

SB70LC PinIO Class

Application Note

Revision 1.2
October 28, 2009
Document Status: Initial Release

 2

Table of Contents

Introduction 3

 Electrical Specifications 3

PinIO Class 3

 Pins Class Constants 3

Pins Class Member Functions 5

Program Examples 6

 3

Introduction

The PinIO class provides an easy way to configure and operate the Freescale MCF5270
microprocessor GPIO signals. Each signal pin on the processor can have multiple
functions. You can use the PinIO class to control GPIO signals without having to
explicitly configure the processor registers. Configuration of the processor registers are
done in the member functions of the PinIO class. There are fifteen pins on the SB70LC
that are made available for GPIO. This document will list the pins that can be used for
GPIO and how to use them. Note that the terms "PinIO class" and "Pins class" may be
used interchangeably in this document.

If you do wish to access these registers directly, we recommend you use the register
structure defined in the "sim5270.h" header file and use the Freescale MCF5271
reference manual to learn the operation of each register.

Electrical Specifications

The current drive capabilities of the GPIO pins are the same for all pins. The
instantaneous maximum current for a single pin is 25 mA. The sustained current drive is
5 mA. Please see the "MCF5271 Integrated Microprocessor Hardware Specification"
PDF document for more information, which can be found at the Freescale web site.

PinIO Class

This class is defined in the header file "pins.h", which is located in the \Nburn\include
directory. With this class, the pins can be configured for GPIO or some other function.
If the pins are set for GPIO, then you can set, clear, read the state of the pins, drive the
pins, or set them for high impedance by simply using the appropriate member function.

Since the number and type of pins are unique to each NetBurner module, the definition of
the pins (\Nburn\<platform>\include\pinconstant.h) and the functions to use those pins
(\Nburn\<platform>\system\pins.cpp) are located within each applicable platform
directory.

Pins Class Constants

The table below lists the fifteen pins available for GPIO on the SB70LC, as well as their
primary and alternate functions, if any:

Pin Definition Function

3 PIN3_SPI_CS0
PIN3_GPIO

1: SPI Chip Select 0
0: GPIO

4 PIN4_SPI_DOUT
PIN4_GPIO

1: SPI Data Out
0: GPIO

 4

5 PIN5_URT0_RTS
PIN5_GPIO

1: UART 0 – Request to Send
0: GPIO

6 PIN6_SDI_DIN
PIN6_SDA
PIN6_GPIO

3: SPI Data In
2: I2C Serial Data
0: GPIO

7 PIN7_SPI_CLK
PIN7_SCL
PIN7_GPIO

3: SPI Clock
2: I2C Serial Clock
0: GPIO

8 PIN8_UCTS1
PIN8_UCTS2
PIN8_GPIO

3: UART 1 – Clear to Send
2: UART 2 – Clear to Send
0: GPIO

9 PIN9_URT1_RTS
PIN9_URT2_RTS
PIN9_GPIO

3: UART 1 – Request to Send
2: UART 2 – Request to Send
0: GPIO

10 PIN10_UTXD0
PIN10_GPIO

1: UART 0 - Transmit
0: GPIO

11 PIN11_URXD0
PIN11_GPIO

1: UART 0 - Receive
0: GPIO

12 PIN12_UTXD1
PIN12_GPIO

3: UART 1 - Transmit
0: GPIO

13 PIN13_URXD1
PIN13_GPIO

3: UART 1 - Receive
0: GPIO

14 PIN14_URT0_CTS
PIN14_GPIO

1: UART 0 – Clear to Send
0: GPIO

15 PIN15_TIN3
PIN15_SPI_CS2
PIN15_URT2_CTS
PIN15_GPIO

3: DMA Timer Input 3
1: SPI Chip Select 2
2: UART 2 – Clear to Send
0: GPIO

16 PIN16_SDA
PIN16_GPIO

3: I2C Serial Data
0: GPIO

17 PIN17_SCL
PIN17_GPIO

3: I2C Serial Clock
0: GPIO

Pin Constants Table

The "Definition" column in the table above describes the values available for each pin
when used with the PinIO class member function "function". For example, if pin JP1-17
needs to be configured for GPIO, then it would be written as:

 Pins[17].function(PIN17_GPIO);

Or, if I2C serial clock signal functionality is needed, then it would be written as:

 Pins[17].function(PIN17_SCL);

The "Function" column in the table describes the primary, alternate, and GPIO functions
for each pin. The numbers to the left represent the following:

 0 = GPIO
 3 = Primary Function
 1 = Alternate Function 1 (primary for some pins with dual configurations)
 2 = Alternate Function 2

