

NetBurner Runtime Libraries

The NetBurner Runtime Libraries Reference

2

Table of Contents

1. INTRODUCTION ...11

2. NETBURNER LICENSE INFORMATION ...12

2.1. THE NETBURNER TOOLS SOFTWARE LICENSE ..12
2.2. THE NETBURNER EMBEDDED SOFTWARE LICENSE ...12
2.3. LIFE SUPPORT DISCLAIMER ...13
2.4. ANTI-PIRACY POLICY ..13

3. CAN LIBRARY ...14

3.1. INTRODUCTION ..14
3.2. CANRXMESSAGE CLASS ...19
3.3. CONSTRUCTORS AND DESTRUCTOR ...20

3.3.1. CanRxMessage - FIFO ..20
3.3.2. CanRxMessage - ID ...21
3.3.3. ~CanRxMessage ..22

3.4. MEMBER FUNCTIONS ...23
3.4.1. GetLength ..23
3.4.2. GetData ...24
3.4.3. GetId ..25
3.4.4. GetTimeStamp ...26
3.4.5. IsValid ...27

3.5. FUNCTIONS ..28
3.5.1. CanInit ...28
3.5.2. CanShutDown ..29
3.5.3. ChangeGlobalMask ...30
3.5.4. FreeCanChannels ..31
3.5.5. IsChannelFree ...32
3.5.6. RegisterCanRxFifo ..33
3.5.7. RegisterCanSpecialRxFifo ...34
3.5.8. UnRegisterCanFifo ..35
3.5.9. SendMessage ...36

3.6. MACROS ...37
3.6.1. CAN_EXTENDED_ID_BIT ...37
3.6.2. ExtToNbId..37
3.6.3. NormToNbId ..37
3.6.4. IsNBIdExt ..38
3.6.5. NbToExtId..38
3.6.6. NbToNormId ..38

4. COMMAND PROCESSOR LIBRARY ..39

4.1. INTRODUCTION ..39
4.2. CMDSTARTCOMMANDPROCESSOR ..40
4.3. CMDADDCOMMANDFD ...41
4.4. CMDREMOVECOMMANDFD ..42
4.5. CMDLISTENONTCPPORT ...43
4.6. CMDSTOPLISTENINGONTCPPORT ...44
4.7. *CMDAUTHENTICATEFUNC ...45
4.8. *CMDCMD_FUNC ..46
4.9. *CMDCONNECT_FUNC ..47
4.10. *CMDPROMPT_FUNC ...48
4.11. *CMDDISCONNECT_FUNC ...49
4.12. SENDTOALL ..50

The NetBurner Runtime Libraries Reference

3

4.13. GLOBALS ...51
4.13.1. CmdIdleTimeout ..51
4.13.2. *Cmdlogin_prompt ..51

5. DHCP LIBRARY ..52

5.1. INTRODUCTION ..52
5.2. GLOBAL VARIABLES ...53
5.3. DHCP EXAMPLE ...53
5.4. GETDHCPADDRESS ..54
5.5. GETDHCPADDRESSIFNECESSARY ..55
5.6. GETREMAININGDHCPLEASETIME ...56
5.7. VALIDDHCPLEASE ..57
5.8. STARTDHCP ...58
5.9. STOPDHCP ...59
5.10. REBINDDHCP ...60
5.11. RENEWDHCP ..61
5.12. GETDHCPSTATE ..62
5.13. GETDHCPRENEWTIME ..63
5.14. GETDHCPREBINDTIME ..64
5.15. GETDHCPEXPIRATIONTIME ...65

6. FTP CLIENT LIBRARY ..66

6.1. INTRODUCTION ..68
6.2. FTP_INITIALIZESESSION ...70
6.3. FTP_CLOSESESSION ...71
6.4. FTPGETDIR ..72
6.5. FTPSETDIR ...73
6.6. FTPDELETEDIR ...74
6.7. FTPMAKEDIR ...75
6.8. FTPUPDIR ...76
6.9. FTPDELETEFILE ..77
6.10. FTPRENAMEFILE ..78
6.11. FTPSENDFILE ...79
6.12. FTPGETFILE ...81
6.13. FTPGETLIST ...83
6.14. FTPGETFILENAMES ..85
6.15. FTPRAWCOMMAND ..87
6.16. FTPGETCOMMANDRESULT ...88
6.17. FTPRAWSTREAMCOMMAND ...89

