value.

Comments:
 This structure is used by IOCTL_USB_CLASS_OR_VENDOR_REQUEST Device request.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-24

3.6.2. USB_DESC_REQUEST

Definition:

typedef struct _USB_DESC_REQUEST {
 UCHAR DescriptorType ;
 union {
 struct {
 char ConfigIndex;
 char InterfaceIndex;
 char AltSetting;
 char EndpointIndex;
 };
 struct {
 USHORT LanguageId;
 char Index;
 };
 };
} USB_DESC_REQUEST, *PUSB_DESC_REQUEST;

Members:
DescriptorType
One of descriptor types. For possible value see table 3.4 in constants section

Index
Used for string descriptors only. Specifies string index. The language table can be
obtained with zero index.

LanguageId
Used for string descriptors only. Specifies the language ID of the descriptor to be
retrieved.

ConfigIndex
This member is used for configuration, interface or endpoint descriptor request. Specifies
index of the configuration descriptor for which the required descriptor is requested. For a
configured Device, a value of –1 implies a request descriptor from the current
configuration.

InterfaceIndex
This member is used for an interface or endpoint descriptor request. Specifies the index
of the interface descriptor in a selected configuration. If the endpoint descriptor requests
the value of –1, this means it is necessary to lookup the endpoint of the descriptor by
means of the endpoint address, among all the interfaces configured.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-25

AltSetting
This member is used for an interface or endpoint descriptor request. It specifies an
interface alternate setting for which a descriptor was requested.

EndpointIndex
This member is used for an endpoint descriptor request. It specifies an endpoint index in
the interface , specified by InterfaceIndex. In the case of InterfaceIndex = –1 the
Client application should put an endpoint address in this member.

Comments:
This structure is used by IOCTL_USB_GET_DESCRIPTOR and
IOCTL_USB_SET_DESCRIPTOR requests.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-26

3.6.3. USB_FEATURE_REQUEST

Definition:

typedef struct {
 REQUEST_TARGET Target;
 UCHAR FeatureSelector;
 BOOLEAN bClear;
} USB_FEATURE_REQUEST, *PUSB_FEATURE_REQUEST;

Members:
Target
One of the request recipients, defined by REQUEST_TARGET enumeration.

FeatureSelector
Specifies feature selector.

bClear
Boolean flag indicating, what feature operation the driver must execute. A TRUE value
indicates clearing the feature, a FALSE indicates setting the feature.

Comments:
This structure is used by IOCTL_USB_FEATURE_CONTROL request.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-27

3.6.4. USB_GET_CONFIGURATION_REQUEST

Definition:

typedef struct _USB_GET_CONFIGURATION_REQUEST {
 UCHAR bConfigValue;
} USB_GET_CONFIGURATION_REQUEST;

Members:
bConfigValue
Specifies current configuration value. This value is equal to bConfigurationValue
member of the configuration descriptor for active configuration. If Device in
unconfigured state driver returns zero.

Comments:
This structure is used by IOCTL_USB_GET_CONFIGURATION request.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-28

3.6.5. USB_HANDLE_INFO

Definition:

typedef struct _USB_HANDLE_INFO {
 PVOID ObjectHandle ;
} USB_HANDLE_INFO;

Members:
ObjectHandle
Kernel mode pipe object handle.

Comments:
The structure used by IOCTL_USB_LINK_PIPE and IOCTL_USB_GET_HANDLE requests.
Specifies a kernel mode pipe object handle for a pipe to Device linking.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-29

3.6.6. USB_INTERFACE_SETTING

Definition:

typedef struct _USB_INTERFACE_SETTING {
 USHORT InterfaceIndex;
 USHORT AltSetting;
 ULONG MaxTransferSize;
} USB_INTERFACE_SETTING, *PUSB_INTERFACE_SETTING;

Members:
InterfaceIndex
Specifies zero - base interface descriptor index within configuration. If using this
structure on configured Device this value specifies index in interfaces configured within
the configuration.

AltSetting
Specifies alternate settings value for given interface.

MaxTransferSize
Specifies maximum transfer size for all the pipes of an interface. Maximum transfer size
depends on the Device. If Client application performs a transfer with lager size than the
maximum transfer size, the driver will break this request into smaller pieces, conforming
to this value. The value of –1 is assumed to be: take default maximum transfer size for
registry settings.

Comments:
This structure is used by IOCTL_USB_SET_CONFIGURATION,
IOCTL_USB_SET_INTERFACE and IOCTL_USB_GET_INTERFACE request.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-30

3.6.7. USB_ISO_PACKET

Definition:

typedef struct _USB_ISO_PACKET {
 ULONG Offset;
 ULONG Length;
 ULONG Status;
} USB_ISO_PACKET, *PUSB_ISO_PACKET;

Members:
Offset
Packet buffer offset within isochronous transfer buffer pointed by USB_ISO_XFER
structure.

Length
Specifies packet length in bytes. The Client application should set this value for
isochronous transfers. When driver completes transfer I/O it fills this member with the
number of bytes actually processed for this packet. This value should be less than or
equal to endpoint packet size, defined in an endpoint descriptor of the pipe for which the
I/O operation should be performed.

Status
The driver returns packet transmitting result to this member. Zero means successful
transmission, 0x9 shows that a short packet was processed.

Comments:
This structure is used as part of an isochronous transfer request using the USB_ISO_XFER
structure and specifies the packet header information. The Offset member contains the
offset from the beginning of the USB_ISO_XFER buffer.

To determine the isochronous transfer buffer size by a given Packet Count and Packet
Size use ISO_XFER_BUF_SIZE(PacketCount, PacketSize) macro. The result value
will include header, packet headers and packet data buffers sizes

To get pointer to the isochronous packet data buffer by given transfer buffer and packet
index relative to the transfer buffer use the PACKET_BUFFER(xfer, index) macro.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-31

3.6.8. USB_ISO_XFER

Definition:

typedef struct _USB_ISO_XFER {
 USHORT StartFrame;
 ULONG Flags;
 ULONG ErrorCount;
 ULONG PacketCount;
 USB_ISO_PACKET Packets[1];
} USB_ISO_XFER, *PUSB_ISO_XFER;

Members:
StartFrame
Specifies the frame number that the transfer should begin on. This variable must lie
within the 2048 frames. If the USB_ISO_TRANSFER_ASAP is set in Flags, this member
contains the frame number that the transfer began on, when the request was returned by
the Host controller driver. Otherwise, this member must contain the frame number that
this transfer will begin on.

Flags
Specifies zero or a USB_ISO_TRANSFER_ASAP flag. If equal to USB_ISO_TRANSFER_ASAP
the transfer is set to begin on the next frame, if there were no transfers submitted to the
pipe since the pipe was opened or last reset. Otherwise, the transfer will begin on the first
frame following all currently queued requests for the pipe. The actual frame that the
transfer begins on will be adjusted for bus latency by the driver.

ErrorCount;
Contains the number of packets that completed with an error condition on return from the
driver.

PacketCount
Specifies the number of packets described by the boundless array member Packets. This
value can be from 1 to 255.

Packets
Contains a variable-length array of USB_ISO_PACKET structures that describe each
transfer packet of the isochronous transfer

Comments:
This specifies the buffer form for isochronous transfers. If IsoPacket has n entries, the
Host controller transfers use n frames to transfer data, transferring Packets [i].Length
bytes beginning, with an offset of Packets[i].Offset.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-32

3.6.9. USB_LOCK_REQUEST

Definition:

typedef struct _USB_LOCK_REQUEST {
 ULONG Flags;
} USB_LOCK_REQUEST, *PUSB_LOCK_REQUEST;

Members:
Flags
Specifies zero, one, or a combination of the following flags: USB_LOCK_DEVICE Acquires
Device lock. If there are no other handles to the same Device, the object maintains lock
and the Device object handle specified, becomes the owner of the lock. Otherwise the
request will be put in the queue by the Device lock queue and processed later. If the
application performs this request synchronously, the calling thread will be blocked until
the request is processed.

USB_TRY_LOCK_DEVICE
The request is the same as with specifying the USB_LOCK_DEVICE flag. However the
driver will not block the thread and put this request in the queue if the Device is already
locked, instead it returns with an error immediately.

USB_UNLOCK_DEVICE
Releases single Device lock by a given Device handle.

USB_TOTAL_UNLOCK
Releases all Device locks by a given Device handle.

Comments:
The structure is used by the IOCTL_USB_LOCK_DEVICE requests. It is possible to lock a
Device several times with the same handle. The Client should also release locks as often
as it acquires them. If the Client wants to remove all locks by a particular handle, it
should specify the USB_TOTAL_UNLOCK flag.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-33

3.6.10. USB_SET_CONFIGURATION_REQUEST

Definition:

typedef struct _USB_SET_CONFIGURATION_REQUEST {
 USHORT ConfigIndex;
 LONG InterfaceCount;
 USB_INTERFACE_SETTING Interfaces[USB_MAX_INTERFACE_COUNT];
} USB_SET_CONFIGURATION_REQUEST;

Members:
ConfigIndex
Index of configuration descriptor. Used to identify configuration.

InterfaceCount
Count of interfaces that should be configured within this configuration. If –1 is specified,
all Interfaces with a configuration become configured with the zero alternate setting and
default maximum transfer size.

Interfaces[USB_MAX_INTERFACE_COUNT]
The array of interface settings should be configured within this configuration. This array
must contain InterfaceCount valid entries. Not applicable if InterfaceCount is equal
to –1.

Comments:
This structure is used by IOCTL_USB_SET_CONFIGURATION request. In addition when
Interfaces member is used (not equal to -1), it is possible to specify the maximum
transfer size for each interface that was configured.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-34

3.6.11. USB_STATUS_REQUEST

Definition:

typedef union _USB_STATUS_REQUEST {
 REQUEST_TARGET Target;
 USHORT Status;
} USB_STATUS_REQUEST, *PUSB_STATUS_REQUEST;

Members:
Target
One of the request recipients defined by REQUEST_TARGET enumeration.

Status
The status returned by the driver requested by the caller.

Comments:
This structure is used by IOCTL_USB_GET_STATUS request.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-35

3.7. Types.

3.7.1. REQUEST_TARGET

Definition:

typedef USHORT REQUEST_TARGET;

Comments:
The type combines request recipient in low byte and recipient index in high byte. For the
Device target this value is zero. For interface and endpoint recipients use the following
macros:

ENDPOINT_TARGET(index)
INTERFACE_TARGET(index)
This macros combines one of USBReceipients enumeration values and index.

To parse this type use REQUEST_TARGET_TYPE(target) : returns one of
USBReceipients enumeration value REQUEST_TARGET_INDEX(target) : returns
receipient index.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-36

3.7.2. USB_DEVICE_DESCRIPTOR

Definition:

typedef struct _USB_DEVICE_DESCRIPTOR {
 UCHAR bLength;
 UCHAR bDescriptorType;
 USHORT bcdUSB;
 UCHAR bDeviceClass;
 UCHAR bDeviceSubClass;
 UCHAR bDeviceProtocol;
 UCHAR bMaxPacketSize0;
 USHORT idVendor;
 USHORT idProduct;
 USHORT bcdDevice;
 UCHAR iManufacturer;
 UCHAR iProduct;
 UCHAR iSerialNumber;
 UCHAR bNumConfigurations;
} USB_DEVICE_DESCRIPTOR, *PUSB_DEVICE_DESCRIPTOR;

Comments:
The structure represents the USB1.1 Device descriptor. For member description refer to
USB 1.1 specification.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-37

3.7.3. USB_ENDPOINT_DESCRIPTOR

Definition:

typedef struct _USB_ENDPOINT_DESCRIPTOR {
 UCHAR bLength;
 UCHAR bDescriptorType;
 UCHAR bEndpointAddress;
 UCHAR bmAttributes;
 USHORT wMaxPacketSize;
 UCHAR bInterval;
} USB_ENDPOINT_DESCRIPTOR, *PUSB_ENDPOINT_DESCRIPTOR;

Comments:
The structure represents USB1.1 endpoint descriptor. For member description refer to
USB 1.1 specification.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-38

3.7.4. USB_CONFIGURATION_DESCRIPTOR

Definition:

typedef struct _USB_CONFIGURATION_DESCRIPTOR {
 UCHAR bLength;
 UCHAR bDescriptorType;
 USHORT wTotalLength;
 UCHAR bNumInterfaces;
 UCHAR bConfigurationValue;
 UCHAR iConfiguration;
 UCHAR bmAttributes;
 UCHAR MaxPower;
} USB_CONFIGURATION_DESCRIPTOR,
*PUSB_CONFIGURATION_DESCRIPTOR;

Comments:
The structure represents USB1.1 configuration descriptor. For member description refer
to USB 1.1 specification.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-39

