W etBurner
Networking in 1 Day!

uC/OS RTOS Library

Revision 1.6
March 26, 2010

Table of Contents

1.
2.

[T 100 [U]o 1 0] 4

FUNCHION SUMMAIY ...eiiiieeceeeee e e e e e e ettt s s e e e e e e e e et it e e e e e e e e eeeennnnae s 4
P N O 1Y = 1] (O (=T (< 7
2.2, OSTAaSKCIEatEWNAIMEcovviieiiiieeiee et e e e e et e et e e e b e s abeeeaanaeees 9
2.3. OSSimpleTaskCreate (MACRO)......coui i 10
2.4. 0OSSimpleTaskCreatewName (MACRO)..........ccoiiieiiiiiiiiiiiiee e 11
2.5, OSTASKDEIBIE. ... ccuniiiiie et 12
P2 T © 1 4 = 1T [4 o 13
2.7, OSTIMEDIY ... et e e e 14
P2 < T © 1T g F= T To T 1= 1S 0 15
S TR © 1] 1o o1 G 16
2.10. (@ 5] U o1 [0 T 17
2.11. (O 15 o101 (@] o] TP PRRPPPTRRRN 18
2.12. (@ ST 1= 1 011 T 19
2.13. O S S M OSE. .. cticras 20
2.14. OSSEMPENA ..o 21
2.15. OSSEMPENANOWALL........uiiiiiii e anes 22
2.16. (@ 1Y/ 0)41 1 23
2.17. L@ 1571/ oT0)rq 0) A 24
2.18. (@ 1511V, o0)d =1 o o [E 25
2.19. OSMDBOXPENANOWALuiiiiii e e 26
2.20. (@ 1510 1 1| C T 27
2.21. (@110] =0 1) AR 28
2.22. (OS]0] 2o 1) (] 5] TR 29
2.23. (@110 2= [o I 30
2.24. OSQPENANOWAILceiiiiieeeeie e e e e e e e s 31
2.25. (@ ST 0] 8T 32
2.26. (@] 1 0] 0 1) 34
2.27. L@ 5] 1 {01 053 £l 1) A 35
2.28. (@ 5] 1 0] =1 o [36
2.29. OSFIfOPENANOWALoiiiieci e e aaes 37
2.30. (@ 1T O 14 1 1 38
2.31. L@ S O 111 =1 0] (= 39
2.32. OSCHIENTEINOWAILcveiiiieeee e e e e e e e eaas 40
2.33. L@ ST O 111 I Y= 41
2.34. = 11 1] 0] L= S 42

2.34.1. EXAMPIE H L oo 42

2.34.2. = 10 4] 0] L= S 43
2.35. (@ 1S 11 = 1 (= T 44
2.36. (O 1] [1 = 45
2.37. USER_ENTER_CRITICAL ...coeieeiiie e 46
2.38. USER_EXIT CRITICAL ...t 47
2.39. OSDUMPTCBSIACKS......ccviiiiiiiie et e e e e e et e e e e e e eeeanes 48

2.40.
2.41.
2.42.
2.43.
2.44.
2.45.
2.46.
2.47.
2.48.
2.49.

OSDUMPTASKS ... 49

SNOWTASKLIST ... 50
OSFIAQCIEALE ... 51
(O 1] =T 1= RPN 52
OSFIagSIALE... ..o 53
(@ 1] =T [== T USRRRN 54
OSFIagPENdAIL.......cooiiiiiiie e 55
OSFIagPendAIINOWaLLiii et e e e eeeanes 56
OSFIagPENUANY ... 57
OSFIagPendANYNOWaAIL........cooiiieieiieeiee e e e e e eeanes 58

1. Introduction

The NetBurner uC/OS RTOS is a preemptive multitasking real-time operating system designed to be very
efficient and full featured, providing rapid real-time response and a small footprint. You can easily create
and manage multiple tasks and communicate between tasks. The RTOS is integrated with the I/O system
to make communication with the other system components, such as the TCP/IP Stack (not applicable for
the non-network platforms such as the Mod5213), quick and easy.

Required Header Files

#include <ucos.h>

Location depends on your NetBurner platform: \nburn\include, \nburn\incluse_nn or \nburn\include_sc.

2. Function Summary

Task Functions

OSTaskCreate -- Creates a new task

OSTaskCreateName --- Creates a new task and assigns it a name (test string)
OSSimpleTaskCreate --- A macro that sets up the stack and starts the task at the proper priority
OSSimpleTaskCreateName --- Same as OSSimpleTaskCreate, but adds a name (text string)
OSTaskDelete --- Deletes a task

OSChangePrio --- Changes a tasks priority

Time Delay Functions

e OSTimeDly --- Delay or sleep for a fixed interval
e 0OSChangeTaskDly --- Changes the interval for a waiting task

Task Locking Functions

e OSLock --- Locks the OS and prevents task switches
e OSUnlock --- Unlocks the OS
e OSLockObj --- A C++ class to make task locking easy

Semaphore Functions

OSSeminit --- Initializes an OS_SEM structure

OSSemPost --- Post to a semaphore

OSSemPend --- Pend on a semaphore

0OSSemPendNoWait --- Pend on a semaphore without waiting

Mail Box Functions

OSMboxInit --- Initializes an OS_MBOX structure
OSMboxPost --- Post to a mailbox

OSMboxPend --- Pend on a mailbox

OSMboxPendNoWait --- Pend on a mailbox without waiting

Queue Functions

OSQInit --- Initializes an OS_QUEUE structure
OSQPost --- Post to a queue

OSQPend --- Pend on a queue

OSQPendNoWait --- Pend on a queue without waiting

FIFO Functions

OSFifolnit --- Initializes an OS_FIFO structure
OSFifoPost --- Post to a fifo

OSFifoPostFirst --- Post to the head of a fifo
OSFifoPend --- Pend on a fifo

OSFifoPendNoWait --- Pend on a fifo without waiting

OS Critical Functions

The OS_CRIT and related functions implement an OS function referred to as a mutex or counted critical
section. Their purpose is to provide a mechanism to protect critical data with a structure or resource.
Some examples of its use would be to protect the data in a linked list, or to control an external command
interface. You will want to use this kind of critical section when you need to keep one task from

interrupting another task when doing manipulations in a set.