 5

Pins Class Member Functions

Using the Pins class member functions to configure and use the GPIO pins eliminates the
time and complexity of having to look up the proper documentation and use the right
register and bits for a desired pin or set of pins. For example, if one were to use pin JP1-
12 (UART 1 – Transmit) for GPIO and set it high without the PinIO class, then it would
be written like this:

 #include <sim5270.h>

 sim.gpio.par_uart &= ~0x0300 ; // Configure pin JP1-12 for GPIO
 sim.gpio.ppdsdr_uartl |= 0x20 ; // Set bit to be driven out on pin
 sim.gpio.pddr_uartl |= 0x20 ; // Set signal direction as output

Knowing the right register and bits are not required with the PinIO class, thus making it
more convenient:

 #include <pins.h>

 Pins[12].function(PIN12_GPIO); // Configure pin JP1-12 for GPIO
 Pins[12] = 1; // Set pin as output high

The following lists the member functions that can be used with the PinIO class:

Member Function
Name

Description Example

void set() Set output high Pins[15].set();
Pins[15] = 1;

void clr() Set output low Pins[4].clr();
Pins[4] = 0;

BOOL read() Read pin high/low state BOOL bpinstate = Pins[5];
if (!Pins[5])
 iprintf ("The pin is low");

void hiz() Set output to tri-state (high
impedance input)

Pins[9].hiz();

void drive Turn output on (opposite of
tri-state)

Pins[16].drive();

void function() Set pin to special function
or GPIO

Pins[8].function(PIN8_GPIO);
Pins[8].function(PIN8_UCTS2);

 6

Program Examples

/** ********************
 * SIMPLE ALTERNATING HIGH/LOW OUTPUT PIN:
 *
 * This program configures pin JP1-17 as GPIO outpu t. In an infinite
 * loop, alternating high and low signals are drive n out on the pin
 * every second. The change in state of the pin can be confirmed by
 * using a multimeter, oscilloscope, or connecting an LED between
 * JP1-17 and ground. Another purpose for this exam ple is to
 * demonstrate the usage of the set() and clr() fun ctions. In the
 * next example, assigning '1' and '0' in place of set() and clr()
 * are used respectively, but basically performs th e same function.
 ** *******************/

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <pins.h>

extern "C"
{
 void UserMain(void *pd);
}

const char *AppName = "SB70LC-PinsClassExample" ;

void UserMain(void *pd)
{
 InitializeStack();
 if (EthernetIP == 0) GetDHCPAddress();
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();

 iprintf("Application started\r\n");

 Pins[17].function(PIN17_GPIO); // Configure JP1-17 for GPIO

 while (1)
 {
 OSTimeDly(1 * TICKS_PER_SECOND);
 Pins[17].set(); // Set pin high
 OSTimeDly(1 * TICKS_PER_SECOND);
 Pins[17].clr(); // Set pin low
 }
}

 7

/** ********************
 * SENDING SIGNALS FROM AN OUTPUT PIN TO AN INPUT P IN:
 *
 * This program configures pins JP1-4 and JP1-16 as GPIO output and
 * GPIO input, respectively. In order for this prog ram to properly
 * work, a jumper wire is needed to connect JP1-4 a nd JP1-16 together
 * on the SB70LC module.
 *
 * In an infinite loop, alternating high and low si gnals are driven
 * out on JP1-4, where JP1-16 will then be read. If the signal read
 * from JP1-16 is high, then the message "Hit!" wil l be outputted
 * through the serial port to MTTTY. If the signal read from JP1-16
 * is low, then the message "Miss!" will be outputt ed. After each
 * send/read, there is a one-second delay.
 ** *******************/

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <pins.h>

extern "C"
{
 void UserMain(void *pd);
}

const char *AppName = "SB70LC-PinsClassExample2" ;

void UserMain(void *pd)
{
 InitializeStack();
 if (EthernetIP == 0) GetDHCPAddress();
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();

 iprintf("Application started\r\n");

 Pins[4].function(PIN4_GPIO); // Configure JP1-4 for GPIO
 Pins[16].function(PIN16_GPIO); // Configure JP1-16 for GPIO

 while (1)
 {
 OSTimeDly(1 * TICKS_PER_SECOND);

 Pins[4] = 1; // Set JP1-4 output high
 if (Pins[16]) // Read JP1-16 input pin state
 iprintf("Hit!\r\n");
 else
 iprintf("Miss!\r\n");

 OSTimeDly(1 * TICKS_PER_SECOND);

 Pins[4] = 0; // Set JP1-4 output low

 8

 if (Pins[16]) // Read JP1-16 input pin state
 iprintf("Hit!\r\n");
 else
 iprintf("Miss!\r\n");

 }
}