3.7.5. USB_INTERFACE_DESCRIPTOR

Definition:

typedef struct _USB_INTERFACE_DESCRIPTOR {
 UCHAR bLength;
 UCHAR bDescriptorType;
 UCHAR bInterfaceNumber;
 UCHAR bAlternateSetting;
 UCHAR bNumEndpoints;
 UCHAR bInterfaceClass;
 UCHAR bInterfaceSubClass;
 UCHAR bInterfaceProtocol;
 UCHAR iInterface;
} USB_INTERFACE_DESCRIPTOR, *PUSB_INTERFACE_DESCRIPTOR;

Comments:
The structure represents USB1.1 interface descriptor. For member description refer to
USB 1.1 specification.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-40

3.7.6. USB_STRING_DESCRIPTOR

Definition:

typedef struct _USB_STRING_DESCRIPTOR {
 UCHAR bLength;
 UCHAR bDescriptorType;
 WCHAR bString[1];
} USB_STRING_DESCRIPTOR, *PUSB_STRING_DESCRIPTOR;

Comments:
The structure represents USB1.1 string descriptor. For member description refer to USB
1.1 specification.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-41

3.8. Enumeration Types.

3.8.1. USBReceipients

Definition:

enum USBReceipients {
 DeviceTarget = 0,
 InterfaceTarget,
 EndpointTarget,
 OtherTarget
};

Comments:
Request recipients. These values are used by the REQUEST_TARGET type.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-42

3.8.2. LockFlags.

Definition:

enum LockFlags {
 USB_LOCK_DEVICE = 1,
 USB_UNLOCK_DEVICE = 2,
 USB_TOTAL_UNLOCK = 4,
 USB_TRY_LOCK_DEVICE = 8,
 USB_LOCK_MASK = USB_LOCK_DEVICE |
 USB_UNLOCK_DEVICE |
 USB_TRY_LOCK_DEVICE |
 USB_TOTAL_UNLOCK;
};

Comments:
 Flags used by USB_LOCK_REQUEST structure. The values specify lock type.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-43

3.8.3. RequestsTypes.

Definition:

enum RequestsTypes {
 ClassRequest = 1,
 VendorRequest
};

Comments:
Class or Vendor requests types used by USB_CLASS_OR_VENDOR_REQUEST
structure. Specifies request type.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-44

3.9. Constants.

3.9.1. MOTUSB Defined Constants.
MOTUSB defines several constant values in the motioctl.h header file.

The following table shows limitation constants applied to the MOTUSB Driver:

Table 3.2 Driver Limits.
Code Value Description

USB_MAX_CONFIG_COUNT 0x7F Maximum configurations per Device
USB_MAX_INTERFACE_COUNT 0x7F Maximum interfaces per configuration
USB_MAX_ENDPOINTS_COUNT 0x7F Maximum endpoints per interface
USB_MAX_TRANSFER_SIZE 0x7FFFFFFF Maximum transfer size
USB_MAX_ISO_PACKETS 0xFF Maximum isochronous packet per transfer

The following table shows the flags used in the Driver programming interface:

Table 3.3 Driver flags.
Code Value Description

USB_REQUEST_IN_MASK 0x80 Mask for vendor or class request with IN data
stage. This mask should be applied
to Type field of Class or Vendor requests input
structure

USB_ISO_TRANSFER_ASAP 0x04 Bit mask for Flags member of USB_ISO_XFER
structure. The flag means isochronous transfer
should be started from the first available frame.
The isochronous transfer requests can be put in
the queue for further I/O processing.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-45

3.9.2. USB Specification Defined Constants.
MOTUSB programming interface uses the following USB 1.1 specification constants
provided by DDK in usb100.h header file:

Table 3.4 Descriptor types.
Code Value Comments

USB_DEVICE_DESCRIPTOR_TYPE 0x01 Device Descriptor
USB_CONFIGURATION_DESCRIPTOR_TYPE 0x02 Configuration Descriptor
USB_STRING_DESCRIPTOR_TYPE 0x03 String Descriptor
USB_INTERFACE_DESCRIPTOR_TYPE 0x04 Interface Descriptor
USB_ENDPOINT_DESCRIPTOR_TYPE 0x05 Endpoint Descriptor

Table 3.5 Endpoint Types.
Code Value Comments

USB_ENDPOINT_TYPE_CONTROL 0x00 Control Endpoint
USB_ENDPOINT_TYPE_ISOCHRONOUS 0x01 Isochronous Endpoint
USB_ENDPOINT_TYPE_BULK 0x02 Bulk Endpoint
USB_ENDPOINT_TYPE_INTERRUPT 0x03 Interrupt Endpoint

 Table 3.6 Feature Selectors.
Code Value USB Spec. Value

USB_FEATURE_ENDPOINT_STALL 0x00 ENDPOINT_HALT
USB_FEATURE_REMOTE_WAKEUP 0x01 DEVICE_REMOTE_WAKEUP

 Table 3.7 Status Values.
Code Value Comments

USB_GETSTATUS_SELF_POWERED 0x01 Device is self powered
USB_GETSTATUS_REMOTE_WAKEUP_ENABLED 0x02 Device supports remote

wakeup
USB_GETSTATUS_ENDPOINT_HALT 0x01 Endpoint Stall Feature Set

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-46

Table 3.8 bmAttributes of Configuration Descriptor.
Code Value Comments

USB_CONFIG_BUS_POWERED 0x80 Is set if this configuration
is powered by the bus

USB_CONFIG_SELF_POWERED 0x40 This configuration is self-
powered and does not use
power from the bus

USB_CONFIG_REMOTE_WAKEUP 0x20 Is set if this configuration
supports remote wakeup.

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-47

3.10. Error codes.
The Driver maps error codes returned by USBDI for MOTUSB Client applications.
These errors are returned by USBDI if an error on the bus occurs. The MOTUSB diver
provides only the gate between USBDI and the Client application and makes no
assumptions about the values. For a detailed description refer to the Microsoft DDK
Documentation.

Table 3.9 Mapped error codes.
Code Value
USB_STATUS_CRC 0xE0100001L
USB_STATUS_BTSTUFF 0xE0100002L
USB_STATUS_DATA_TOGGLE_MISMATCH 0xE0100003L
USB_STATUS_STALL_PID 0xE0100004L
USB_STATUS_DEV_NOT_RESPONDING 0xE0100005L
USB_STATUS_PID_CHECK_FAILURE 0xE0100006L
USB_STATUS_UNEXPECTED_PID 0xE0100007L
USB_STATUS_DATA_OVERRUN 0xE0100008L
USB_STATUS_DATA_UNDERRUN 0xE0100009L
USB_STATUS_BUFFER_OVERRUN 0xE010000CL
USB_STATUS_BUFFER_UNDERRUN 0xE010000DL
USB_STATUS_NOT_ACCESSED 0xE010000FL
USB_STATUS_FIFO 0xE0100010L
USB_STATUS_ENDPOINT_HALTED 0xE0100030L
USB_STATUS_NO_MEMORY 0xE0100100L
USB_STATUS_INVALID_URB_FUNCTION 0xE0100200L
USB_STATUS_INVALID_PARAMETER 0xE0100300L
USB_STATUS_ERROR_BUSY 0xE0100400L
USB_STATUS_REQUEST_FAILED 0xE0100500L
USB_STATUS_INVALID_PIPE_HANDLE 0xE0100600L
USB_STATUS_NO_BANDWIDTH 0xE0100700L
USB_STATUS_INTERNAL_HC_ERROR 0xE0100800L
USB_STATUS_ERROR_SHORT_TRANSFER 0xE0100900L
USB_STATUS_BAD_START_FRAME 0xE0100A00L
USB_STATUS_ISOCH_REQUEST_FAILED 0xE0100B00L
USB_STATUS_FRAME_CONTROL_OWNED 0xE0100C00L
USB_STATUS_FRAME_CONTROL_NOT_OWNED 0xE0100D00L
USB_STATUS_CANCELED 0xE0110000L
USB_STATUS_CANCELING 0xE0120000L

M Programming Interface.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
3-48

Several error codes returned by MOTUSB are specific to the MOTUSB Driver and
library.

Table 3.10 MOTUSB error codes.
Code Description
USB_STATUS_ALREADY_CONFIGURED Device is already configured
USB_STATUS_UNCONFIGURED Device is unconfigured
USB_STATUS_NO_SUCH_DEVICE The specified Device doesn’t exists
USB_STATUS_DEVICE_NOT_FOUND The specified Device not found in

system
USB_STATUS_IO_PENDING I/O operation is still in progress
USB_STATUS_NOT_SUPPORTED Operation isn’t supported by Driver
USB_STATUS_IO_TIMEOUT Request timeout
USB_STATUS_DEVICE_REMOVED Device was removed
USB_STATUS_PIPE_NOT_LINKED Pipe not linked
USB_STATUS_PIPE_CONNECTED Device cannot be reconfigured because

pipe connections already exist.
USB_STATUS_DEVICE_LOCKED Device is locked by another handle

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-1

4. MOTUSB Library.

4.1. Library Overview.
The MOTUSB library is based on the functionality of the MOTUSB Device Driver. The
purpose of this library is to simplify USB development processes for user mode Client
applications, that use the MOTUSB Device Driver. The library maps all functionality
provided by the MOTUSB Device Driver. Developers should find it preferable to use the
library programming interface than to communicate directly with the Device Driver
through Win32 API.

4.2. Compiling And Linking.
Required headers:

\inc
 motusb.h - MOTUSB library programming interface
 motstatus.h - MOTUSB errors codes

Required libraries:
\lib
 motusb.lib - MOTUSB library

4.3. Handles.
The Library uses other handles than OS (HANDLE). The major problems with OS
handles is that in some cases they can become invalid. A MOTUSB Client should track
these cases and reopen the handles where possible. The MOTUSB library automatically
supports such tracking and, moreover, MOTUSB handles never become invalid. When
the Client application wants to perform an operation on a handle that turns out to be in an
invalid state, the library returns a corresponding error code. The Client application does
not track such cases as Device disconnection from the bus. The library closes all handles
upon disconnection and reopens them if a Device with the same VendorID / ProductID
connects to the bus.

The type of handle usb_t is common for both Device and pipe objects. However the
library differs between them, and requests which apply to a Device handle, should not be
used for pipe objects, and similarly pipe object handles should not be used for Device
requests.

The Library does not provide a way to open a pipe object without the assistance of the
Device. The Library maintains an open pipe list for each Device object. The Client
application first needs to open a Device object handle using the USBOpenDevice routine,

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-2

then, provided the Device is configured, the application can request a pipe object to open
on the Device using the USBOpenPipe routine.

In the MOTUSB library each Client should provide the handle as a parameter for most
functions.

4.4. Error codes.
All functions in the Library except USBGetDeviceList, USBReleaseDeviceList, and
USBGetErrorText return MOTUSB Driver error codes (See MOTUSB Error codes
section). MOTUSB shares the same error code for a Driver and a library. For further
information on “MOTUSB error codes” in the “Returns” statement specified, refer to the
errors codes for the Driver.

4.5. Notes about overlapped I/O.
The MOTUSB library provides a way to make an overlapped I/O for the Client
application. Every handle in the library is opened for overlapped I/O operation, since
each handle library maintains a variable of the structure. Most functions require a
variable of the OVERLAPPED structure as a parameter structure type. The caller can
specify NULL to this parameter. In this case, the library will use an internal variable and
blocks the calling thread until the request completes. If the caller specifies a non-zero
value for this parameter, it should use the USBWaitIO function to determine where the
actual I/O request completes. This can be done in another thread context for example, so
that the main thread remains unblocked, and the Client can perform other operations
while waiting for the actual I/O to complete.