OSCritInit --- Initializes the critical section
OSCiritEnter --- Tries to enters or claim the critical section

OSCritEnterNoWait --- Tries to enter or claim the critical section without waiting

OSCiritLeave --- Releases the critical section
Two Examples

Interrupt Functions

OSiIntEnter and OSIntExit are taken care of in the INTERRUPT Macro for all NetBurner Platforms. For
more information, please read the Interrupts section in NetBurner Runtime Libraries User’'s Manual (in

C:\Nburn\docs\NetBurnerRuntimeLibrary).

OSIntEnter --- Must be called when a user interrupt is entered

OSiIntExit --- Must be called when a user interrupt is exited

User Critical Functions

These function like a level 7 interrupt. Important: You will have full processor time once you enter the
section, but all uC/OS functions and features will be disabled until you exit the section. All hardware
peripherals interrupts will also be disabled.

e USER_ENTER_CRITICAL --- Sets a level 7 interrupt mask when entered
USER_EXIT_CRITICAL --- Sets the interrupt mask to the value before critical section was
entered

Debugging Functions
The debugging routines are only valid when UCOS_STACK_CHECK is defined.

e OSDumpTCBStacks --- Dumps all of the task stack information to stdout
e OSDumpTasks --- Dumps all of the task info to stdout

Flag Functions

OSFlagCreate ---Creates and initializes an OS_FLAGS object

OSFlagSet --- Sets the bits asserted bits_to_set

OSFlagState ---Returns the current value of flags

OSFlagClear --- Clears the bits asserted in bits_to_clr

OSFlagPendAll ---- Waits until all of the flags indicated by mask are set

OSFlagPendNoWait --- Checks (but does not wait) if all of the flags indicated by the mask are set
OSFlagPendAny --- Waits until any of the flags indicated by the mask are set
OSFlagPendAnyNoWait ---Checks (but does not wait) if any of the flags indicated by the mask
are set

2.1. OSTaskCreate

Synopsis:

BYTE OSTaskCreate(void (* task)(void * taskfunc), void * data,
void * pstacktop, void * pstackbot, BYTE priority);

Description:

This function creates a new task. You must allocate storage for the stack that this new task will use and it
must be 4 byte aligned. Task priorities can range from 1 to 63, where 63 is the lowest priority level and 1
is highest priority level. The recommended user priority levels for your application are in the range of 46 to
62. This avoids any conflicts with network communications.

Warning: The uC/OS can only have one task at each priority.

Parameters:

Type Description

taskfunc The address of the function where this task will start executing.

data The data to pass to the task function.

pstacktop The highest address of the stack space.

pstackbot The lowest address of the stack space.

priority The priority for this new task (63 is lowest priority and 1 is highest).
Look in C:\Nburn\include\constants.h to see which priorities are
used by the OS. For non-network platforms (e.g. Mod5213), look in
C:\Nburn\include_nn\constants.h to see which priorities are used
by the OS.

Returns:

OS_NO_ERR (0) --- If successful
OS_PRIO_EXIST (40) --- If the requested priority already exists

See Also:

OSTaskDelete --- Delete a task
OSChangePrio --- Change a task's priority
OSSimpleTaskCreate --- A macro that sets up the stack and starts the task at the proper priority

Example:

// Make sure they"re 4 byte aligned to keep the Coldfire happy
asm(" .align 4 ");

DWORD MyTaskStk[USER_TASK STK_SI1ZE] _ attribute__ ((aligned(4)));

// The function the new task will start in. pdata will have the value
// of my data as provided in the OSTaskCreate Call
void mytask(void * pdata)

{

}

if (OSTaskCreate(mytask,
(void*)my_data,
(void*)&MyTaskStk[USER_TASK_STK_SIZE],
(void *)MyTaskStk, MyPrio
)I=0S_NO_ERR)
{ // Handle error
}

2.2. OSTaskCreatewName

Synopsis:

BYTE OSTaskCreatewName(void (*task) (void *dptr),
void *data,
void *pstktop,
void *pstkbot,
BYTE prio,
const char * name);

Description:

Only available on select network platforms. Located in \nburn\include directory. Same as OSTaskCreate,
but adds a name that can be assigned to the task, which makes it easier to identify the task when using
the debugger, Task Scan or Smart Traps.

2.3. OSSimpleTaskCreate (MACRO)

Synopsis:

OSSimpleTaskCreate(function, priority);

Description:

This Macro sets up the stack and starts the task at the proper priority. For example, if | want to start a task
called "my_task", I would use the OSSimpleTaskCreate macro as follows:

void my_task(void *)
{
The my_task function
}

OSSimpleTaskCreate(my_task, MAIN_PRIO-1);

Parameters:

Type Description

function | The address of the function where this task will start executing.
priority | The priority for this new task (63 is lowest priority, 1 is highest). Look
in C:\Nburn\include\constants.h to see which priorities are used
by the OS. For non-network platforms (e.g. Mod5213), look in
C:\Nburn\include_nn\constants.h to see which priorities are used
by the OS.

See Also:
OSTaskCreate --- Create a new task

OSTaskDelete --- Delete a task
OSChangePrio --- Change a task's priority

10

2.4. OSSimpleTaskCreatewName (MACRO)

Synopsis:

OSSimpleTaskCreate(function, priority, name);

Description:

Only available on select network platforms. Located in \nburn\include directory. Same as OSTaskCreate,
but adds a name that can be assigned to the task, which makes it easier to identify the task when using
the debugger, Task Scan or Smart Traps.

void my_task(void *)
{
The my_task function
}

OSSimpleTaskCreate(my_task, MAIN_PRIO-1, “My Task™);

11

2.5. OSTaskDelete

Synopsis:

void OSTaskDelete(void);

Description:
This function deletes the current calling task, but we do not recommend the use of this function because it
can cause memory leaks. The preferred method for terminating a task is to set a flag or semaphore that

the task is listening for. The flag can then be set by an outside task, which enables the task to be deleted
to free any resources and terminate gracefully by simply returning.

Parameters:

None

Returns:

Nothing --- This is a void function

See Also:
OSTaskCreate --- Create a new task

OSSimpleTaskCreate --- A macro that sets up the stack and starts the task at the proper priority
OSChangePrio ---Change a task's priority

12

2.6. OSChangePrio

Synopsis:

BYTE OSChangePrio(BYTE newpriority);

Description:

This function changes the priority of the calling task. Note: The uC/OS can only have one task at each
priority level. Task priorities can range from 1 to 63, where 63 is the lowest priority level and 1 is highest
priority level. Priorities 1-4 and the NetBurner system priority levels are reserved as described below. The
recommended user priority levels for your application are in the range of 46 to 62. This avoids any
conflicts with network communications.