7. FTP SERVER LIBRARY ...90

7.1. INTRODUCTION ..90
7.2. FTPDSTART ..92
7.3. FTPDSTOPREQ ...93
7.4. (FTPDCALLBACKREPORTFUNCT) ..94
7.5. FTPDSESSIONSTART ...95
7.6. FTPDSESSIONEND ..96
7.7. FTPD_DIRECTORYEXISTS (USER DEFINED) ...97
7.8. FTPD_CREATESUBDIRECTORY (USER DEFINED) ...98
7.9. FTPD_DELETESUBDIRECTORY (USER DEFINED) ...99
7.10. FTPD_LISTSUBDIRECTORIES (USER DEFINED) ..100
7.11. FTPD_FILEEXISTS (USER DEFINED) ...101
7.12. FTPD_SENDFILETOCLIENT (USER DEFINED) ...102
7.13. FTPD_ABLETOCREATEFILE (USER DEFINED) ..103
7.14. FTPD_GETFILEFROMCLIENT (USER DEFINED) ..104
7.15. FTPD_DELETEFILE ...105

The NetBurner Runtime Libraries Reference

4

7.16. FTPD_DELETEFILE (USER DEFINED) ..106
7.17. FTPD_LISTFILE ..107
7.18. FTPD_LISTFILE (USER DEFINED) ...108
7.19. FTPD_RENAME (USER DEFINED) ...110

8. HTTP AND HTML LIBRARIES ..111

8.1. STARTHTTP ..113
8.2. STOPHTTP ..114
8.3. SETNEWPOSTHANDLER ..115
8.4. SETNEWGETHANDLER ..116
8.5. SETNEWHEADHANDLER ...118
8.6. CHECKAUTHENTICATION ..119
8.7. REQUESTAUTHENTICATION ...121
8.8. SENDHTMLHEADER ...122
8.9. SENDHTMLHEADERWCOOKIE ..123
8.10. SENDTEXTHEADER ...124
8.11. SENDGIFHEADER ..125
8.12. REDIRECTRESPONSE ..126
8.13. NOTFOUNDRESPONSE ...127
8.14. EXTRACTPOSTDATA ...128
8.15. EXTRACTPOSTFILE ..129
8.16. ENABLEMULTIPARTFORMS ...130
8.17. DISABLEMULTIPARTFORMS ..131
8.18. WRITESAFESTRING ...132
8.19. HTTPSTRICMP ...133
8.20. SENDFULLRESPONSE ...134
8.21. SENDFILEFRAGMENT ..135

9. INTERRUPTS ...136

9.1. INTERRUPT MACRO ...136
9.2. SETINTC (MCF5234 AND MCF5282 ONLY) ..138
9.3. SETINTC (MCF5270 ONLY) ..139
9.4. PSEUDO-EXAMPLE FOR MCF5234 AND MCF5282 ONLY ...140
9.5. SETPINIRQ ...141
9.6. ENABLEIRQ ...142
9.7. DISABLEIRQ ..143
9.8. EXAMPLE OF SETPINIRQ USAGE ..144

10. I/O SYSTEM LIBRARY ...146

10.1. CLOSE ..147
10.2. READ ...148
10.3. READWITHTIMEOUT ...149
10.4. DATAAVAIL ...150
10.5. CHARAVAIL ...151
10.6. WRITE ..152
10.7. WRITESTRING ..153
10.8. WRITEALL ..154
10.9. FD_ZERO ...155
10.10. FD_CLR ...156
10.11. FD_SET ..157
10.12. FD_ISSET...158
10.13. SELECT...159
10.14. ZEROWAITSELECT ..160
10.15. IOCTL ...161
10.16. REPLACESTDIO ..162
10.17. SYSLOG ...163

The NetBurner Runtime Libraries Reference

5

11. I²C LIBRARY ..165

11.1. INTRODUCTION ..165
11.2. THE NETBURNER I²C API ...166
11.3. SIMPLE I²C FUNCTIONS ...168

11.3.1. I2CInit ...168
11.3.2. I2CSendBuf ..169
11.3.3. I2CReadBuf ...170
11.3.4. I2CRestart..171

11.4. SLAVE I²C FUNCTIONS ..172
11.4.1. I2CRXAvail ..172
11.4.2. I2CTXAvail ..173
11.4.3. I2CGetByte ..174
11.4.4. I2CFillSlaveTXBuf...175