4.6. Functions Descriptions.

Table 4.1 Library functions summary.
Function Handle Description

• Devices enumeration
USBGetDeviceList N/A Retrieves all connected Devices for which installed
USBReleaseDeviceList N/A Frees Device list requested by prior function

• Device, pipe connections
USBOpenDevice Device Establishes connection to Device object
USBCloseDevice Device Closes connection to Device object
USBOpenPipe Device Establishes connection to bulk or interrupt pipe object
USBClosePipe Pipe Closes connection to bulk or interrupt pipe object

• Descriptors
USBGetDeviceDesc Device Requests Device descriptor
USBGetConfigDesc Device Requests configuration descriptor

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-3

USBGetInterfaceDesc Device Requests specified interface descriptor
USBGetEndpointDesc Device Requests specified endpoint descriptor
USBGetStringDesc Device Requests specified string descriptor
USBPipeGetDescriptor Pipe Requests endpoint descriptor of a pipe

• Configuration
USBSetConfiguration Device Selects the Device configuration
USBGetConfiguration Device Requests the selects selected Device configuration

USBUnconfigureDevice Device Puts Device into unconfigured state
USBGetInterface Device Returns interface alternate setting
USBSetInterface Device Selects interface alternate setting

Function Handle Description

• Device control
USBResetDevice Device Resets Device
USBSetFeature Device Sets feature for specified recipient
USBClearFeature Device Clears feature for specified recipient
USBGetStatus Device Retrieves status for specified recipient
USBClassOrVendorRequest Device Performs class or vendor (IN or OUT) requests
USBCyclePort Device Emulates Device replugging

• Device locking
USBLockDevice Device Locks/Unlocks access to Device by Device handle

• Device Notifications
USBRegisterDevNotify N/A Registers Device attaching/removing notification to

the window
USBUnregisterDevNotify N/A Unregisters window form Device attaching/removing

notification
• Pipes I/O

USBResetPipe Pipe Stops all pending I/O for pipe and reintializes the Host
controller

USBReadPipe Pipe Performs data transfer from Device to Host
USBWritePipe Pipe Performs data transfer from Host to Device
USBBuildIsoXfer Pipe Creates isochronous transfer buffer

• Common
USBWaitIO

Pipe /
Device

Waits until last pipe I/O operation completes

USBIoCtrl Pipe /
Device

Performs Device request directly

USBCancelIO Pipe /
Device

Aborts all pending I/O requests, applied by calling
thread, for particular Device or pipe handle.

• Errors
USBGetErrorText N/A Returns error text for specified error code

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-4

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-5

4.6.1. USBBuildIsoXfer

Definition:

DWORD USBAPI
USBBuildIsoXfer(
 IN usb_t Pipe,
 IN BYTE PacketCount,
 IN USHORT StartFrame,
 IN DWORD Flags,
 OUT PVOID *Buffer,
 OUT ULONG *BufferSize
);

Parameters:
Pipe
Points to the opened isochronous pipe handle.

PacketCount
Specifies packet count in transfer buffer.

StartFrame
Points to variable used for overlapped I/O. Can be NULL.

Flags
Isochronous transfer flags. Can be zero or USB_ISO_TRANSER_ASAP.

Buffer
Points to the buffer created by this routine. Formally this points to USB_ISO_XFER
structure header.

BufferSize
The parameter will hold the created buffer size.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some error code

Comments:
The function creates an isochonous transfer buffer. This buffer can be used by
USBReadPipe and USBWritePipe functions for isochronous endpoints. It fills the packets
header according to the maximum packet size for a specified endpoint. If the Client
wants another packet length for some of the transfer packets it should modify the Offset
and Length member of USB_ISO_PACKET manually. When the Client no longer needs the
buffer it should release the memory the Buffer parameter points to, using the free
standard library routine.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-6

4.6.2. USBCancelIO.

The function aborts all pending I/O requests on a handle.

Definition:

DWORD USBAPI
USBCancelIO (
 IN usb_t Pipe,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:
Pipe
Points to the opened pipe handle.

byThread
Flag that is used to abort a pending I/O by calling a thread or by means of a pipe handle.

pOverlapped
Points to a variable used for overlapped. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some error code.

Comments:
Aborts all pending I/O requests, applied by calling a thread, for a particular Device or
pipe handle.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-7

4.6.3. USBClassOrVendorRequest

Definition:

DWORD USBAPI
USBClassOrVendorRequest(
 IN usb_t Device,
 IN PUSB_CLASS_OR_VENDOR_REQUEST Request,
 IN OUT LPVOID Buffer,
 IN DWORD Bufsize,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

Request
Points to the request parameter block

Buffer
Points to the output buffer (in case of an IN request)

Bufsize
Specifies the size of output buffer in bytes.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
This function performs class or vendor request. The caller must completely fill the
request parameter block of PUSB_CLASS_OR_VENDOR_REQUEST type. The function sends
IOCTL_USB_CLASS_OR_VENDOR_REQUEST request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-8

4.6.4. USBClearFeature

Definition:

DWORD USBAPI
USBClearFeature(
 IN usb_t Device,
 IN REQUEST_TARGET Target,
 IN UCHAR Feature,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle.

Target
One of request recipients, defined by REQUEST_TARGET type.

Feature
Specifies feature selector.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
The function clears a specified feature for a specified recipient. Feature selectors should
be USB_FEATURE_ENDPOINT_STALL or USB_FEATURE_REMOTE_WAKEUP. The function
sends a IOCTL_USB_FEATURE_CONTROL request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-9

4.6.5. USBCloseDevice

Definition:

DWORD USBAPI
USBCloseDevice(
 IN OUT usb_t* pDevice
);

Parameters:
pDevice
Points to an opened Device handle. On function return set handle to NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments
This function closes a Device handle acquired with the USBOpenDevice routine. The
Client application should close each opened handle when that handle is no longer needed,
or at least at the application cleanup time. Closing the Device handle also causes the
closure of all linking pipe handles.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-10

4.6.6. USBClosePipe

Definition:

DWORD USBAPI
USBClosePipe(
 IN usb_t* pPipe
);

Parameters:
pPipe
Points to pipe handle. On function return set handle to NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
The function closes the connection to a pipe object specified by the pipe handle. The
pipe handle is unlinked from the Device object. All pending I/Os on this pipe will be
aborted.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-11

4.6.7. USBCyclePort

Definition:

DWORD USBAPI
USBCyclePort(
 IN usb_t Device,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments
This request requests Device replugging emulation.
The function sends a IOCTL_USB_CYCLE_PORT request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-12

4.6.8. USBGetConfigDesc

Definition:

DWORD USBAPI
USBGetConfigDesc(
 IN usb_t Device,
 IN int ConfigIndex,
 OUT LPVOID Desc,
 IN OUT LPDWORD Size,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

Desc
Points to the buffer to return configuration descriptor in.

Size
Specifies the bytes count to be returned for the configuration. This parameter must be
equal to the size of the USB_CONFIGURATION_DESCRIPTOR or greater (if the caller
acquires other descriptors for this configuration also). Also it should be a multiple of the
packet size of the default pipe.

ConfigIndex
Specifies requested configuration descriptor index (zero - biased)

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
The function returns the configuration descriptor in a USB_CONFIGURATION_DESCRIPTOR
structure, followed by the interface and endpoint descriptors for that configuration. The
Driver can access the interface and endpoint descriptors as USB_INTERFACE_DESCRIPTOR,
and USB_ENDPOINT_DESCRIPTOR structures. The Driver also returns any class-specific or
Device-specific descriptors. The function sends a IOCTL_USB_GET_DESCRIPTOR request
to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-13

4.6.9. USBGetConfiguration

Definition:

DWORD USBAPI
USBGetConfiguration(
 IN usb_t Device,
 OUT UCHAR *ConfigIndex,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

ConfigIndex
Points to variable to result Device defined configuration value

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments
The function requests an active configuration index. Configuration value returns in the
buffer pointed by the ConfigIndex parameter. A zero returned value should be
considered as unconfigured Device state. The function sends a
IOCTL_USB_GET_CONFIGURATION request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-14

4.6.10. USBGetDeviceDesc

Definition:

DWORD USBAPI
USBGetDeviceDesc(
 IN usb_t Device,
 OUT PUSB_DEVICE_DESCRIPTOR Desc,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

Desc
Points to the buffer for requested Device descriptor

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
This function requests the Device descriptor. The caller should allocate a buffer for the
Desc parameter. The function sends a IOCTL_USB_GET_DESCRIPTOR request to the
Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-15

4.6.11. USBGetDeviceList

Definition:

HDEVINFO USBAPI
USBGetDeviceList(void);

Parameters:
None

Returns:
The function returns connected MOTUSB Device list in HDEVINFO system handle or
NULL on any error

Comments:
Using this function, the Client application can retrieve a connected MOTUSB Devices
list. This is an essential part of connected Devices enumeration. The caller should provide
this handle to the USBOpenDevice function. When the Client opens the required Device it
should release the system handle using the USBReleaseDeviceList routine.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-16

4.6.12. USBGetEndpointDesc

Definition:

DWORD USBAPI
USBGetEndpointDesc(
 IN usb_t Device,
 IN BYTE ConfigIndex,
 IN BYTE InterfaceIndex,
 IN BYTE altSetting,
 IN BYTE EndpointIndex,
 OUT PUSB_ENDPOINT_DESCRIPTOR pDescriptor,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

ConfigIndex
Specifies configuration descriptor index. The value –1 means selected configuration.

InterfaceIndex
Interface descriptor index within configuration. The value –1 means it is necessary to
look up the endpoint descriptor among all the configured interfaces.

AltSetting
Interface alternate setting to lookup endpoint the descriptor within.

EndpointIndex
Endpoint descriptor index within the interface. If InterfaceIndex parameter is equal to
–1 this parameter should specify the endpoint address. The descriptor will be looking
through all the configured interfaces.

pDesciptor
Points to the buffer for requested endpoint descriptor

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-17

Comments:
This function returns the interface descriptor in a PUSB_ENDPOINT_DESCRIPTOR. The
caller should allocate a buffer pointed by the pDescriptor, large enough to store the
PUSB_ENDPOINT_DESCRIPTOR structure. The endpoint descriptor requested is relative to
the interface and configuration descriptors. The caller should properly specify the
configuration descriptor index ConfigIndex, interface descriptor index InterfaceIndex
within the configuration, and the endpoint descriptor index ep_index within that
interface. Alternatively by specifying –1 in ConfigIndex and InterfaceIndex, a Client
can obtain the descriptor by specifying the endpoint address in the EndpointIndex
parameter. The function sends a IOCTL_USB_GET_DESCRIPTOR request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-18

4.6.13. USBGetErrorText

Definition:

LPCTSTR USBAPI
USBGetErrorText(
 IN DWORD Status
);

Parameters:
Status – MOTUSB error code returned by some library routine.

Returns:
Pointer to the string with error message for specified error code. The Client should use
LocalFree Win32 API function to free memory allocated by this function when it no
longer needs this message.

Comments:
The function returns error message string for specified error code.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-19

4.6.14. USBGetInterface

Definition:

DWORD USBAPI
USBGetInterface(
 IN usb_t Device,
 IN UCHAR InterfaceIndex,
 OUT PUCHAR AltSettings,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

InterfaceIndex
Specifies interface descriptor index within the selected configuration

AltSettings
The function returns current alternate setting to this parameter.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
The routine requests current interface alternate setting. Performs
IOCTL_USB_GET_INTERFACE request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-20

4.6.15. USBGetInterfaceDesc

Definition:

DWORD USBAPI
USBGetInterfaceDesc(
 IN usb_t Device,
 IN BYTE ConfigIndex,
 IN BYTE InterfaceIndex,
 IN BYTE AltSetting,
 IN PUSB_INTERFACE_DESCRIPTOR pDescriptor,
 IN OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

ConfigIndex
Specifies configuration descriptor index to lookup interface descriptor. If this value
equals –1 the interfaces descriptor will be sought in the selected configuration.

InterfaceIndex
Requested interface descriptor index within the configuration.

AltSetting
Specifies interface descriptor alternate setting.

pDescriptor
Points to the buffer for requested interface descriptor.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
This function returns the interface descriptor in a PUSB_INTERFACE_DESCRIPTOR. The
caller should allocate a buffer pointed by the pDescriptor, large enough to store the
PUSB_INTERFACE_DESCRIPTOR structure. The interface descriptor requested is relative to

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-21

the configuration descriptor. The caller should properly specify the configuration
descriptor index ConfigIndex and interface descriptor index InterfaceIndex within the
configuration.