System priorities are defined in C:\Nburn\include\constants.h for all network platforms and in
C:\Nburn\include_nn\constants.h for all non-network (e.g. Mod5213) platforms.

#define MAIN_PRIO (50)
#define HTTP_PRIO (45)
#define PPP_PRIO (44)
#define TCP_PRIO (40)
#define IP_PRIO (39)
#define ETHER_SEND_PRIO (38)

Parameter:

Type Name Description
BYTE newpriority | The new priority of the calling task.

Returns:

OS_NO_ERR (0) --- If successful
OS_PRIO_EXIST (40) --- If the requested priority already exists

See Also:
OSTaskCreate --- Create a new task

OSTaskDelete --- Delete a task
OSSimpleTaskCreate --- A macro that sets up the stack and starts the task at the proper priority

13

2.7. OSTimeDly

Synopsis:

void OSTimeDly(WORD ticks);

Description:

This function delays this task for "ticks" ticks of the system timer. Remember: The number of ticks per
second is defined by the constant TICKS_PER_SECOND.

Parameter:

Type Name Description

WORD ticks The number of ticks per second
Returns:

Nothing --- This is a void function

See Also:

OSChangeTaskDly --- Change the interval for a waiting task

Example:

OSTimeDly(5*TICKS_PER_SECOND); // Delay for 5 seconds

14

2.8. OSChangeTaskDly

Synopsis:

void 0SChangeTaskDly(WORD task prio, WORD newticks);

Description:

This function allows the User to modify the timeout delay for a task that is waiting.

Warning: Use of this function is discouraged.

Parameters:

Type Name Description

WORD task prio | The task's priority.

WORD newticks The new number of ticks per second.
Returns:

Nothing --- This is a void function

See Also:

OSTimeDly --- Delay or Sleep for a fixed interval
OSSemPend --- Pend on a semaphore
OSMboxPend --- Pend on a mailbox

OSQPend --- Pend on a queue

OSFifoPend --- Pend on a fifo

15

2.9. OSLock

Synopsis:

void OSLock(void);

Description:

Calling the OSLock function will prevent the OS from changing tasks. This is used to protect critical
variables that must be accessed one task at a time. Use the OSUnlock function to release your lock.
Important: You must call OSUnlock once for each call to OSLock.

Warning: Do not keep a task locked for long period of time, or the performance of the network
subsystem will degrade, and eventually loose packets.

Parameters:

None

Returns:

Nothing --- This is a void function
See Also:

OSUnlock --- Unlocks the OS
OSLockObj --- A C++ class to make task locking easy

16

2.10. OSUnlock

Synopsis:

void 0SUnlock(void);

Description:

This function unlocks the OS. Important: You must call OSUnlock once for each call to OSLock.

Parameters:

None

Returns:

Nothing --- This is a void function
See Also:

OSLock --- Locks the OS and prevent task switches
OSLockObj --- A C++ class to make task locking easy

17

2.11. OSLockObj

Synopsis:

class 0SLockObj

{

public:
0SLockObj) ;
~0SLockObj) ;

};

Description:

A simple C++ wrapper class that helps use OS locks effectively. When an OSLockObj is constructed it
locks the OS. When it is destructed it unlocks the OS. If you have a function that needs an OS lock and
has multiple points of exit, create an OSLockObj at the beginning of the function. Important: No matter
how you leave the function, the destructor will release the lock.

Example:
int foo(Q)

{

// The destructor will unlock the 0S when lock goes out of scope
0OSLockObj lock;

i%-() return 1;

i%-() return 3;

i%-() return O;

See Also:

OSLock --- Locks the OS and prevents task switches
OSUnlock --- Unlocks the OS

18

2.12. OSSemiInit

Synopsis:

BYTE OSSemlnit(OS_SEM * psem, long value);

Description:

Semaphores are used to control access to shared resource, or to communicate between tasks. This
function is used to initialize a semaphore structure. Note: This must be done before using a semaphore.

Parameters:

Type Name Description

0OS _SEM *psem A pointer to the OS_SEM structure to initialize.
long value The initial count value for the semaphore.
Returns:

OS_NO_ERR (0) --- If successful
OS_SEM_ERR (50) --- If value is < 0 (zero), it cannot initialize

Example:

0S_SEM MySemaphore;

6SSemlnit(& MySemaphore,0);

}/ In a different task/function...
0SSemPost(& MySemaphore); // Add one to the semaphores value

// In a yet another different task/function...

// Wait 5 seconds or until the semaphore has a positive value

// Decrement the semaphore if we don"t timeout...

if (0SSemPend(& MySemaphore, 5*TICKS PER_SECOND)==0S TIMEOUT){// We timed out
the 5 seconds}else {// We got the semaphore}

See Also:
OSSemPost --- Post to a semaphore
OSSemPend --- Pend on a semaphore

19

2.13. OSSemPost

Synopsis:

BYTE OSSemPost(OS_SEM * psem);

Description:

This function increases the value of the semaphore by one. Note: If any higher priority tasks were
waiting on the semaphore - it releases them.

Parameter:

Type Name Description

OS_SEM *psem A pointer to the OS_SEM structure to initialize.
Returns:

OS_NO_ERR (0) --- If successful
OS_SEM_OVF (51) --- If the value of the semaphore overflows

See Also:

OSSeminit --- Initialize an OS_SEM structure
OSSemPend --- Pend on a semaphore

20

2.14. OSSemPend

Synopsis:

BYTE 0SSemPend(OS_SEM * psem, WORD timeout);

Description:

Wait timeout ticks for the value of the semaphore to be non zero. Note: A timeout value of 0 (zero) waits
forever.

Parameters:
Type Name Description
0OS SEM *psem A pointer to an OS_SEM structure.
WORD timeout The number of time ticks to wait.
Returns:

OS_NO_ERR (0) --- If successful

OS_TIMEOUT (10) --- If the function timed out or if the NoWait function failed
See Also:

OSSeminit --- Initialize an OS_SEM structure

OSSemPendNoWait --- Does not wait for the value of the semaphore to be non zero
OSSemPost --- Post to a semaphore

21

2.15. OSSemPendNoWait

Synopsis:

BYTE 0OSSemPendNoWait(OS_SEM * psem);

Description:

OSSemPendNoWait is identical to the OSSemPend function, but it does not wait.