11.5. ADVANCED I²C FUNCTIONS ...176
11.5.1. I2CRead ...176
11.5.2. I2CSend ...177
11.5.3. I2CStart ...178
11.5.4. I2CStop ..179

12. MULTICAST LIBRARY ..180

12.1. INTRODUCTION ..180
12.2. REGISTERMULTICASTFIFO ..181
12.3. UNREGISTERMULTICASTFIFO ..182

13. NBTIME LIBRARY..183

13.1. INTRODUCTION ..183
13.2. TIME ..184
13.3. SET_TIME ...185
13.4. GETNTPTIME ..186
13.5. SETNTPTIME ..187
13.6. TZSETCHAR ..188

14. THE POP3 CLIENT LIBRARY ..190

14.1. INTRODUCTION ..190
14.2. POP3_INITIALIZESESSION ...193
14.3. POP3_CLOSESESSION ...194
14.4. POP3_STATCMD ...195
14.5. POP3_LISTCMD ..196
14.6. POP3_DELETECMD ...197
14.7. POP3_RETRIEVEMESSAGE ...198
14.8. GETPOPERRORSTRING ...199

15. QSPI LIBRARY ..200

15.1. INTRODUCTION ..200
15.2. QSPI CONFIGURATION AND INITIALIZATION ...201
15.3. EXAMPLE PROGRAM ..201
15.4. ADDITIONAL INFORMATION...202
15.5. QSPIINIT ...203
15.6. QSPISTART ...205
15.7. QSPIDONE ...206

16. THE SENDMAIL SMTP LIBRARY ...207

16.1. INTRODUCTION ..207
16.2. SENDMAIL ...208
16.3. SENDMAILEX ..209

The NetBurner Runtime Libraries Reference

6

16.4. SENDMAILAUTH ...210
16.5. SENDING MIME ATTACHMENTS ...211

16.5.1. SendMailAuthStartMIME ..212
16.5.2. SendMailAuthAddMIME..213
16.5.3. SendMailAuthEndMIME..214

17. RTC LIBRARY ...215

17.1. INTRODUCTION ..215
17.2. RTCGETTIME ...216
17.3. RTCSETTIME ..217
17.4. RTCSETSYSTEMFROMRTCTIME ..218
17.5. RTCSETRTCFROMSYSTEMTIME ..219

18. SERIAL LIBRARY ...220

18.1. INTRODUCTION ..220
18.2. OPENSERIAL ..221
18.3. SIMPLEOPENSERIAL ..222
18.4. SERIALCLOSE ..223
18.5. SERIALENABLETXFLOW ...224
18.6. SERIALENABLERXFLOW ...225
18.7. SERIALENABLEHWTXFLOW ..226
18.8. SERIALENABLEHWRXFLOW ...227
18.9. SERIAL485HALFDUPMODE ...228
18.10. SENDBREAK ..229
18.11. SERWRITEADDRESS ..230
18.12. GETUARTERRORREG ..231
18.13. GETCD ..232
18.14. GETRI ...233
18.15. GETDSR ..234
18.16. SETDTR ..235

19. SNMP LIBRARY ..236

19.1. INTRODUCTION ..236
19.2. SNMP IMPLEMENTATION REQUIREMENTS ..237
19.3. LEVEL 0 --- BASIC INSTRUCTIONS USING THE SNMP TOOLS ..238
19.4. LEVEL 1 --- ENABLE SNMP AT THE ABSOLUTE MINIMUM LEVEL WITHOUT CUSTOM MIBS239
19.5. LEVEL 2 --- A SIMPLE CUSTOM MIB TO SET/CLEAR COMMUNITY NAMES ...241
19.6. NOTE 1 --- CUSTOM TABLES ..243
19.7. NOTE 2 --- CUSTOM COMMUNITY NAME PARSING AND PROTECTION..245
19.8. NOTE 3 --- TRAPS AND CUSTOM TRAPS ...246
19.9. SNMPGET ...247
19.10. SNMPGETNEXT ..248
19.11. SNMPSET ...249
19.12. SNMPWALK..250

20. STREAM UPDATE LIBRARY ...251

20.1. INTRODUCTION ..251
20.2. SENDUSERFLASHTOSTREAMASBINARY ...252
20.3. SENDUSERFLASHTOSTREAMASS19 ...253
20.4. READS19USERFLASHFROMSTREAM ...254
20.5. READBINARYUSERFLASHFROMSTREAM ..255
20.6. READS19APPLICATIONCODEFROMSTREAM ...256