The function sends a IOCTL_USB_GET_DESCRIPTOR request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-22

4.6.16. USBGetStatus

Definition:

DWORD USBAPI
USBGetStatus(
 IN usb_t Device,
 IN REQUEST_TARGET Target,
 OUT USHORT* wStatus,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

Target
One of request recipient defined by REQUEST_TARGET enumeration.

wStatus
Points to the buffer to return status.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
The function clears a specified feature for the specified recipient. Feature selectors should
be USB_FEATURE_ENDPOINT_STALL or USB_FEATURE_REMOTE_WAKEUP.
The function sends a IOCTL_USB_STATUS_CONTROL request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-23

4.6.17. USBGetStringDesc

Definition:

DWORD USBAPI
USBGetStringDesc(
 IN usb_t Device,
 IN BYTE Index,
 IN USHORT LangId,
 OUT PUSB_STRING_DESCRIPTOR pDescriptor,
 IN OUT DWORD *cbSize,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle

Index
Requested string descriptor index

LangId
Requested language ID for string descriptor

pDescriptor
Points to the buffer for requested string descriptor

cbSize
Specifies bytes count of string descriptor to be returned

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
This function returns the string descriptor in a USB_STRING_DESCRIPTOR structure. The
string itself is found in the variable-length bString member of the string descriptor. The
caller should allocate enough memory to store the string in the bString member. The
function sends a IOCTL_USB_GET_DESCRIPTOR request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-24

4.6.18. USBIoCtrl

Definition:

DWORD USBAPI
USBIoCtrl(
 IN usb_t Device,
 IN DWORD dwIoControlCode,
 IN LPVOID lpInBuffer,
 IN DWORD nInBufferSize,
 IN OUT LPVOID lpOutBuffer,
 IN DWORD nOutBufferSize,
 OUT LPDWORD lpBytesReturned,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:
Device
Points to the opened Device handle

dwIoControlCode
Specifies request IOCTL code.

lpInBuffer
Specifies request input buffer.

nInBufferSize
Specifies request input buffer size.

lpOutBuffer
Specifies request output buffer.

nOutBufferSize
Specifies request output buffer size.

lpBytesReturned
Points to variable to hold actual bytes processed by request.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-25

Comments:
The routine performs MOTUSB Device request directly.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-26

4.6.19. USBLockDevice

Definition:

DWORD USBAPI
USBLockDevice(
 IN usb_t Device,
 IN DWORD Flags
);

Parameters:

Device
Points to the opened Device handle

Flags
Can be the following

USB_LOCK_DEVICE – aquire Device lock
USB_TRY_LOCK_DEVICE – try to aquire lock Device
USB_UNLOCK_DEVICE – release Device lock
USB_TOTAL_UNLOCK – release all locks belongs to this handle

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
By using this operation the Client application can lock access to the Device for other
Clients. This function locks the Device by means of the Device handle. The Device
handle specified in this request then becomes a master handle, so that a request with any
other Device handle will be blocked or returned with error. Only access to those
operations that change the Device state and data transfers will be blocked. The function
sends a IOCTL_USB_LOCK_DEVICE request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-27

4.6.20. USBOpenDevice

Definition:

DWORD USBAPI
USBOpenDevice(
 IN HDEVINFO devList,
 IN int index,
 OUT usb_t* Device
);

Parameters:
devList
The system Device list handle provided by USBGetDeviceList function.

Index
The Device index in the list.

Device
Pointer to output Device handle for opened Device object.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
The Client application should use this function to establish a connection to a Device
object. Typically this should start from USBGetDeviceList to acquire the Device list.
Then, for each Device index starting with zero index, it should attempt to open the
Device. If the application opens a handle, it can request the descriptor and then decide
whether it is a required Device. If it is not a required Device, the Client should close the
handle using the USBCloseDevice routine and continue attempting to open Devices, by
incrementing the index parameter. If the function returns USB_STATUS_NO_SUCH_DEVICE,
this means that the index parameter is too big and no Device with such an index is
available. In this case the application should stop trying to open the Device and release
the Device list using USBReleaseDeviceList.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-28

4.6.21. USBOpenPipe

Definition:

DWORD USBAPI
USBOpenPipe(
 IN usb_t Device,
 IN UCHAR endpointAddress,
 OUT usb_t* pipe
);

Parameters:

Device
Points to the opened Device handle.

enpointAddress
Endpoint address from endpoint descriptor for required pipe.

pipe
Points returned pipe handle.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
This function establishes a connection to the pipe object for a specified endpoint address.
The routine returns a pipe object handle to the pipe parameter. The pipe object handle
links to the Device handle. Closing the Device handle causes the closure of all linking
pipe handles.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-29

4.6.22. USBPipeGetDescriptor

Definition:

DWORD USBAPI
USBPipeGetDescriptor(
 IN usb_t pipe,
 PUSB_ENDPOINT_DESCRIPTOR desc
);

Parameters:

pipe
Points to the opened pipe handle.

desc
Points to buffer to place the endpoint descriptor.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
The routine returns an endpoint descriptor by a given pipe handle.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-30

4.6.23. USBReadPipe

Definition:

DWORD USBAPI
USBReadPipe(
 IN usb_t pipe,
 OUT LPVOID buf,
 IN OUT DWORD *size,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:
pipe
Points to the opened pipe handle.

buffer
Points buffer for input data.

size
Specifies requested bytes count. Function returns bytes count actually transmitted in the
variable pointed by this parameter.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL to issue a synchronous request.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
This function performs IN transfers from Device to Host. The caller specifies the transfer
size in bytes size parameter. With bulk and interrupt transfers, if the current maximum
transfer length is less than the requested size, the Driver breaks the transfer into blocks.
Note that for isochronous transfers, the buffer parameter should point to the isochronous
transfer buffer (see 3.4).

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-31

4.6.24. USBRegisterDevNotify

Definition:

HDEVINFO USBAPI
USBRegisterDevNotify(
 IN HWND hWnd
);

Parameters:
hWnd specifies window handle for which notification enables.

Returns:
Function returns system notification handle. This handle should be used by
USBUnregisterDevNotify when the caller deregisters notifications or this window is
destroyed.

Comments:
This function registers a specified window for Device notifications. The notification
becomes as the WM_DEVICECHANGE window message, where the lParam parameter points
to the buffer with DEV_BROADCAST_DEVICEINTERFACE structure, from which the Client
application can extract required fields about notification.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-32

4.6.25. USBReleaseDeviceList

Definition:

void USBAPI
USBReleaseDeviceList(
 IN HDEVINFO devList
);

Parameters:
devList
the system Device list handle provided by the USBGetDeviceList function.

Returns:
None

Comments:
This function releases the system Devices list handle. The Client application should call
this routine when it no longer needs the Device list.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-33

4.6.26. USBResetDevice

Definition:

DWORD USBAPI
USBResetDevice(
 IN usb_t Device,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:
Device
Points to the opened Device handle.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
This function is used to reset the Device port. All the pending transactions on the bus
should be aborted. The request causes all of the status and configuration values associated
with endpoints in the affected interfaces, to be set to their default values.

The function sends a IOCTL_USB_RESET_DEVICE request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-34

4.6.27. USBResetPipe

Definition:

DWORD USBAPI
USBResetPipe(
 IN usb_t pipe,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:
pipe
Points to the opened pipe handle.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
This function resets a stalled pipe. It cancels all pending I/O on the pipe and sends
CLEAR_FEATURE with USB_FEATURE_ENDPOINT_STALL selector for the specified endpoint.
When receiving USB_STATUS_STALL_PID error code on bulk or interrupt transfers, the
Client application should try to reset the pipe. If this does not help, the Client should try
to reset the Device.

The function sends a IOCTL_USB_RESET_PIPE request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-35

4.6.28. USBSetConfiguration

Definition:

DWORD USBAPI
USBSetConfiguration(
 IN usb_t Device,
 IN UCHAR ConfigIndex,
 IN LONG InterfaceCount,
 IN PUSB_INTERFACE_SETTING Interfaces,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle.

ConfigIndex
Configuration descriptor index.

InterfaceCount
Interfaces count that should be configured with this call. Should be more than or equal to
1. If –1 is specified, all interfaces are configured.

Interfaces
Points to the buffer that contains the array of interface information items for each
interface configured. The count of valid entries should be equal to InterfaceCount.
Must be NULL if InterfaceCount is equal to –1.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error
code.

Comments:
This function configures the Device. The caller can specify only the set of interfaces that
will be configured for a selected configuration. To invoke this request, the Device first
must be unconfigured. This request causes all of the status and configuration values
associated with endpoints in the affected interfaces, to be set to their default values.

The function sends a IOCTL_USB_SET_CONFIGURATION request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-36

4.6.29. USBSetFeature

Definition:

DWORD USBAPI
USBSetFeature (
 IN usb_t Device,
 IN REQUEST_TARGET target,
 IN UCHAR feature,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle.

target
One of request recipients defined by REQUEST_TARGET enumeration.

feature
Specifies feature selector.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
This function sets a specified feature for the specified recipient. Feature selectors should
be USB_FEATURE_ENDPOINT_STALL or USB_FEATURE_REMOTE_WAKEUP.

The function sends a IOCTL_USB_FEATURE_CONTROL request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-37

4.6.30. USBUnconfigureDevice

Definition:

DWORD USBAPI
USBUnconfigureDevice(
 IN usb_t Device,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:

Device
Points to the opened Device handle.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
This function puts the Device into the unconfigured state. This operation should be rarely
used by Client software developers, due to issues with the Operating System working in
this state. However this operation can be very useful for new Device testing. In addition
the Client software should use this request before setting different configurations on an
already configured Device.

The function sends a IOCTL_USB_UNCONFIGURE_DEVICE request to the Driver.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-38

4.6.31. USBUnregisterDevNotify

Definition:

void USBAPI
USBUnregisterDevNotify(
 IN HDEVINFO hDevInfo
);

Parameters:
hDevInfo
Specifies the system notification handle obtained from USBRegisterDevNotify.

Returns:
None

Comments:
This function deregisters a specified window from Device notifications.

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-39

4.6.32. USBWaitIO

Definition:

DWORD USBAPI
USBWaitIO(
 IN usb_t handle,
 OUT DWORD *BytesTransferred,
 IN DWORD Timeout,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:
handle
Points to the opened Device or pipe handle.

BytesTransferred
Points to buffer for output data size. Can be NULL if not used.

Timeout
Specified interval for a waiting I/O completion in milliseconds. If no timeout value
should be used the INFINITE constant should be specified.

pOverlapped
Points to variable used for overlapped I/O, that was specified for the last I/O operation on
the specified handle.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code

Comments:
The Client should call this function if it specifies it's own value for the pOverlapped
parameter. The function waits until the I/O operation completes. The calling thread of this
routine will be blocked until the function completes. On return the function returns a
bytes count actually transmitted into the variable pointed by BytesTransferred
parameter (if no NULL is specified).

M MOTUSB Library.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
4-40

4.6.33. USBWritePipe

Definition:

DWORD USBAPI
USBWritePipe(
 IN usb_t pipe,
 OUT LPVOID buf,
 IN DWORD size,
 IN OUT OVERLAPPED *pOverlapped
);

Parameters:
pipe
Points to the opened pipe handle.

buffer
Points to the buffer with data to transfer.

size
Specifies bytes count to send.

pOverlapped
Points to variable used for overlapped I/O. Can be NULL of no overlapped I/O required.

Returns:
On success, routine returns USB_STATUS_SUCCESS, or else some MOTUSB error code.

Comments:
This function performs OUT transfers from Host to Device. The caller specifies the
transfer size in bytes in the size parameter. If the current maximum transfer length is less
than requested size, the Driver breaks the transfer into blocks (for bulk and interrupt
transfer types). Note that for isochronous transfers, the buffer parameter should point to
the isochronous transfer buffer (see 3.4).

M Registry Settings.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
5-1

5. Registry Settings.
The default settings for MOTUSB Driver are stored in the registry. These settings are
applied to every Device on which the MOTUSB Driver is installed. The registry settings
are stored under the following key: HKLM \ SYSTEM \ CurrentControlSet \
Services \ motusb \ Parameters.

All the registry settings are shown in the following table:

Table 5.1 Registry settings summary
Value Name Default

Value
Description

CancelIoOnSuspend 0 Handling of outstanding read or write requests when the
Device goes into a suspend state (leaves D0):
1 = abort pending requests
0 = do not abort pending requests

MaxTransferSize 65535 Default maximum transfer size in bytes. This value is used on
default Device configuration or when the Client application
specifies use of default maximum transfer size in
Set Configuration or Set Interface calls.
Can be from 4096 to 2147483647

RequestTimeout 5000 Timeout interval for synchronous I/O requests, in
milliseconds. Zero means infinite (no timeout).
USB1.1 specification defines 5 seconds timeout.
However this value can be useful during firmware debugging

ShortTransferOK 1 Specifies that short packets in bulk and interrupt transfers are
accepted with no errors.

UnsafeRemovalUI 1 Specifies whether Windows “Unsafe Removal” dialog should
appear on hot Device disconnection.
1 = dialog should appear
0 = dialog should not appear

M Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
6-1

6. Driver Installation.

6.1. Installation Procedure.
Various Devices can use the MOTUSB Device Driver. The Device vendor must provide
a proper Setup (INF) file for Device.

Assuming the name is < your_oem >.inf to Device Driver the following steps are
required:

12. Logon to Windows 2000 using an administrator account.

13. Ensure that the following 3 files are all contained in the Driver installation

directory: motusb.sys, motusb.dll, mcf5272.inf

14. Ensure that the VendorID and ProductID members of the Device descriptor on
Device have not changed. If you have to change them, it is necessary to make a
new installation (INF) file for the VendorID and ProductID member values
combination. (See MOTUSB Driver Guide, Chapter 4 for detailed information on
the INF file).

15. Connect the Host PC with the UFTP Device running on the MCF5272

development board via a USB cable.

16. “Found New Hardware Wizard” dialog with string “USB Device” will appear.

Select “Next” button.