Parameter:

Type Name Description

OS_SEM *psem A pointer to the OS_SEM structure.
Returns:

OS_NO_ERR (0) --- If successful
OS_TIMEOUT (10) --- If it fails

See Also:

OSSeminit --- Initialize an OS_SEM structure

OSSemPend --- Pend on a semaphore
OSSemPost --- Post to a semaphore

22

2.16. OSMboxInit

Synopsis:

BYTE OSMboxInit(0S_MBOX * pmbox, void * msg);

Description:

Mailboxes are used to communicate between tasks. This function is used to initialize an OS_MBOX
structure. Note: This must be done before using the mailbox.

Parameters:

Type Name Description

0OS MBOX *pmbox A pointer to the OS_MBOX structure to initialize.
void *msg The initial mail box message (NULL) for none
Returns:

OS_NO_ERR (0) --- If successful

Example:

0S_MBOX MyMai IBox;

OSMboxInit(& MyMailBox,0);

// In a different task/function...

// Put a message in the Mailbox.

OSMboxPost(& MyMailBox, (void *)somevalue);

// In a yet another different task/function...

// Wait 5 seconds or until the mailbox has a message
BYTE err;

void * pData=0SMboxPend(& MyMailBox, 5*TICKS PER_SECOND,&err);
if (pData==NULL)

{ // We timed out the 5 seconds

}

else

{ // We got the message

¥
See Also:

OSMboxPend --- Pend on a mailbox
OSMboxPost --- Post to a mailbox
0OSSemPendNoWait --- Does not wait for the value of the semaphore to be non zero

23

2.17. OSMboxPost

Synopsis:

BYTE OSMboxPost(0S_MBOX * pmbox, void * msg);

Description:

This function posts a message to a Mail box.

Parameters:
Type Name Description
0OS_MBOX *pmbox A pointer to an OS_MBOX structure.
void *msg The message to post.

Returns:

OS_NO_ERR (0) --- If successful
OS_MBOX_FULL (20) --- If the mailbox is full
See Also:

OSMboxInit --- Initialize an OS_MBOX structure

OSMboxPend --- Pend on a Mailbox
OSSemPendNoWait --- Does not wait for the value of the semaphore to be non zero

24

2.18. OSMboxPend

Synopsis:

void * OSMboxPend(OS_MBOX * pmbox, WORD timeout, BYTE * err);

Description:

Wait timeout ticks for some other task to post to the Mailbox. Note: OSMboxPend will wait forever if O
(zero) is specified.

Parameters:
Type Name Description
0OS_MBOX *pmbox A pointer to an OS_MBOX structure.
WORD timeout The number of time ticks to wait.
Byte *err A variable to receive the result code.
Returns:

The posted message
NULL --- If the function timed out

Note: err can have either OS_NO_ERR or OS_TIMEOUT return codes.

See Also:
OSMboxInit --- Initialize an OS_MBOX structure

OSMboxPendNoWait --- Does not wait for some other task to post to the Mailbox
OSMboxPost --- Post to a Mailbox

25

2.19. OSMboxPendNoWait

Synopsis:

void * OSMboxPendNoWait(O0S _MBOX * pmbox, BYTE * err);

Description:

OSMboxPendNoWait is identical to the OSMboxPend function, but it does not wait.

Parameters:
Type Name Description
0OS_MBOX *pmbox A pointer to an OS_MBOX structure.
Byte *err A variable to receive the result code.
Returns:

The posted message
NULL --- If it fails

Note: err can have either OS_NO_ERR or OS_TIMEOUT return codes.

See Also:
OSMboxPend --- Pend on a Mailbox

OSMboxPendNoWait --- Does not wait for some other task to post to the Mailbox
OSMboxPost --- Post to a Mailbox

26

2.20. OSQInit

Synopsis:

BYTE OSQInit(0OS_Q * pq, void * * start, BYTE siz);

Description:

A queue functions as a fixed size FIFO for communication between tasks. This function initializes an
OS_Q structure.

Parameters:

Type Name Description

0OS Q | *pq A pointer to an OS_Q structure.

void **start A pointer to an array of (void *) pointers to hold queue messages.
BYTE sSiz The number of pointers in the Q data storage area.

Returns:

OS_NO_ERR (0) --- If successful

Example:

0S_Q MyQueue;

void * MyQueueStorage[NUM_ELEMENTS];

0SQInit(& MyQueue,MyQueueStorage,NUM_ELEMENTS);

// In a different task/function...

// Put a message in the Queue

0SQPost(& MyQueue, (void *)somevalue);

// In a yet another different task/function...

// Wait 5 seconds or until the queue has a message.
BYTE err;

void * pData=0SQPend(& MyQueue, 5*TICKS PER_SECOND,&err);
iT (pData==NULL)

{// We timed out the 5 seconds

}

else

{// We got the message

}
See Also:
OSQPost --- Post to a Queue

OSQPend --- Pend on a Queue
OSQPendNoWait --- Does not wait for another task to post to the queue

27

2.21. OSQPost

Synopsis:

BYTE OSQPost(OS_Q * pg, void * msg);

Description:

This function posts a message to a Queue. Note: Any higher priority task waiting on this queue will be
started.

Parameters:

Type Name Description

0S Q *ng A pointer to an OS_Q structure.

void *msg The message to be posted to the queue.
Returns:

OS_NO_ERR (0) --- If successful
OS_Q_FULL (30) --- If the queue is full and has no more room

See Also:
OSQInit --- Initialize an OS_QUEUE structure

OSQPend --- Pend on a Queue
OSQPendNoWait --- Does not wait for another task to post to the queue

28

2.22. OSQPostFirst

Synopsis:

BYTE OSQPostFirst(0S_Q *pq, void *msg);

Description:

This function posts a message like OSQPost, but posts the message at the head of the queue.

any higher priority task waiting on this queue will be started.

Parameters:

Type Name Description

0S Q *pq A pointer to an OS_Q structure.

void *msg The message to post at the head of the queue.
Returns:

OS_NO_ERR (0) --- Successfully posted at the head of the queue.
OS_Q_FULL (30) --- The queue is already full; cannot post message.