21. SYSTEM LIBRARY ...257

21.1. CONSTANTS ...259
21.2. CONFIGRECORD ..261

The NetBurner Runtime Libraries Reference

7

21.3. GCONFIGREC ...262
21.4. SECS ..262
21.5. TIMETICK ..262
21.6. CODE UPDATES WITH AUTOUPDATE UTILITY ...263

21.6.1. EnableAutoUpdate...264
21.6.2. AutoUpdate Shutdown Hook..265
21.6.3. AutoUpdate Password Protection ...266

21.7. UPDATECONFIGRECORD ...267
21.8. UPDATECONFIGRECORD_NUM ...268
21.9. RAWGETCONFIG ...269
21.10. SETUPDIALOG ...270
21.11. SAVEUSERPARAMETERS ...271
21.12. GETUSERPARAMETERS ...272
21.13. PUTLEDS ..273
21.14. GETDIPSW ..274
21.15. SHOWDATA ...275
21.16. SHOWMAC ..276
21.17. OUTBYTE ...277
21.18. PRINT ...278
21.19. PUTNUM ...279
21.20. ASCIITOIP ...280
21.21. SHOWIP ...281
21.22. ITOA ...282
21.23. SHOWCOUNTERS ...283
21.24. GETPRECISETIME ..284
21.25. FORCEREBOOT ..285

21.25.1. Example ...286
21.26. ETHERLINK ...287
21.27. ETHERSPEED100 ...288
21.28. ETHERDUPLEX ..289
21.29. MANUALETHERNETCONFIG ..290

22. TCP/IP LIBRARY ...291

22.1. INTRODUCTION ..299
22.2. INITIALIZESTACK ..302
22.3. ADDINTERFACE (MULTIHOME) ...303
22.4. LISTEN ...304
22.5. ACCEPT ..305
22.6. CONNECT ...306
22.7. CONNECTVIA ...307
22.8. SETSOCKOPTION ..308
22.9. CLRSOCKOPTION ..309
22.10. GETSOCKOPTION ..310
22.11. GETSOCKETREMOTEADDR ...311
22.12. GETSOCKETLOCALADDR ..312
22.13. GETSOCKETREMOTEPORT ..313
22.14. GETSOCKETLOCALPORT ...314
22.15. GETHOSTBYNAME ..315
22.16. PING ..316
22.17. PINGVIAINTERFACE ..317
22.18. SENDPING ..318
22.19. GETTFTP ..319
22.20. SENDTFTP ..320
22.21. SHOWARP ..321
22.22. DUMPTCPDEBUG ...322
22.23. ENABLETCPDEBUG ...323

The NetBurner Runtime Libraries Reference

8

22.24. SHOWIPBUFFER ..324
22.25. GETFREECOUNT ..325
22.26. SHOWBUFFER ..326
22.27. TCPGETLASTRXTIME ...327
22.28. TCPSENDKEEPALIVE ..328
22.29. HTONS ...329
22.30. HTONL ...330
22.31. NTOHS ...331
22.32. NTOHL ...332

23. UDP LIBRARY ...333

23.1. UPD C++ CLASS API ..333
23.1.1. UDP Class Example ..335
23.1.2. UDPPacket ..338
23.1.3. UDPPacket (FIFO) ...339
23.1.4. UDPPacket (Pool Buffer) ...340
23.1.5. ~UDPPacket ..341
23.1.6. Validate..342
23.1.7. SetSourcePort ..343
23.1.8. GetSourcePort ...344
23.1.9. SetDestinationPort...345
23.1.10. GetDestinationPort ..346
23.1.11. GetDataBuffer ...347
23.1.12. SetDataSize ..348
23.1.13. GetDataSize ...349
23.1.14. ResetData ..350
23.1.15. AddData ...351
23.1.16. AddData (Add a Zero Terminated String) ...352
23.1.17. AddDataWord ..353
23.1.18. AddDataByte ..354
23.1.19. ReleaseBuffer ...355
23.1.20. GetPoolPtr ...356
23.1.21. SendAndKeep ...357
23.1.22. SendAndKeepVia ...358
23.1.23. Send ...359
23.1.24. SendVia ..360
23.1.25. RegisterUDPFifo ...361
23.1.26. UnregisterUDPFifo ...362