17. Select the radio button labeled "Search for a suitable Driver for your Device

(Recommended)" and then hit the "Next" button.

18. “Locate Driver Files” page will appear, click the "Next" button

19. “Insert manufacturer installation disk on the drive…” file prompt dialog will

appear. Specify the folder where all Driver files are located and click ok.

20. “Driver Files Search Result” page should appear. If the Driver path is specified
correctly “Windows found a Driver for this Device” and the path to mcf5272.inf
strings will be shown at the center of the page.

21. Hit the "Next" button, whereupon the "copying Files" message box will be seen

briefly; then once again the "Found New Hardware Wizard" box, now displaying
the subheading "Hardware Install: The hardware installation is complete". Hit the
"Finish" button.

22. A copy of motusb.sys should be in the %SystemRoot%\System32\Drivers

directory, and the motusb.dll in the %SystemRoot%\System32 directory. If the

M Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
6-2

final "Add New Hardware Wizard" box indicates any error, or if the OS indicates
that a reboot is required in order to finish the installation of this Device,
something has gone wrong. Check the Inf file or Install directory, follow the
instructions again for a ‘clean’ install, and start over.

1. Make sure that the following 3 files are all contained in the Driver installation
directory:
motusb.sys, motusb.dll, < your_oem >.inf

2. Connect Host PC to a running Device via the USB cable.

3. “Found New Hardware Wizard” dialog with string “USB Device” will appear.

Select “Next” button.

4. Select the radio button labeled "Search for a suitable Driver for your Device

(Recommended)" and then hit the "Next" button.

5. “Locate Driver Files” page will appear, click the "Next" button

6. “Insert manufacturer installation disk on the drive…” file prompt dialog will

appear.

7. Specify the folder where all Driver files are located and click ok.

8. “Driver Files Search Result” page should appear. If Driver path is specified
correct “Windows found a Driver for this Device” and path to <your_oem>.inf
strings will be shown on the center of the page.

9. Hit the "Next" button. "Copying Files" dialog will be seen briefly, then once again

the "Found New Hardware Wizard" box, now displaying the sub-heading,
"Hardware Install: The hardware installation is complete". Hit the "Finish" button.

10. A copy of motusb.sys should now be in the %SystemRoot%\System32\Drivers
directory, and motusb.dll in the %SystemRoot%\System32. If the final "Add New
Hardware Wizard" box indicates any error, or if the OS indicates that a reboot is
required in order to finish the installation of this Device, something has gone wrong.
Check the Inf file or Install directory, follow the instructions in the section below for
a ‘clean’ install, and start over again.

Depending on the inf file content, the vendor Device Driver setup may be somewhat
different.

NOTE: For Windows 2000, to be able to install a Device Driver, administrator rights are
required. The MOTUSB Driver is installed in the same way as any other Plug&Play

M Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
6-3

Device Driver, where the installation requires administrator rights. Once the MOTUSB
Driver is installed, standard user rights are sufficient to load the Driver and to use the
Driver by accessing its programming interface.

6.2. Setup (INF) File.
To be installed correctly, Drivers must have an INF file. An INF file is a text file that
contains all the necessary information about the Device(s) and file(s) to be installed, such
as Driver images, registry information, version information, and so on, to be used by the
Setup components. An INF file is basically an ASCII text file. The contents and the
syntax of an INF file are documented in the Microsoft Windows 2000 DDK.

The INF file is loaded and interpreted by an operation software component that is closely
related to the Plug&Play Manager, called the Device Installer. It handles hot plugging
and removal of USB Devices. If the new USB Device has been detected, the system
searches its internal INF file database, located in %SystemRoot%\Inf\, for a matching
Driver. If no Driver can be found the New Hardware Wizard pops up and the user will be
asked for a Driver.

A particular Device can be associated with the MOTUSB Driver through a string that is
called Hardware ID. The operation system PnP software component builds this string
from the 16-bit vendor ID (VID), the 16-bit product ID (PID), optionally the revision
code (REV) and other components. For USB Devices, the Hardware ID is prefixed by the
‘USB’ identifier. The OS uses the ordered Hardware ID lists provided by the bus Driver,
along with INF information, to select Drivers to load for a Device. Starting at the top of
the ordered Hardware ID list, the OS tries to match the Hardware ID there with a
Hardware ID in a system INF file entry.

Here is the template for Hardware ID string, that the vendor should specify in the INF
file.

USB\VID_xxxx&PID_yyyy&REV_zzzz
USB\VID_xxxx&PID_yyyy

The MOTUSB Driver installation should install the Driver motusb.sys and dynamic link
library motusb.dll images. However motusb.dll is optional and if the vendor wants to
use the Driver directly, no library image is required.

The description of other INF file entries is outside the scope of this guide, please refer to
Microsoft Windows 2000 DDK for detailed information. The setup information file
template is shown in the next section and should provide the basis for making the INF file
to install the MOTUSB Driver on a vendor Device. Note that the template assumes that
MOTUSB image files are located in a same directory with an INF file. The minimum set
of information should be known before modifying this template:

M Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
6-4

• ProductID and VendorID values of Device descriptor
• Manufaturer name (replaces ‘_Your_Device_Manufacturer_Name_Here_’

statement)
• Device class (optionaly)

Please see comments in the template for a more detailed description.

6.2.1. Setup (INF) File Template.

; ==
; This is a MOTUSB Driver Setup Information (INF) file template.
; ==
[Version]
Signature = "$WINDOWS NT$"
Provider = %MfgName%
DriverVer = 02/23/2002,1.23.0000.00
CatalogFile = motusb.cat

;=============================Class Section====================================
; Select an appropriate class for the Device.
; There are several options:
; + Use the MOTUSB class.
; + Define your own class by generating a GUID and a specify class description.
; + Use a predefined system class. This is required for system defined classes
; (HID, Mass Storage, USB Audio for example)
;
; HID Example:
; Class=HIDClass
; ClassGuid={745a17a0-74d3-11d0-b6fe-00a0c90f57da}
;==
Class = MOTUSB
ClassGUID = {31A6857E-E756-413f-93B2-9FC95EDB7608}

;========================= Class Install Section ==============================
; The following 3 sections used for own vendor classes only. Remove’em if using
; system defined Device class
;==
[ClassInstall]
Addreg=MOTUSBClassReg

[ClassInstall32]
Addreg=MOTUSBClassReg

[MOTUSBClassReg]
HKR,,,,%MyClassName%
HKR,,Icon,,-20 ; Use USB Icon

;========================= Control Flags Section ==============================
[ControlFlags]
ExcludeFromSelect=*

; ========================== Driver Source Sections ===========================
[SourceDisksNames]
1=%DiskID%,,,

M Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
6-5

[SourceDisksFiles]
motusb.sys = 1
motusb.dll = 1

; NOTE: Replace _Your_Device_Manufacturer_Name_Here_ with Manufacturer name
[Manufacturer]
%MfgName%=_Your_Device_Manufacturer_Name_Here_

; ========================= Device List Section ===============================
; There is the place to add your Device. MOTUSB Driver will be installed
; for Devices your declared here on the Driver installation time.
; --
; To declare your Device:
; + ProductID and VendorID values of Device descriptor should be known.
; + Put YourDeviceDescXXX variable to the string section below
; + Put line like following here (assume VendorID=0x1045, ProductID=0x23):
; %ColdFire.DeviceDesc0%=MOTUSB, USB\VID_1045&PID_0023
; ===

; NOTE: Replace _Your_Device_Manufacturer_Name_Here_ with Manufacturer name

[_Your_Device_Manufacturer_Name_Here_]
%YourDeviceDesc0%=MOTUSB, USB\VID_ABCD&PID_1234
%YourDeviceDesc1%=MOTUSB, USB\VID_ABCD&PID_1235

; ========================= Misc Driver file sections =========================
[DestinationDirs]
DefaultDestDir = 12
MOTUSB.Files.Sys = 10,System32\Drivers
MOTUSB.Files.Dll = 10,System32

[motusb]
CopyFiles = MOTUSB.Files.Sys, MOTUSB.Files.Dll
AddReg = MOTUSB.AddReg, DeviceParams.NTx86

[motusb.NTx86]
CopyFiles=MOTUSB.Files.Sys, MOTUSB.Files.Dll
AddReg=MOTUSB.AddReg, DeviceParams.NTx86

[motusb.NTx86.Services]
Addservice = motusb, 0x00000002, MOTUSB.NTx86.AddService

[motusb.NTx86.AddService]
DisplayName = %MOTUSB.SvcDesc%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 3 ; SERVICE_DEMAND_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %10%\System32\Drivers\motusb.sys
LoadOrderGroup = Base

[motusb.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,MOTUSB.sys

[motusb.Files.Sys]
motusb.sys

[motusb.Files.Dll]
motusb.dll

; ========================= Registry Settings ===============================
; The default registry setting stored here. The last value is a particular
; registry setting value. This values can be modified by vendor to specify

M Driver Installation.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
6-6

; different registry setting
; ===
[DeviceParams.NTx86]
HKLM,"%ConfigPath%"\"%DeviceConfigPath%",RequestTimeout,0x10001,5000
HKLM,"%ConfigPath%"\"%DeviceConfigPath%",UnsafeRemovalUI,0x10001,0
HKLM,"%ConfigPath%"\"%DeviceConfigPath%",ShortTransferOK,0x10001,1
HKLM,"%ConfigPath%"\"%DeviceConfigPath%",MaxTransferSize,0x10001,65535

; =============================== String Section ==============================
[Strings]
MfgName = "<<< Put manufacturer name here >>>"
MyClassName = "<<< Put vendor defined class here >>>"
YourDeviceDesc0 = "<<< Put your Device #0 description here >>>"
YourDeviceDesc1 = "<<< Put your Device #1 description here >>>"
DiskID = "<<< Insert your distribution disk description here >>>"
MOTUSB.SvcDesc = "Motorola USB I/O Driver"
ConfigPath = "SYSTEM\CurrentControlSet\Services\motusb"
DeviceConfigPath = "Parameters"

6.3. Updating Or Uninstalling.
In order to update or uninstall the MOTUSB Driver, the Device Manager has to be used.
In the Device Manager double-click on the entry of the Device and choose the property
page that is labeled "Driver". The Driver reinstallation can be issued through the "Update
Driver" button. The operating system launches the Upgrade Device Driver Wizard, which
searches for Driver files or lets it select a Driver. In order to uninstall the Driver, the
"Uninstall" button should be used. The operating system will reinstall a Driver the next
time the Device is connected or the system is rebooted. In some cases such automatic
reinstallation may be unwelcome, and to avoid this it is necessary to manually remove the
INF file that was created by the system at Driver installation time.

During Driver installation Windows stores a copy of the INF file in its internal INF file
database that is located in %System32%\INF\. The original INF file is renamed and
stored as oemXX.inf for example, where XX is a decimal number. The best way to find
the correct INF file is to do a search for some significant string (Device name in Device
Manager for example) in all the INF files in the directory %System32%\INF\ and its
subdirectories. Once the INF file has been located, remove it. This will prevent Windows
from automatically reinstalling the MOTUSB Driver at the time of attaching a USB
Device. Instead, the New Hardware Wizard will be launched and the user will be asked
for a Driver.

M Appendix 1:USB Audio Sample for MCF5272.
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

7-1

7. Appendix 1: USB Audio Sample for
MCF5272.

7.1. Introduction.

7.1.1. Overview.
The following describes a very small application for isochronous transfers demonstration
from Host to Device, and from Device to Host. It is designed especially for Motorola
ColdFire5272 USB Protocol Stack audio sample (see [3]) firmware. The Client
application demonstrates how the ColdFire firmware Driver handles control and
isochronous transfers. The MCF5272 USB Driver and audio sample Client firmware
components work together on the Device, to perform PCM samples loop-back using
simultaneous isochronous transfers through isochronous IN/OUT endpoints. The
application is capable of demonstrating the Stand-Alone and uClinux versions of the
Device-side firmware component, due to USB protocol transparency. Additionally the
application demonstrates a working MOTUSB Driver and dynamic link library software
components on the Host side.

7.1.2. System Requirements.
Hardware:

• Single CPU Intel i386 based PC (> 600mHz) with Open Host Controller or
Universal Host Controller.

• Sound adapter with
o 44.1 kHz and 8 kHz sample rates supported
o Line-In or Mic-In sockets

Software:

• OS: Windows 2000 Professional
• MOTUSB Driver for USB Audio Sample Device installed

7.1.3. Application Capabilities.

• Demonstrates that isochronous ColdFire 5272 USB firmware can meet real time
requirements.

• Able to show how Device processes missed frame tokens (by using syshalt
utility).

• Shows Device s/w can process Isochronous IN and Isochronous OUT transfers
transactions simultaneously.

• Shows how Device s/w can process Control and Isochronous transfers
transactions Simultaneously.