See Also:
OSQInit --- Initialize an OS_Q structure.
OSQPost --- Post to a queue.

OSQPend --- Pend on a queue.
OSQPendNoWait --- Does not wait for another task to post to the queue.

29

Note that

2.23. OSQPend

Synopsis:

void * 0SQPend(0S_Q * pq, WORD timeout, BYTE * err);

Description:

Wait timeout ticks for another task to post to the queue. Note: A timeout value of O (zero) waits forever.
An err holds the error code if the function fails.

Parameters:
Type Name Description
0S Q *pg A pointer to an OS_Q structure.
WORD timeout The number of time ticks to wait.
BYTE *err A variable to receive the result code.
Returns:

The posted message
NULL --- If the function failed

Note: err can have OS_NO_ERR or OS_TIMEOUT return codes

See Also:
OSQInit --- Initialize an OS_QUEUE structure

OSQPendNoWait --- Does not wait for another task to post to the queue
OSQPost --- Post to a Queue

30

2.24. OSQPendNoWait

Synopsis:

void * 0SQPendNoWait(0S_Q * pq, BYTE * err);

Description:

OSQPendNoWait is identical to the OSQPend function but it does not wait.

Parameters:
Type Name Description
0S Q *ng A pointer to an OS_Q structure.
BYTE *err A variable to receive the result code.
Returns:

The posted message
NULL --- If the function failed

Note: err can have OS_NO_ERR or OS_TIMEOUT return codes

See Also:
OSQPend --- Pend on a Queue

OSQInit --- Initialize an OS_QUEUE structure
OSQPost --- Post to a Queue

31

2.25. OSFifolnit

Synopsis:

BYTE OSFifolnit(0S_FIFO * pFifo);

Description:
A FIFO is used to pass structures from one task to another. Note: The structure to be passed must have

an unused (void *) pointer as its first element. This precludes passing C++ objects with virtual member
functions.

Parameter:

Type Name Description
OS FIFO | *pFifo A pointer to an OS_FIFO structure.

Returns:

OS_NO_ERR (0) --- If successful

See Also:

OSFifoPost --- Post to a fifo

OSFifoPostFirst --- Post to the head of a fifo
OSFifoPend --- Pend on a fifo

OSFifoPendNoWait --- Pend on a fifo without waiting

Example:

OS_FIFO MyFifo;

typedef struct

{void * pUsedByFifo; // Don"t modify this value, and keep it First
// The other elements in my structure

IMyStructure;

OSFifolnit(& MyFifo);

// In a different task/function...

MyStructure mydata;

// Put a message in the Fifo

OSFifoPost(& MyFifo, (0S FIFO _EL *)&mydata);

// In yet another different task/function...

// Wait 5 seconds or until the Fifo has a object

BYTE err;

MyStructure * pData= (MyStructure *)OSFifoPend(& MyQueue,
5*T1CKS_PER_SECOND) ;

it (pData==NULL)

{// we timed out the 5 seconds}

32

else
{// We got the object

}

33

2.26. OSFifoPost

Synopsis:

BYTE OSFifoPost(OS_FIFO * pFifo, OS_FIFO_EL * pToPost);

Description:

This function posts to a FIFO. Note: See the description of FIFOs in OSFifolnit for details on how to use
this function.

Parameters:
Type Name Description
OS_FIFO *pFifo A pointer to an OS_FIFO structure.
OS_FIFO_EL *pToPost A pointer to the user's structure cast as an
OS_FIFO_EL to be posted to the Fifo.
Returns:

OS_NO_ERR (0) --- If successful

See Also:

OSFifolnit --- Initialize an os_fifo structure
OSFifoPostFirst --- Post to the head of a fifo
OSFifoPend --- Pend on a fifo

OSFifoPendNoWait --- Pend on a fifo without waiting

34

2.27. OSFifoPostFirst

Synopsis:

BYTE OSFifoPostFirst(OS_FIFO * pFifo, 0S_FIFO_EL * pToPost);

Description:

This function is identical to OSFifoPost (post to a FIFO), but the element posted is put on the beginning of
the FIFO list. So, the task that pends next will get the structure/object posted here, instead of any prior
objects posted to the FIFO. Note: See the description of FIFOs in OSFifolnit for details on how to use this
function.

Parameters:
Type Name Description
OS FIFO *pFifo A pointer to an OS_FIFO structure.

OS_FIFO_EL | *pToPost A pointer to the user's structure cast as an
OS_FIFO_EL to be posted to the Fifo.

Returns:

OS_NO_ERR (0) --- If successful

See Also:

OSFifolnit --- Initialize an os_fifo structure
OSFifoPost --- Post to a fifo

OSFifoPend --- Pend on a fifo

OSFifoPendNoWait --- Pend on a fifo without waiting

35

2.28. OSFifoPend

Synopsis:

0S_FIFO_EL * OSFifoPend(OS_FIFO * pFifo, WORD timeout);

Description:

This function pends on a FIFO. Note: See the description of FIFOs in OSFifolnit for details on how to use
this function.

Parameters:
Type Name Description
OS FIFO *pFifo A pointer to an OS_FIFO structure.
WORD timeout The number of ticks to wait on the Fifo.
Returns:

A pointer to the posted structure
NULL --- If the function timed out

See Also:
OSFifolnit --- Initialize an os_fifo structure
OSFifoPost --- Post to a fifo

OSFifoPostFirst --- Post to the head of a fifo
OSFifoPendNoWait --- Pend on a fifo without waiting

36

2.29. OSFifoPendNoWait

Synopsis:

0S_FIFO_EL * OSFifoPendNoWait(0S_FIFO * pFifo);

Description:

This function is identical to the OSFifoPen function, but it does not wait.

Parameter:

Type Name Description

OS_FIFO *pFifo A pointer to an OS_FIFO structure.
Returns:

A pointer to the posted structure
NULL --- If there was nothing in the fifo

See Also:
OSFifolnit --- Initialize an os_fifo structure
OSFifoPost --- Post to a fifo

OSFifoPostFirst --- Post to the head of a fifo
OSFifoPend --- Pend on a fifo

37

2.30. OSCritiInit

Synopsis:

BYTE OSCritInit(OS_CRIT * pCrit);

Description:

This function initializes the critical section. Important: You must call OSCiritlnit before using the critical
section. Note: This function should be part of the initialization process.