23.2. UDP SOCKET INTERFACE ..363
23.2.1. UDP Sockets Example ...364
23.2.2. CreateRxUdpSocket ...367
23.2.3. CreateTxUdpSocket ...368
23.2.4. CreateRxTxUdpSocket ...369
23.2.5. sendto ...370
23.2.6. sendtovia ..371
23.2.7. receivefrom ..372

24. PPP LIBRARY ..373

24.1. PPP STRUCTURE AND DEFINITIONS ...373
24.2. PPP FUNCTIONS ..373
24.3. PPP OPTIONS STRUCTURE ...374
24.4. STARTPPPDAMEON...375
24.5. STARTPPPDIRECT ...376
24.6. DIALPPP ...377
24.7. DIRECTCONNECTPPP ..378
24.8. GETPPPSTATE ..379

The NetBurner Runtime Libraries Reference

9

24.9. STOPPPPDAMEON ...380
24.10. CLOSEPPPSESION ...381
24.11. GETTHATPPP_IP ..382
24.12. GETTHISPPP_IP ..383
24.13. SENDCHAPCHALLENGE ...384

25. IPSETUP PASSWORD PROTECTION ...385

The NetBurner Runtime Libraries Reference

10

Revision History

Date Revision Description

2/25/2010 1.95 Added SSL eMail functions.

3/22/2010 1.96 Added additional descriptions for return codes for read() and
ReadWithTimeout()

4/26/2010 1.97 Updated SSL section to correct typo in certificate creation
example with openssl.exe.

7/1/2010 1.98 Moved AES and SSL sections to new NetBurner Security
Libraries document, which also includes SSH.

7/13/2010 1.99 Added text to InitializeStack explaining that it can only be called
once on startup. Removed references to KillStack, since it does
not close all active sockets.

10/11/2010 2.00 Added QSPI section

11/24/2010 2.01 Updated the Serial Library section to indicate support of the
GetCD, GetRI, GetDSR, and SetDTR functions for the
SB700EX.

4/7/2011 2.02 Added IPSetup password callback function, section 25.

5/31/2011 2.03 Added new functions to the Interrupts section for SetPinIrq,
EnableIrq, and DisableIrq.

7/12/2011 2.04 Added new functions to the System Library section for
UpdateConfigRecord_Num and RawGetConfig.

1/19/2012 2.05 Updated the ManualEthernetConfig() section to explicitly state
that it must be called after InitializeStack(); updated the input
parameter variable names to be consistent with those defined in
the ethernet.h file.

5/1/2012 2.06 The itoa() function section has been updated to correct the units
of the base-2 example (“33 bytes”, not “33 bits). Additional
information has been added to make mention of base-10 to
determine the size of the buffer.

The NetBurner Runtime Libraries Reference

11

1. Introduction

This document is a reference manual for the NetBurner software libraries, and is intended to be used in
conjunction with the NetBurner Network Programming Guide for network platforms, or the Mod5213
Programmers Guide for non-network platforms. These guides provide background, details and examples on
how the functions in this document can be used in practice. All NetBurner documents are located in the
documents directory created during installation. The default location is c:\nburn\docs.

This reference guide contains all the API function calls, some of which may not apply to your specific
hardware platform. For example, the CAN functions are available on the Mod5213, but TCP/IP functions are
not supported because it does not have a network interface. This reference manual also contains optional
software APIs, such as SSL, that are purchased separately and are not part of the standard NetBurner
development kit.

Hardware-specific software functions and information are provided in the c:\nburn\docs<platform> directory,
where <platform> is the hardware platform you are using, such as a Mod5282. The platform documents
contain schematics, memory maps, and any software features that are specific to the hardware platform you
are using.

The software included in your NetBurner Development Kit is licensed to run only on processor hardware
manufactured by NetBurner, such as the modules and serial to Ethernet devices. If your application involves
manufacturing your own processor based hardware (ie you are not going to purchase NetBurner modules for
production), please contact NetBurner Sales for details on a Royalty-Free Software License.

Additional Documentation

All NetBurner License Documentation is located by default in your C:\Nburn\docs directory.

 Eclipse Getting Started Guide

 NetBurner Runtime Libraries (this document)

 NetBurner Security Libraries (AES, SSL, SSH)

 NetBurner Network Programming Guide

 Mod5213 Programming Guide

 NetBurner PC Tools Guide

 Freescale microprocessor manuals

 Embedded Flash File System (EFFS) Programmers Guide

 Embedded Flash File System (EFFS) Reference Manual

 Platform Documents – The hardware specific documents for your device (eg Mod5282)

The NetBurner Runtime Libraries Reference

12

2. NetBurner License Information

The software included in your NetBurner Development Kit is licensed to run on hardware manufactured by
NetBurner. if you wish to design your own processor board please contact NetBurner Sales.