M Appendix 1:USB Audio Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
7-2

7.2. Application overview.

7.2.1. Sample Model.
The sample demonstrates an audio loop-back through Isochronous USB firmware on the
ColdFire MCF5272. The sound data from a microphone is sent by the Client application
to the USB Device. The Client application receives this data from USB and the speech
may be heard on the headphones. Thus the audio source samples circulate over the bus
and returns to the audio output Device. In addition to the audio loop-back, the Device
performs some simple audio processing: changes the volume level according to the
commands that the Host Client sends during control transfers.

To perform a loop-back the application has to accomplish the following 4 tasks
simultaneously:

1) Takes PCM samples data from Sound-In (microphone for example)
2) Transfers Sound-In Samples to USB through Isochronous OUT endpoint
3) Receives Device loop-back results from Isochronous IN endpoint
4) Writes Device loop-back results to Sound-Out Device (speakers for example)

Fig 7.1 Sample model.

When adjusting the volume, the Client application sends a special command to the
Device (this task is not shown in the figure) using control transfers. On request of this
command, the ColdFire firmware performs volume processing, so that the PCM samples
that the Device returns, are not the same as those received from the microphone. Note
that due to buffering on the Host Client application and the Device firmware, the returned
samples will be delayed approximately ~200ms.

Another option is the sample rate selection. The following sample rates may be selected:
44kHz and 8 kHz. Each sample rate corresponds to a specified alternate setting on the
Device. Therefore sample rate selection changes the endpoints’ parameters, set according
to the interface alternate setting. For sound data transmission with the 44 kHz sample
rate, one short packet is transmitted for every 10 packets [3]. For 8 kHz sample rate, no
short packets are transmitted. For Device endpoints and interface configurations please
refer to [3]. The Stand-Alone firmware is somewhat different from the uClinux firmware

MIC.

Speakers

Client app.

Wave IN

Wave OUT

ColdFire

OUT
Endpoint

IN Endpoint

1 2

3 4

M Appendix 1:USB Audio Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
7-3

for the isochronous transfer model, so here the short packets processing can be a point of
interest.

7.2.2. Audio System Setup.
As mentioned above the sample requires a sound source and a sound output Device. The
microphone is a good example of a sound source. Other sound sources can be connected
to the Mic-In socket (in case of microphone) or Line-In (TV Tuner as an example). The
sound should be heard through the sound output Device (speakers). There are a number
of possible causes of missing sound:

• The microphone line (or Line-In) is muted.
• The volume of the microphone line (or Line-In) is turned to the minimum.
• The wave balance is muted or turned to the minimum.

The following figure shows right Line-In and Microphone Balance setting.

Fig 7.2 Playback properties.

If the sound source Device is working correctly, check the ‘Mute’ Line-In and
Microphone Balance settings. This ensures that no signal should appear on the sound
output Device from the sound source input. Otherwise an echo will be heard during
sample application execution.

Next go to Options menu and select Properties; check Recording box and press OK, the
following dialog should appear:

M Appendix 1:USB Audio Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
7-4

Fig 7.3 Recording properties.

This dialog provides the ability to setup miscellaneous sound source settings. Uncheck
the ‘Mute’ box and setup the volume Line-In and Microphone Balance properties.

7.2.3. Interaction With Sample.
Before starting the application, it is necessary to ensure that the ColdFire USB audio
sample firmware was first downloaded to the Device RAM and started up. Connect the
Device to the PC via the USB capable. If firmware does not download or start, or some
other error occurs, the following message will appear on application startup:

Fig 7.4 “Device is not connected” Message Box.

NOTE:
This message box implies that the MOTUSB Driver did not load. Also it may be the
cause of Host or Device software failure, or invalid VendorID and ProductID members
of Device descriptor on the Device.

M Appendix 1:USB Audio Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
7-5

The application expects the following Device descriptor values:
VendorID = 0xABCD

 ProductID = 0x1236

If the application started successfully the user should see the window as in Fig 7.5. This
is the main application window through which the user can interact with the Device on
ColdFire.

Fig 7.5 Main Application Window.

44.1kHz or 8 kHz sample rate can be selected before starting the sample. In order to start
audio loop-back click the “Start” button. The application begins PCM samples delivery
from the sound source to the USB Device on ColdFire and receiving processed data from
the bus. The sample rate selection becomes unavailable during the loop-back operation.
The Device delivered samples will be shown in PCM Loop-back Scope (fig 7.6). Volume
control changes will affect the volume level of the data from the Device.

Fig 7.6 Main Application Window (running).

M Appendix 1:USB Audio Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
7-6

In order to stop the loop-back push the “Stop” button. The stop command will be sent to
the Device and data delivery should be stopped within 100 milliseconds.

7.2.4. Missing Frames Emulation.
The additional utility syshalt.exe can be used to provide missing frame emulation. The
utility halts all the running processes for 5 seconds. Thus, when transmitting data over the
bus is in progress, the utility stops audio sampling along with Driver isochronous data
delivery. This means that the Device does not receive IN and OUT tokens. The Device
firmware and the sample should normally handle such a situation (Host real–time data
delivery failure) and continue the loop-back when the system becomes unhalted. Due to
the data buffering in this sample some noise may be observed within the first 100
milliseconds after system unhalts. For further information on processing of Device
missing frames, refer to [2] and [3].

7.2.5. Known Issues.
The sample application is very time critical and involves the use of small buffers (for 50
milliseconds) for data transmission from sound adapter to USB, in order to achieve low
latencies (~200ms). From time to time, depending upon the system loading, this can
cause the sound to cut off. Another possible issue is that the USB and the sound adapter
can become momentarily out of sync (no sample rate converter is implemented in the
sampler). This manifests itself as an audible click during the consequent 50 milliseconds
buffer reiteration. Moreover the syshalt utility may allow the USB data OUT transfer to
overtake the IN transfer, in a single frame. In such a case the critical error message
“Error: USB Mistiming” will be shown, and the sound loop-back will be stopped. This
may be easily remedied by restarting. All the above mentioned issues should not cause
isochronous transfer deadlock, and streaming will continue as soon as possible thereafter.
In additional it should be noted that while this sample was tested on a 1 GHz Intel
Pentium III processor, it should yield a similar performance on lower speed processors.

M Appendix 2:USB File Transfer Sample for MCF5272.
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

8-1

8. Appendix 2: USB File Transfer
Sample for MCF5272.

8.1. Introduction.
This section describes a small application for file transfers from Host to Device, and from
Device to Host. It’s based on the UFTP protocol and designed specially for Motorola
ColdFire5272 USB Protocol Stack file transfer sample (see [3]) firmware. The Client
application demonstrates how the ColdFire firmware Driver handles control, bulk and
interrupt transfers. The MCF5272 USB Driver and UFTP Client firmware components
are working together on Device to represent a directory and perform transmission over
the bus. The application is capable of demonstrating both uCLinux and Stand-Alone
versions of the Device-side firmware components on account of the USB protocol
transparency. In addition the application can be used to demonstrate a working MOTUSB
Driver with dynamic link library and UFTP library software components on the Host
side.

8.1.1. System Requirements.
Hardware:

• Single CPU Intel i386 based PC with Open Host Controller or Universal Host
Controller.

• At least 800x600, 256 color video adapter

Software:

• OS: Windows 2000 Professional
• MOTUSB Driver for UFTP Device installed

8.1.2. Application Capabilities.
This demo application Client is based on the UFTP Device protocol and possesses the
following capabilities:

• View directory content on Device
• Transmit files from Host to Device
• Transmit files from Device to Host
• Setting various transfers length for file transfers
• Deleting files on the Device

M Appendix 2:USB File Transfer Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
8-2

8.2. Application overview.

8.2.1. Starting Application.
Before starting the application, it is necessary to ensure that the File Transfer firmware is
downloaded to the Device Ram and started up. Connect the Device to the PC via a USB
cable. If the firmware was not correctly downloaded or started, or some other errors
occurs the following message box will appear at application startup:

Fig 8.1 “Device doesn't connected” Message Box.

NOTE:
This message box implies that the MOTUSB Driver was not loaded properly. Also it may
be due to Host or Device software failure, or invalid VendorID and ProductID members
of the Device descriptor on the Device. The application expects the following Device
descriptor values:

VendorID = 0xABCD
 ProductID = 0x1235

8.2.2. Main Window.
If the application started up successfully the user should see a window similar to the one
shown in Fig 8.2. This is the main application window through which the user can
interact with the File Transfer Device on ColdFire.

The window contains two file lists:

1) PC Box - shows files at selected folder location
2) ColdFire Box - shows files on File Transfer Device

The ColdFire Box does not perform updates on any external changes made to the Device.
The ColdFire file list updates on each write or delete operation.

M Appendix 2:USB File Transfer Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
8-3

Fig 8.2 Application Main Window.

8.2.3. Application Operations.
1) To write files from Host to Device

Selects the required files in the PC Box and click the “Write File” button. The files
should start transmitting to the Device. If any error occurs during file transmission the
following error message box should appear:

Fig 8.3 “Error while transfer” message box.

From this box the user can select whether he wants to continue transmission of other
selected files or not.

M Appendix 2:USB File Transfer Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
8-4

2) To read files from Device to Host

Select the required files in the ColdFire Box and click the “Read File” button in the
main window. The specified files will be transmitted to the current PC location (which
the PC Box shows). This operation does not request a file overwrite operation, should
any file with the same name already exist. Therefore any non-system file with the
same name will be automatically overwritten without any further warning. If an error
occurs during file transmission, the error message box should appear. From this box
the user can select whether he wants to continue reception of other selected files or
not.

3) To delete files on Device

Select files in the ColdFire Box window and click the “Delete File” button in the
main window. If any error occurs during file deletion the error message box should
appear. From this box the user can select whether he wants to continue deletion of
other selected files or not.

4) Setting transfer unit

Click the “Set transfer length button”. The following dialog should appear:

Fig 8.4 Transfer Length Dialog.

In this dialog the user can specify different transfer lengths and submit this selection by
clicking OK. Note that due to specific UFTP configuration, the maximum transfer length
can be up to 1M.

5) Different folder selection on the PC
If the user wants to change the current folder on the PC, the “Browse button” should be
selected. The following dialog will appear:

M Appendix 2:USB File Transfer Sample for MCF5272.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
8-5

Fig 8.5 Browse for folder dialog.

From this dialog the user can select different folders to be displayed in the PC Box. Once
the OK button is selected, the PC Box will be updated with the contents of the newly
selected folder. In addition this folder will be inserted into the folder tree window (near
the “Browse” button), and the user should be able to select this folder from there.

Fig 8.6 Folder tree window.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

9-1

9. Appendix 3: Test Suite for MCF5272
USB Protocol Stack.

9.1. Introduction.
The USB Test Suite for a UFTP Device is provided to test out most of the software
functionality of the Device and Host sides. The following Host software components
take a part in some of the tests, and hence are automatically tested themselves:

• MOTUSB Device Driver and library
• UFTP library

The following Device USB Protocol Stack firmware components can be tested (Stand –
Alone or uClinux versions):

• CBI USB Driver for MCF5272
• CBI & Isochronous USB Driver for MCF5272
• USB File Transfer Application
• USB Audio Application

The Test Suite does not communicate with the MOTUSB Driver directly. Instead it uses
the MOTUSB library to request USB services. Note that this application in no way is
intended to provide a USB compliance test. For this the “Microsoft Compliance Test
Suite” from USB-IF should be used for USB Device framework testing or other USB
Device classes.

9.1.1. System Requirements.
Hardware:

• Single CPU Intel i386 based PC with Open Host Controller or Universal Host
Controller.

• At least 640x480, 256 color video adapter

Software:

• OS: Windows 2000 Professional
• MOTUSB Driver for Device installed

Firmware on MCF 5272 Evaluation Board:
• USB File Transfer Client running (VendorID = 0xABCD, ProductID = 0x1235)

or
• USB Audio Client running (VendorID = 0xABCD, ProductID = 0x1236)

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-2

9.1.2. Test Suite content.
The single executable file provided. Location:
\bin
 testsuit.exe – test suite executable

(All paths specified relative to the package installation directory).

9.2. Application Overview
As was mentioned above the Test Suite application is provided especially for the
MCF5272 USB Protocol Stack firmware.

The test suite application consist from the following sections:

1) USB Standard Requests Testing

2) File Transfer Testing (applies to USB File Transfer Application

and USB Driver firmware)

3) Isochronous Transfers Testing (applies to USB Audio Application
and USB Driver firmware)

4) Other tests

Sections (2) and (3) are mutually exclusive, in that one of these tests becomes available,
according to the Device firmware. Other tests apply to any Device for which the
MOTUSB Driver is installed.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-3

9.2.1. Selecting a Device.
The first screen to appear while executing the Test Suite prompts the user to select a
suitable USB Device.