Parameter:

Type Name Description

OS CRIT *pCrit A pointer to the critical section.
Returns:

OS_NO_ERR --- If successful

See Also:
OSCiritEnter --- Tries to enters or claim the critical section

OSCritEnterNoWait --- Tries to enter or claim the critical section without waiting
OSCritLeave --- Releases the critical section

38

2.31. OSCritEnter

Synopsis:

BYTE OSCritEnter(OS CRIT * pCrit, WORD timeout);

Description:

This function tries to enter or claim the critical section. Important: You must call OSCritLeave once for
each successful OSCritEnter call to release the critical section so that another task can manipulate it.

Parameters:
Type Name Description
OS_Crit *pCrit A pointer to the critical section we want to enter/claim.
WORD timeout How many time ticks do we want to wait for this critical
section? Note: A timeout of O (zero) waits forever.
Returns:

OS_NO_ERR --- If we were successful in claiming the critical section or if our task owns it
OS_TIMEOUT ---- If we were unable to claim the section

See Also:

OSCritInit --- Initializes the critical section

OSCritEnterNoWait --- Tries to enter or claim the critical section without waiting
OSCritLeave --- Releases the critical section

39

2.32. OSCritEnterNoWait

Synopsis:

BYTE OSCritEnterNoWait(OS_CRIT * pCrit);

Description:

This function tries to enter or claim the critical section. However, this function does not wait if it is unable
to enter or claim the critical section. Important: You must call OSCritLeave once for each successful
OSCritEnterNoWait call to release the critical section so another task can manipulate it.

Parameter:

Type Name Description

OS CRIT *pCrit A pointer to the critical section we want to enter/claim.
Returns:

OS_NO_ERR --- If we were successful in claiming the critical section, or if our task owns it
OS_TIMEOUT --- If we were unable to claim the section

See Also:

OSCritlnit --- Initializes the critical section

OSCiritEnter --- Tries to enters or claim the critical section
OSCiritLeave --- Releases the critical section

40

2.33. OSCritLeave

Synopsis:

BYTE OSCritLeave(OS_CRIT * pCrit);

Description:

This function releases the critical section. Important: This function must be called once for each
successful OSCritEnter or OSCritEnterNoWait call to release the critical section so another task can
manipulate it.

Parameter:

Type Name Description

OS CRIT *pCrit A pointer to the critical section we want to leave/release.
Returns:

OS_NO_ERR --- If we were successful in releasing the critical section OS_CRIT_ERR --- If we are trying
to release a critical section that we do not own

See Also:

OSCritInit --- Initializes the critical section

OSCiritEnter --- Tries to enters or claim the critical section
OSCritEnterNoWait --- Tries to enter or claim the critical section without waiting

41

2.34. Examples

2.34.1. Example # 1

When | want to insert something at the beginning of a doubly linked list:

typedef MyObject

{
MyObject * pNext;
MyObject * pPrev;
*

MyObject* pHead;

void InsertAtHead(MyObject * newObject)

{
/* Step 1 */
newOb ject->pNext=pHead;
/* Step 2 */
newObject->pPrev=NULL;
/* Step 3*/
pHead->pPrev=newObject;
/* Step 4 */
pHead=newObject;

}

Suppose another higher priority task interrupts us (between steps 3 and 4) and inserts its own element at
the head of the list. The list would not be correct, because pHead is reset to the object we are inserting in
the task that was interrupted.

To prevent this type of error from happening, you should use an OS_CRIT counted critical section. This
will not lock or otherwise restrict the RTOS unless another task wants to claim the same critical section.
The OS_CRIT object should be declared globally or as part of the structure/object you want to protect.
Therefore, in the previous example, we would change the code to:

MyObject* pHead;
OS_CRIT MyListCritical;
void InsertAtHead(MyObject * newObject)
{
OSCritEnter(&MyListCritical,0);
/* Step 1 */
newOb ject->pNext=pHead;
/* Step 2 */
newObject->pPrev=NULL;
/* Step 3*/
pHead->pPrev=newObject;
/* Step 4 */
pHead=newObject;
OSCritLeave(&MyListCritical);

42

Now, if a higher priority task tries to interrupt us between steps 3 and 4, the higher priority task will
interrupt and call our InsertAtHeadFunction. But, as soon as it gets to the OSCritEnter call, it will be
stopped.

The higher priority task will discover that the MyListCritical object is already claimed/occupied by a lower
priority task, so it will block and allow the lower priority tasks to run. This should allow our interrupted task
to continue to the point where it leaves the critical section. When this happens, the critical section
becomes available, and the higher priority task will run.

2.34.2. Example # 2

Suppose we have an instrument like a GPS (or a DVM) connected to one of our serial ports. This
instrument answers questions. The questions may come from a logging task, a web page request, a
Telnet session, etc. The problem arises when a low priority task (e.g. logging) asks "Where are we?" and
before the GPS answers, the higher priority task (e.g. Telnet) asks "What time is it"?

Example pseudo code:

Logging task. ..

/*1 */

Send(fdserial,"Where are we?');

/*2 */

WaitForResponsePacket(fdserial, buffer);
/*3*/

SavePosition(buffer);

Telnet task

/*1 */

Send(fdserial,”"What time is it?");

/%2 */

WaitForResponsePacket(fdserial, buffer);
/*3*/

SendReply toRequestor(buffer);

The logging task does step 1, it sends "Where are we?" The telnet task interrupts, and sends "What time
is it?" The GPS answers the first question - "Where are we?” Because the Telnet task is a higher priority,
it receives this ("Where are we?") response. Then the logging task wakes up and gets the next response -
to the second question ("What time is it?"). Now we have logged the time to the where, and the where to
the time request.

Note: Adding an OSCiritEnter function before step 1 in both tasks, and an OSCritLeave function after step
2 in each task will solve this problem.

43

2.35. OSIntEnter

Synopsis:

void OSIntEnter(void);

Description:

This function must be called in any user interrupt routine, before any RTOS functions are called. It must
be followed by a call to OSIntExit. Important: OSIntEnter is taken care of in the INTERRUPT Macro for all
NetBurner Platforms. Please read the Chapter on Interrupts in your NetBurner Runtime Libraries User’'s
Manual for additional information. By default, this manual is found in C:\Nburn\docs.

Parameters:

None

Returns:

Nothing --- This is a void function

See Also:

OSiIntExit --- Must be called when a user interrupt is exited

44

2.36. OSIntEXxit

Synopsis:

void OSInteExit(void);

Description:

This function must be called when a user interrupt is exited. Important: OSIntExit is taken care of in the
INTERRUPT Macro for all NetBurner Platforms. Please read the Chapter on Interrupts in your NetBurner
Runtime Libraries User’'s Manual for additional information. By default, this manual is found in
C:\Nburn\docs.

Parameters:

None

Returns:

Nothing ---This is a void function

See Also:

OSiIntExit --- Must be called when a user interrupt is exited

45

2.37. USER_ENTER_CRITICAL

Synopsis:

void USER_ENTER_CRITICAL();

Description:

This function sets a level 7 interrupt mask when entered, allowing the user to have full processor time.
This function will also disable all uCOS functionality and block all hardware interrupts. Important: You
must call USER_EXIT_CRITICAL once for each USER_ENTER_CRITICAL call to release the critical
section.

Parameters:

None

Returns:

Nothing --- This is a void function

See Also:

USER_EXIT_CRITICAL --- Sets the interrupt mask to the value before critical section was entered

46

2.38. USER_EXIT_CRITICAL

Synopsis:

void USER_EXIT_CRITICAL();

Description:

This function sets the interrupt mask to the value before the critical section was entered. Important: You
must call USER_EXIT_CRITICAL once for each USER_ENTER_CRITICAL call to release the critical
section.

Parameters:

None

Returns:

Nothing ---This is a void function

See Also:

USER_ENTER_CRITICAL --- Sets a level 7 interrupt mask when entered

47

2.39. OSDumpTCBStacks

Synopsis:

void 0SDumpTCBStacks(void);

Description:

This function dumps information about the UCOS stacks and tasks to Stdout. This function is useful for
debugging. Note: This function is only valid when UCOS_STACKCHECK is defined.

Parameters:

None

Returns:

Nothing ---This is a void function

Example:

Prio Stack Ptr Stack Bottom Free Now Min. Free

63 0x20432d4 0x2042f20 237 237

50 0x20451cc 0x2043320 1963 1827

40 0x2028250 0x20262cc 2017 2017

39 0x2020f2c 0x201efcc 2008 2008

38 0x2022f54 0x2020fde 2013 2013

45 0x2024f2c 0x2023020 1987 1987
See Also:

OSDumpTasks --- Dump all of the task info to stdout

48

2.40. OSDumpTasks

Synopsis:

void 0SDumpTasks(void);

Description:

This function dumps the state and call stack for every task to stdout. This function is useful for debugging.
Note: This function is only valid when UCOS_STACKCHECK is defined.

Parameters:

None

Returns:

Nothing --- This is a void function

Example:

Prio State Ticks Call Stack

63 Ready Forever At: 02006598

50 Running | ---meemeeeee- 02006860->0200a7bc-><END>

40 Timer 63531

39 Fifo 10 02007¢98->020046ae-><END>

38 Fifo Forever 02007c98->02005d54-><END>

45 Semaphore Forever 02006f16->02009880->0200885a-><END>
See Also:

OSDumpTCBStacks --- Dump all of the task stack information to stdout

49

2.41. ShowTaskList

Synopsis:

void ShowTaskList(void);

Description:

This function dumps the current RTOS task states to stdio. The output takes on multiple lines of the
following format for each logged state:

at t= [T] [Message]
Followed by a tally of the number of task states logged since system start:

Total messages: [N]

[T] represents the number of ticks in hexadecimal since system start; [N] represents the number of task
state messages in decimal logged since system start; [Message] represents one of the output
messages listed in the below table.

Message Description

Wait for Semaphore Task is asleep and pending for semaphore

Wake from Semaphore Task gets a semaphore and wakes up

Task locked Task becomes locked

Task lock++ Task gets an added nested lock

Task lock-- Task gets a nested lock unlocked

Task unlocked Task becomes completely unlocked

Task priority changed The task’s priority level is changed

Unknown flag [F] The flag value defining the task’s state is undefined

Switched to Task [P] Task priority [P] (in decimal) gets control

Switched to Task [P] PC=[X] | Task priority [P] gets control with the program
counter containing the address [X] (in hexadecimal)
of the instruction being executed

Note: Usage of this function is valid only when defining UCOS_TASKLIST in debug mode. In order to
enable this macro definition, it must be uncommented in \Nburn\include\predef.h, followed by rebuilding
the system files to incorporate the modification. Attempting to load a compiled non-debug application
image with the macro defined will cause a trap error.

Parameter:
None

Returns:
None

50

2.42. OSFlagCreate

Synopsis:

void OSFlagCreate(0S_FLAGS *pf)

Description:

This function initializes an OS_FLAGS object that has already been declared. This function must be
called before you can use an OS_FLAGS object.

Parameter:

Type Name Description

OS FLAGS *pf A pointer to the location of the object to be initialized.
Returns:

Nothing --- This is a void function.

Example:

0S_FLAGS test flag; // Declare an OS_FLAGS object
OSFlagCreate(&test_flag); // Initialize the object

51

2.43. OSFlagSet

Synopsis:

void OSFlagSet(0S FLAGS *flags, DWORD bits_to _set)

Description:

This function sets the corresponding bits asserted in bits_to_set of an OS_FLAGS object pointed to
by *flags.

Parameters:
Type Name Description
0OS FLAGS | *flags A pointer to the OS_FLAGS object to be configured.
DWORD bits_to_set | A bit or set of bits to be set.

Returns:

Nothing --- This is a void function.

Example:

OSFlagSet(&test_flag, 0x000000F0); // Set bits 4-7 of OS_FLAG
// object "test_flag”

52

2.44. OSFlagState

Synopsis:

DWORD OSFlagState(OS_FLAGS *flags)

Description:

This function returns the current values of the flags stored in the OS_FLAGS object structure.

Parameter:

Type Name Description

OS_FLAGS *flags A pointer to the OS_FLAGS object whose flag states are to be
returned.

Returns:

The flag states of the OS_FLAGS object.