Fig 9.1 Device Selection Page.

USB Devices for which the MOTUSB Driver is installed should appear (disappear) in the
Devices list attachment (removal). Once the USB Device is selected, the "Next" is
clicked in order to go to the first test page. By using multiple instances of the Test Suite
application, it is possible to test more than one Device at the same time. The Test Suite
allows multiple instances of MOTUSB Client applications. However using only a single
instance of the MOTUSB Client application is strongly recommended for testing. Using
multiple instances of MOTUSB Client applications at the simultaneously while testing a
Device, can lead to unexpected results.

NOTE:
In order to successfully select the Device for testing the firmware should be downloaded
to the Device RAM and executed. If the MOTUSB Driver has not yet been installed, this
would be an appropriate time to connect the Device to a PC and install the Driver. The
Device should then appear in the Device list and can be selected for testing.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-4

9.2.2. Automatic Standard Requests Testing.
After the Device selection page the next page is as follows.

Fig 9.2 Standard requests (Automatic) page.

This is a page for automatic standard requests testing, which provides for some Device
and Host side components testing. In this page the user can select various options for
automatic Standard request testing. A Device may be tested in either the configured or
unconfigured states. It should be noted that this test will lock the Device while it
performs the necessary operations. Hence no other Client application can use the Device
at that time.

The user should pay particular attention in the following circumstances:

1) If the tester aborts the procedure in the middle of a test, the test can unlock access to
the Device in an undetermined state. So other Clients may report an error;

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-5

2) It is strongly recommended to never disconnect the Device during this test. USBDI
will disrupt the system if the Device becomes disconnected while the Device
Unconfigure request is pending. In such a case this will result in the classic “blue screen”.

The user can specify options for testing by selecting or deselecting the various choices.
See option descriptions below.

9.2.3. DeviceTests.
Get Descriptor.
Requests Device descriptor. If this option is not specified, configuration and other Device
tests cannot be selected.

Get Status
Gets status from the Device. If the Device status receipt was successful, the Test Suite
verifies the status value. Device status valid values range from 0x00 to 0x03.

Set Feature / Clear Feature:
This test issues a Set Remote Wakeup Feature command for each configuration if this
feature is supported as indicated in the bmAttributes field. If the specified option is
selected, the Test Suite sets the Remote Wakeup feature on the Device. It then performs
GetStatus, and checks if the Remote Wakeup bit is set. The application then clears this
feature and verifies the Device again with GET_STATUS.

Check Device Descriptor Values:
Checks all Device descriptor fields.

9.2.4. Configuration Tests.
Get Descriptor:
Requests the configuration descriptor. If this option is not selected no other tests for
configuration can be performed.

Get Configuration:
This test issues a Get Configuration command and verifies that the Device responds
with success.

Set Configuration:
This test issues a Get Configuration command. This initially unconfigures the Device.
Then all configuration tests are performed for each configuration. This causes the
interface and endpoint tests to be performed for every configuration on the Device.

Check Configuration Descriptor Values:
Checks all configuration descriptor members.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-6

9.2.5. Interface Tests.
Get (Alternate) Interface:
This test issues a Get Interface command, which receives the alternate setting for the
specified interface number. A Device without alternate interfaces should either support
this command or respond with a stall, otherwise a warning is generated.

Set (Alternate) Interface:
This test issues a Set Interface command, which sets the alternate setting for the
specified interface number. A Device without alternate interfaces should either support
this command or respond with a stall, otherwise a warning is generated.

9.2.6. Endpoint test.
Get Status:
Gets status from the endpoint. If Set Feature or Clear Feature options are selected
the endpoint is verified with endpoint status ENDPOINT_HALT bit.

Set Feature:
This test issues a Set Feature Stall command. This test is run on interrupt and bulk
endpoints only. If the Get Status option is selected, the ENDPOINT_HALT bit should be
set, and this will be verified with a Get Status request.

Clear Feature:
This test issues a ClearFeature Stall command. This test is run on interrupt and bulk
endpoints only. If the Get Status option is selected, the ENDPOINT_HALT bit should be
reset, and this will be verified with a Get Status request.

9.2.7. Other Tests.
Get String Descriptors
If this option is specified, the string corresponding to the string descriptor will be
acquired for the Device, along with configuration and interface descriptors.

Perform remote wakeup
This option is not supported by this Driver version. It may be supported in later versions
of Driver.

To start automatic testing click “Start” button.
To cancel test click “Stop” button.
To select all options click “Select All” button.
To deselect all options click “Deselect All” button.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-7

9.3. Automatic Standard Requests Results.
The following diagram shows the result of the complete automatic test.

 Fig 9.3 Standard requests (Automatic) results.

The user can choose where to save results to a log file, by clicking “Save Log” button or
to close the results window. The user may also opt to select the “Next” button, to keep the
result window active and go on to next test.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-8

9.4. Manual Testing

In this page the user can perform Standard requests manually and see the result in the
output log window.

 Fig 9.4 Manual requests page.

The names of the buttons on this page correspond to the names of requests. The following
sections describe the requests a user can invoke from this page:

9.4.1. Get Configuration.
The current configuration value should appear in the output log window.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-9

9.4.2. Set Configuration
The following dialog should appear.

Fig 9.5 Set Configuration Dialog.

The user can specify the index of the configuration descriptor for the configuration
desired. When the user submits a request, the Test Suite attempts to set the configuration
and outputs results to the log window.

9.4.3. Get Status.
The following dialog should appear.

Fig 9.6 Get Status Dialog.

The user can specify the recipient and recipient index. When the user submits a request,
the Test Suite attempts to set the configuration and outputs results to the log window.

9.4.4. Set Feature.
The following dialog should appear.

 Fig 9.7 Set Feature Dialog.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-10

The user can specify the recipient, recipient index and feature selector. When the user
submits a request, the Test Suite attempts to set the configuration and outputs results to
the log window.

9.4.5. Clear Feature.
The following dialog should appear.

Fig 9.8 Get Feature Dialog.

The user can specify the recipient, recipient index and feature selector. When the user
submits a request, the Test Suite attempts to set the configuration and outputs results to
the log window.

9.4.6. Get Interface.
When the user selects the Get Interface button, the Get Interface window appears
as shown in Figure 9.9. The user must specify the interface number to which the program
will retrieve the alternate setting. The success or failure of the command is displayed in
an output window.

Fig 9.9 Get Interface Dialog.

9.4.7. Set Interface.
When the user selects the Set Interface button, the Set Interface window appears
as shown in Figure 9.10. The user must specify the interface number to which the
program will retrieve the alternate setting. The success or failure of the command is
displayed in an output window.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-11

Fig 9.10 Set Interface Dialog.

9.5. File Transfer Firmware Testing.
This test appears only on “File Transfer Device” (i.e. with VendorID = 0xABCD,
ProductID = 0x1235). The test procedure performs continuous file transfers with various
file length and maximum transfer length parameters. A random file is generated, with a
random name, which is written to the Device. It then reads the file from the Device and
compares source file with destination file. In addition the test tracks the directory
structure and can verify it. When the Device returns memory allocation errors on writing
a file, the test removes all files it created (deleting phase) and continues write/read/verify
sequences.

9.5.1. Algorithm description.
At the start of this test all files from the Device are removed. The test then prepares a
directory on the PC, where all files will be located. This directory is located in the
following path:

%TEMP%\usbtest\<Device_instance_number>,

where the Device_instance_number is equal to hexadecimal testing Device instance
address. Using such a path, the Test Suite can test more that a single File Transfer
Device, because of unique files location for each of the Devices under test.

The test consists of the following stages:
1.Write Phase.
The test procedure generates a file on the PC according to given file boundaries
parameter, and then sends (generating transfer length by give transfer boundaries
parameter) this file to the Device. If the Device returns one of following errors:

• UFTP_NO_POSITION_FOR_NEW_FILE
• UFTP_NOT_ENOUGH_SPACE_FOR_FILE
• UFTP_MEMORY_ALLOCATION_FAIL

the test procedure goes to point (3). Following successful completion of the point (3)
stage, the test then tries to write a file and if an error occurs, an error message will be
shown and test will be stopped. If all the transactions in this stage result in success, the

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-12

procedure goes to stage 2 or the test completes (in case of all specified file and transfer
parameter values have already been generated). In the case of test completion, all files
will be removed from the Device.

2. Read/Verify Phase.
 If the “Check directory on each write” option is set, the Device directory content is
verified with the directory content on the PC. If these contents are not the same, an error
message appears in output window. If the Device returns
UFTP_MEMORY_ALLOCATION_FAIL during directory read from the Device, these tests will
be skipped and the test procedure will print out warning message. The test then reads a
newly created file in stage 1 and verifies that this is the same file on the PC. If file
contents are not identical an error message will again be generated and will appear in the
output window. On successful completion on this stage, the procedure goes to stage 1.

3. Deletion Phase.
This test procedure removes all files on the Device. If the ‘file must exist on delete’
option is set, the test procedure assumes that a file for deletion must exist on the Device.
If this condition fails, the test procedure shows an error. If the ‘Check content on delete’
option is set, the test procedure reads the file from the Device and verifies it's content
with the contents of same file on the PC, before deletion. If the file content is different,
the test procedure stops and shows an error message dialog.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-13

9.5.2. Transfer Testing Page.
As mentioned above, if the File Transfer Device is selected for testing, the following Test
Suite page appears.

 Fig 9.11 File Transfer Page.

Before starting this test the default setting can be modified, in order to specify more
detailed test parameters.

Additional test options:

• Check directory on each write - verifies directory after each new file
written

• Check content on delete - verifies file content when entering deleting
phase

• File must exist on delete - verifies each written file exists on deleting
phase

The user can modify file transfer test parameters by clicking the “Modify” button. The
following dialog should then appear:

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-14

Fig 9.12 File Transfer Test Parameters.

The following variation types can be selected for file and transfer:

Linear: The parameter variation will be incremented on each test stage until “To” value

reached.

Fixed: No variation for parameter. The parameter remains fixed for all test stages.

Random: Random variation for the parameter, which can vary in the range [“From”,“To”]
values;

Loops per file – perform several write/read/verify sequences for each file length
Loops per transfer – perform several write/read/verify sequences for transfer size

Clicking the «Start» button will start the test. The output window and log errors are
shown in this window. The user also has the ability to cancel the test. After the test
terminates (by canceling or ending) the user can save the stest results to a log file.

NOTE: It’s recommended to minimize count of running processes, which active use
CPU while transfer testing stage. It should get better testing transfer speed, so can
minimize transfer testing time. The list of such processes can be acquired from Task
Manger “Processes” page.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-15

9.6. Isochronous Transfers Testing.
This test appears only on “USB Audio” firmware (i.e. with VendorID = 0xABCD,
ProductID = 0x1236). In case of selected “USB Audio” firmware Device the following
page should appear.

Fig 9.13 Isochronous Transfers Test Page.

The test consists of 6 isochronous transfers test procedures, which covers most of
firmware isochronous transfers processing.

9.6.1. Tests Description.

1. OUT Transfer
Host sends 5 buffers X 5 packets of data to the Device. Each byte in a packet is equal to
zero based packet number. Device prints output results to the terminal.

2. IN Transfer
Device sends 5 buffers X 5 packets data to the Host. Each byte in a packet is equal to 100
based packet number. The results will be shown in the output window.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-16

Simultaneous IN/OUT transfers
This test sends data from Host to Device and from Device to Host at the same time. Both
transfers consist of 5 buffers X 5 packets. The data transmitted to the Device consists of
each byte in packet equal to zero based packet number. The Device returns the data from
the Host with 1 buffer (for Stand-Alone firmware) or 2 buffers (for uClinux firmware)
delay. Delayed buffers will be filled by the Device with 100 based packet number. Other
packets should contain information transmitted from the Host.

In all of tests above (1-3) all packets with Status = 0 expected. Short Packets should
be assumed as abnormal Device behavior.

The other 3 tests are provided to test how the Device process missing frames (Host does
not send IN or/and OUT tokens to isochronous pipes). Normally the Device should be
able to process such cases, and continue working in real time when tokens from Host
appear on the USB. Note that in some cases when the Host starts to send tokens, short
packets buffer (with Status = 0x9) should be expected as normal.

4. OUT transfer (with missing frames)
This test is the similar to the OUT transfer test (1) with missing OUT tokens simulation.
OUT tokens for packets #8, #9, #10, #15, #19 are missed (i.e. not sent by the Host).

5. IN transfer (with missing frames)
This test is the similar to the OUT transfer test (2), with missing IN tokens simulation. IN
tokens for packets #7, #10, #14, #15 are missed (i.e. not received by the Host).

6. Simultaneous IN/OUT (with missing frames)
This test is similar to the Simultaneous IN/OUT transfers test (3), with missing IN tokens
simulation. IN and OUT tokens for packet #6 are missed (i.e. not sent and received by the
Host)

In all of above tests (3—6) some packets (located closely to missed frame packets) with
Status = 0x9 are expected. Short Packets can be assumed as normal Device behavior.

9.6.2. Performing Tests.
It is important not to overlook the connection of the evaluation board with the terminal
cable in order to see the Device output. Select the test from test selecting combo box.
Submit the ‘Start Test’ button, check the results in the output window, and on the
terminal (Device output). Test results can also be saved to the log file. Please note that
the Test Suite outputs only the first 30 bytes for each packet, so the results in the output
window and the log file will be somewhat truncated. However the rest of the packet
information (in the case of test success) should be the same.

NOTE: No new test should be started while the Device is printing out test information to
the terminal. If this should occur by accident, the Device firmware should be restarted in
order to restore correct working.

M Appendix 3:Test Suite for MCF5272 USB Protocol Stack.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
9-17

9.6.3. Other tests.
The following page performs testing of cases, with different file length and maximum
transfer length parameters.

 Fig 9.14 Other tests page.

• Invalid parameters passing
Tests invalid parameters passing (this test is for Host software only).

• Device unplugging during transfer (on File Transfer Device)
Tests Device unplugging during transfer.

• UFTP Protocol errors handling (on File Transfer Device)
This test is not valid in this version of the Test Suite, but may be provided in later
versions.

• Host bulk write failure (on File Transfer Device)
Test for bulk write failure. To start this test click start button.

M Appendix 4:USB FILE TRANSFER LIBRARY.
 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE

10-1

10. Appendix 4: USB FILE TRANSFER
LIBRARY.

10.1. Introduction.

10.1.1. System Requirements .
Hardware platforms:

• Single CPU Intel i386 based PC with Open Host Controller or Universal Host
Controller.

Operation systems:

• Windows 2000 Professional

Developer software tools:

• Visual C++ 6.0 Professional Edition
• Microsoft Platform SDK for Windows 2000 (Recommended)

10.1.2. UFTP library content.
Location:
\inc
 uftp.h – library header file
 progress.h – transfer progress routine header file

\lib
 uftp.lib – static library

Additional to link with UFTP library application must be linked with motusb.lib file in
the \lib directory. The UFTP library depends from motusb.dll.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-2

10.2. Programming interface

The UFTP library provides the programming interface for communication with a UFTP
Device. The USB file transfer protocol defines the following set of requests:

Table 10.1 UFTP requests.
UFTP_READ Read file from Device to Host
UFTP_WRITE Write file from Device to Host
UFTP_GET_FILE_INFO Retrieve file information
UFTP_GET_DIR Retrieve directory structure
UFTP_SET_TRANSFER_LENGTH Set maximum transfer length
UFTP_DELETE Delete file from the Device

The library encapsulates these requests into C language functions. In this way the library
provides the simplest way to communicate with the UFTP Device. The library use
handles to track the request from different thread contexts. The Client should connect the
UFTP interface and receive a handle (HUFTP) in order to perform any library
operation.

Table 10.2 Functions Summary.
Function Name Description
Uftp_Connect Connect the UFTP interface
Uftp_Disconnect Disconnect the UFTP interface
Uftp_SetProgressRoutine Set the progress routine
Uftp_SendFile Send file from Host to Device
Uftp_GetFile Send file from Device to Host
Uftp_GetFileInfo Get file information about particular file on Device
Uftp_ReadDir Get directory information
Uftp_SetTransferLength Set maximum transfer length
Uftp_DelFile Delete file from Device
Uftp_GetLastError Get the last UFTP error
Uftp_GetErrorText Get the string message for specified UFTP error

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-3

10.2.1. Function Descriptions.

10.2.1.1. Uftp_Connect

Definition:

HUFTP
Uftp_Connect(
 usb_t Device
);

Parameters:
Device – handle to MOTUSB Device object.

Returns:
The function returns handle to UFTP object or NULL if UFTP interface cannot be found
on the Device.

Comments:
The function establishes connection with UFTP object. Once the connection is
established to the Client, it can perform the required UFTP operations using this handle.
When the handle is no longer needed, the Client should use the Uftp_Disconnect
routine to disconnect the UFTP object handle. The UFTP object maintains information on
the CBI endpoint configuration, I/O operation performed, Device locking state along with
other data.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-4

10.2.1.2. Uftp_Disconnect

Definition:

void
Uftp_Disconnect(
 HUFTP hUftp
);

Parameters:
hUftp – handle to UFTP object obtained from the Uftp_Connect routine.

Returns:
None.

Comments:
The function breaks the connection with the UFTP object. The UFTP Client should use
this routine when the connection is no longer used.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-5

10.2.1.3. Uftp_SetProgressRoutine

Definition:

BOOL
Uftp_SetProgressRoutine(
 HUFTP hUftp,
 PROGRESS_ROUTINE progressRoutine,
 LPVOID param
);

Parameters:
hUftp – handle to UFTP object obtained from the Uftp_Connect routine.

ProgressRoutine – pointer to transfer progress callback routine. Caller can specify

NULL, meaning that no progress routine should be called when the
library performs transfer operations.

param – miscellaneous parameter passed to progress routine, when it is

called. If caller specifies NULL for progress routine, it must
specify NULL for this parameter also.

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the GetLastError Win32 API function.

Comments:
The function attaches progress routine to the specified UFTP object. The progress routine
is called by Uftp_SendFile or Uftp_GetFile routines as callback for catching transfer
progress notifications. The Client can specify a zero value to param and
progressRoutine parameters to detach the progress routine from the UFTP object.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-6

10.2.1.4. Uftp_SendFile

Definition:

BOOL
Uftp_SendFile(
 HUFTP hUftp,
 LPCTSTR PathName
);

Parameters:
hUftp – handle to UFTP object obtained from Uftp_Connect routine.

PathName – specifies full path to the file on the Host, which should be transmitted to

the Device.

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get
extended error information the Client should call the Uftp_GetLastError Win32 API
function.

Comments:
This function sends file from the Host specified by path name PathName to the Device. If
any progress routine is attached to the UFTP object, it will be invoked on each transfer
unit transmitted. The following UFTP request will appear on the bus:

• UFTP_SET_TRANSFER_LENGTH
• UFTP_WRITE

The function locks the Device for the following request while transmitting the file, thus
several applications can request send file operation.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-7

10.2.1.5. Uftp_GetFile

Definition:

BOOL
Uftp_GetFile(
 HUFTP hUftp,
 LPCTSTR DestFileName,
 LPCTSTR SrcFileName
);

Parameters:
hUftp – handle to UFTP object obtained from Uftp_Connect routine.

DestFileName – specifies full path to the file on the Host, which should be transmitted

 from the Device.

SrcFileName – specifies requested file name from the Device.

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uftp_GetLastError Win32 API function.

Comments:
This function sends a file from the Device specified by file name SrcFileName to the
Host file, specified by full file path DestFileName. If any progress routine is attached to
the UFTP object, it will be invoked on each transfer unit transmitted.
The following UFTP requests will appear on the bus:

• UFTP_GET_FILE_INFO
• UFTP_SET_TRANSFER_LENGTH
• UFTP_READ

The function locks the Device for following request while transmitting the file, thus
several application can request get file operation.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-8

10.2.1.6. Uftp_GetFileInfo

Definition:

BOOL
Uftp_GetFileInfo(
 HUFTP hUftp,
 LPCTSTR FileName,
 UFTP_FILE_INFO* fileInfo
);

Parameters:
hUftp – handle to UFTP object obtained from Uftp_Connect routine.

FileName – specifies requested file name from the Device

FileInfo – points to the buffer to return file information

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uftp_GetLastError Win32 API function.

Comments:
This function requests information about the file on the Device specified by file name.
The information about the requested file is placed into a buffer pointed to by the
fileInfo parameter. The following UFTP requests will appear on the bus:

• UFTP_GET_FILE_INFO

The function locks the Device for the following request while transmitting the file, thus
several applications can request the get file operation.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-9

10.2.1.7. Uftp_ReadDir

Definition:

BOOL
Uftp_ReadDir(
 HUFTP hUftp,
 TCHAR **rgFileNames[],
 DWORD *dwFilesCount
);

Parameters:
hUftp – handle to UFTP object obtained from Uftp_Connect routine.

rgFileNames – array with string, that contain file names.

dwFilesCount – points to the buffer to return total file count on Device.

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uftp_GetLastError Win32 API function.

Comments
This function requests an information directory for the Device. The function allocates an
array of strings rgFileNames and puts the file name into this array. The array contains
dwFilesCount valid entries. The caller should free each file name, and then free
dwFilesCount itself, when the file list array is no longer required. The following UFTP
requests will appear on the bus:

• UFTP_GET_DIR

 The function locks the Device for the following request while transmitting the file, thus
several applications can request the get file operation.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-10

10.2.1.8. Uftp_SetTransferLength

Definition:

BOOL
Uftp_SetTransferLength(
 HUFTP hUftp,
 DWORD dwTransferLength
);

Parameters:
hUftp – handle to UFTP object obtained from Uftp_Connect routine.

dwTransferLength – transfer unit to use in I/O operations.

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uftp_GetLastError Win32 API function.

Comments:
This function sets the transfer unit to communicate with the Device. The bigger transfer
unit increase transmission speed but requires more memory on the Device. With this
function no UFTP requests will appear on the bus.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-11

10.2.1.9. 2.1.9 Uftp_DelFile

Definition:

BOOL
Uftp_DelFile(
 HUFTP hUftp,
 LPCTSTR FileName
);

Parameters:
hUftp – handle to UFTP object obtained from Uftp_Connect routine.

FileName – specifies file name on the Device

Returns:
TRUE if operation completes successfully. FALSE if any error occurred. To get extended
error information the Client should call the Uftp_GetLastError Win32 API function.

Comments:
This function deletes the file specified by FileName from the Device. If no file with such
a name exists, the Device returns UFTP error. The following UFTP requests will appear
on the bus:

• UFTP_DELETE

 The function locks the Device for the following request.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-12

10.2.1.10. Uftp_GetLastError

Definition:

DWORD
Uftp_GetLastError(
 HUFTP hUFTP
);

Parameters:
hUftp – handle to UFTP object obtained from Uftp_Connect routine.

Returns:
The function returns the last error. This can be either a UFTP error, a MOTUSB error or a
system error.

Comments:
The function returns the last error for the specified UFTP object handle. This can be
UFTP, MOTUSB, or system error.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-13

10.2.1.11. Uftp_GetErrorText

Definition:

LPTSTR
Uftp_GetErrorText(
 DWORD errCode
);

Parameters:
errCode – error code returns by UFTP operation.

Returns:
The function returns a string error message for the specified error code.

Comments:
The Client application can use this operation to get a uftp error message for the specified
error code.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-14

10.2.2. Types used in library.

10.2.2.1. PROGRESS_ROUTINE
Definition:
typedef void (*PROGRESS_ROUTINE)(PPROGRESS_STRUCT);

10.2.2.2. PROGRESS_STRUCT
Definition:

typedef struct {
 BYTE eventCode;
 LPVOID param;
 DWORD timeMs;
 DWORD bytesDone;
 DWORD bytesTotal;
} PROGRESS_STRUCT, *PPROGRESS_STRUCT;

Members:
eventCode
Can be one of the following constant:

EVENT_START - operation starts
EVENT_STOP - operation stops
EVENT_UPDATE - operation has progress

param
Misc. parameter that the Client specifies in Uftp_SetProgressRoutine param
parameter.

timeMs
Time in milliseconds since transfer operation started.

bytesDone
Transferred bytes count.

BytesTotal
Total bytes count to transmit.

Comments:
This structure is used by the progress callback routine. The UFTP library calls the
progress routine when it has to transfer results, and puts the pointer to this structure as a
parameter. In this way the UFTP Client by using Uftp_SetProgressRoutine can
retrieve notifications of progress results.

M Appendix 4:USB FILE TRANSFER LIBRARY.

PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE
10-15

10.2.3. Error codes.
To obtain an error code, the Client should use the Uftp_GetLastError routine. The
library defines the following UFTP error codes:

UFTP_SUCCESS 0
UFTP_FILE_DOES_NOT_EXIST 0xEF001100L
UFTP_MEMORY_ALLOCATION_FAIL 0xEF002100L
UFTP_NO_POSITION_FOR_NEW_FILE 0xEF003100L
UFTP_NOT_ENOUGH_SPACE_FOR_FILE 0xEF004100L

All these error codes are defined by the UFTP protocol. Check USB CBI Transfers Type
Client Application Developers Guide for a description of these values. The library can
also return any MOTUSB or System error. The Client should use Uftp_GetErrorText
function to get the error message of any error type.