Example:
DWORD uint32_flags = OSFlagState(&test _flag);

if (uint32_flags & 0x00000080)

{
iprintf("Flag bit 7 is set.\r\n");
}
else
{
iprintf("Flag bit 7 is clear.\r\n");
}

53

2.45. OSFlagClear

Synopsis:

void OSFlagClear(0S_FLAGS *flags, DWORD bits_to clr)

Description:

This function clears the bits asserted in bits_to_clr of an OS_FLAGS object pointed to by *flags.

Parameters:
Type Name Description
0OS FLAGS *flags A pointer to the OS_FLAGS object to be configured.
DWORD bits_to_clr A bit or set of hits to be cleared.

Returns:

Nothing --- This is a void function.

Example:

OSFlagClear(&test_flag, 0xO00000FO0); // Clear bits 4-7 of 0S_FLAG
// object "test flag"

54

2.46. OSFlagPendAll

Synopsis:

BYTE OSFlagPendAll(0S_FLAGS *flags, DWORD bit mask, WORD timeout)

Description:

This function waits a humber of time ticks specified by timeout until all the flags indicated by bit_mask
are set.

Parameters:
Type Name Description
0OS FLAGS *Flags A pointer to the OS_FLAGS object with the desired flag bits.
DWORD bit_mask A bit or set of bets to wait on.
WORD timeout Number of time ticks to wait on all specified flag bits to be set.
Returns:

OS_NO_ERR (0) --- All the flags indicated by bit_mask are set before timeout expires.
OS_TIMEOUT (10) --- timeout expired.

Example:

if (OSFlagPendAll (&test_flag, 0x10001000, 20) != OS_NO_ERR)
iprintf("Flag bits 15 and 31 were not set after 20 ticks.\r\n");

else

iprintf("Both flag bits are set.\r\n");
}

55

2.47. OSFlagPendAlINoWait

Synopsis:

BYTE OSFlagPendAlINowait(OS_FLAGS *flags, DWORD bit_mask)

Description:

This function immediately checks to see if all the flag bits indicated by bit_mask are set; it does not wait.

Parameters:
Type Name Description
0OS FLAGS *flags A pointer to the OS_FLAGS object with the desired flag bits.
DWORD bit_mask A bit or set of bits to check on.

Returns:

OS_NO_ERR (0) --- All flags indicated by bit_mask are set.
OS_TIMEOUT (10) --- None or not all of the flags indicated by bit_mask are set.

Example:

iT (OSFlagPendAlINoWait(&test flag, OxXFFFFFFFF) != OS_NO_ERR)
{

b
else

{
}

iprintf("Not all of the flag bits are set.\r\n");

iprintf("All 32 of the flag bits are set.\r\n");

56

2.48. OSFlagPendAny

Synopsis:

BYTE OSFlagPendAny(0S_FLAGS *flags, DWORD bit _mask, WORD timeout)

Description:

This function waits a number of time ticks specified by timeout until any of the flags indicated by
bit mask are set.

Parameters:
Type Name Description
0OS FLAGS *flags A pointer to the OS_FLAGS object with the desired flag bits.
DWORD bit_mask A bit or set of bits to wait on.
WORD timeout Number of time ticks to wait on any specified flag bits to be
set.
Returns:

OS_NO_ERR (0) --- At least one of the flag bits are set before timeout expires.
OS_TIMEOUT (10) --- None of the flag bits are set before timeout expires.

Example:
it (OSFlagPendAny(&test_flag, OxFFFFFFFF, 20) != 0S_NO_ERR)

iprintf("None of the flag bits are set before time expired.\r\n");

}
else

iprintf("At least one of the 32 desired flag bits are set.\r\n");
}

57

2.49. OSFlagPendAnyNoWait

Synopsis:

BYTE OSFlagPendAnyNoWait(OS_FLAGS *flags, DWORD bit_mask)

Description:

This function immediately checks to see if any of the flag bits indicated by bit_mask are set; it does not
wait.

Parameters:
Type Name Description
0OS FLAGS *Flags A pointer to the OS_FLAGS object with the desired flag bits.
DWORD bit mask A bit or set of bits to check on.

Returns:

OS_NO_ERR (0) --- At least one of the flags indicated by bit_mask are set.
OS_TIMEOUT (10) --- None of the flags indicated by bit_mask are set.

Example:

it (OSFlagPendAnyNoWait(&test flag, 0x80010402) != 0S NO ERR)

{
iprintf("Bits 1, 10, 16 and 31 are not set.\r\n");

}
else
. _ _
iprintf("At least one of the designated bits are set.\r\n");
}

58

	1. Introduction
	2. Function Summary
	2.1. OSTaskCreate
	2.2. OSTaskCreatewName
	2.3. OSSimpleTaskCreate (MACRO)
	2.4. OSSimpleTaskCreatewName (MACRO)
	2.5. OSTaskDelete
	2.6. OSChangePrio
	2.7. OSTimeDly
	2.8. OSChangeTaskDly
	2.9. OSLock
	2.10. OSUnlock
	2.11. OSLockObj
	2.12. OSSemInit
	2.13. OSSemPost
	2.14. OSSemPend
	2.15. OSSemPendNoWait
	2.16. OSMboxInit
	2.17. OSMboxPost
	2.18. OSMboxPend
	2.19. OSMboxPendNoWait
	2.20. OSQInit
	2.21. OSQPost
	2.22. OSQPostFirst
	2.23. OSQPend
	2.24. OSQPendNoWait
	2.25. OSFifoInit
	2.26. OSFifoPost
	2.27. OSFifoPostFirst
	2.28. OSFifoPend
	2.29. OSFifoPendNoWait
	2.30. OSCritInit
	2.31. OSCritEnter
	2.32. OSCritEnterNoWait
	2.33. OSCritLeave
	2.34. Examples
	2.34.1. Example # 1
	2.34.2. Example # 2

	2.35. OSIntEnter
	2.36. OSIntExit
	2.37. USER_ENTER_CRITICAL
	2.38. USER_EXIT_CRITICAL
	2.39. OSDumpTCBStacks
	2.40. OSDumpTasks
	2.41. ShowTaskList
	2.42. OSFlagCreate
	2.43. OSFlagSet
	2.44. OSFlagState
	2.45. OSFlagClear
	2.46. OSFlagPendAll
	2.47. OSFlagPendAllNoWait
	2.48. OSFlagPendAny
	2.49. OSFlagPendAnyNoWait