All embedded software and source code provided in this Network Development Kit is subject to one of four
possible licenses: the NetBurner Tools License (most restrictive), the NetBurner Embedded Software
License, the GNU Public License and the Newlib License (least restrictive).
The GNU development executables provided in the C:\Nburn\GCC-M68k directory branch are subject to the
GNU Public License (GPL).

The Runtime Libraries and include files provided in the C:\Nburn\GCC-M68k directory branch are subject to
the Newlib License.

The Compcode application provided in the C:\Nburn\pctools\compcode directory is subject to the GNU public
license (GPL).

All other programs are subject to the NetBurner Tools License provided below.

All other provided Source Code and Libraries are subject to the NetBurner Embedded Software License
provided below.

2.1. The NetBurner Tools Software License

Copyright 1998 - 2007 NetBurner, Inc., All Rights Reserved.

Permission is hereby granted to purchasers of the NetBurner Network Development Kit to use these
programs on one computer, and only to support the development of embedded applications that will run on
NetBurner provided hardware.

No other rights to use this program or its derivatives, in part or in whole, are granted. It may be possible to
license this or other NetBurner software for use on non NetBurner hardware.
NetBurner makes no representation or warranties with respect to the performance of this computer program,
and specifically disclaims any responsibility for any damages, special or consequential, connected with the
use of this program.

2.2. The NetBurner Embedded Software License

Copyright 1998 - 2007 NetBurner, Inc., All Rights Reserved.

Permission is hereby granted to purchasers of NetBurner hardware to use or modify this computer program
for any use as long as the resultant program is only executed on NetBurner provided hardware. No other
rights to use this program or its derivatives, in part or in whole, are granted. It may be possible to license this
or other NetBurner software for use on non NetBurner hardware.

NetBurner makes no representation or warranties with respect to the performance of this computer program,
and specifically disclaims any responsibility for any damages, special or consequential, connected with the
use of this program.

The NetBurner Runtime Libraries Reference

13

2.3. Life Support Disclaimer

NetBurner’s products both hardware and software (including tools) are not authorized for use as critical
components in life support devices or systems, without the express written approval of NetBurner, Inc. prior
to use. As used herein:

Life support devices or systems are devices or systems that (a) are intended for surgical implant into the
body or (b) support or sustain life, and whose failure to perform, when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
user.

A critical component is any component of a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness. If you have any questions/concerns, please contact our Sales Department for more
information.

2.4. Anti-Piracy Policy

NetBurner, Inc. vigorously protects its copyrights, trademarks, patents and other intellectual property rights.

In the United States and many other countries, copyright law provides for severe civil and criminal penalties
for the unauthorized reproduction or distribution of copyrighted material. Copyrighted material includes, but is
not limited to computer programs and accompanying sounds, images and text.

Under U.S. law, infringement may result in civil damages of up to $150,000, and/or criminal penalties of up to
five years imprisonment, and/or a $250,000 fine. In addition, NetBurner, Inc. may seek to recover its
attorneys' fees.

mailto:sales@netburner.com

The NetBurner Runtime Libraries Reference

14

3. CAN Library

3.1. Introduction

CAN or Controller Area Network is an advanced serial bus system that efficiently supports distributed control
systems. CAN operates at data rates of up to 1 Megabit per second. CAN also has excellent error detection
and confinement capabilities. CAN was initially developed in 1986 for the use in motor vehicles by Robert
Bosch GmbH, in Germany, also holding the CAN license. For additional information, see the CAN
Homepage of Robert Bosch GmbH. The first CAN silicon was fabricated in 1987 by Intel.

The CAN protocol is an international standard defined in ISO 11898 (for applications up to 1 Megabit per
second) and ISO 11519 (for applications up to 125 Kilobits per second). The conformance test for the CAN
protocol is defined in ISO 16845. ISO 16845 also guarantees the interchangeability of the CAN chips. See
the ISO web site for additional information. CAN is also internationally standardized by the Society of
Automotive Engineers (SAE).

The CAN communications protocol describes how information is passed between devices. CAN conforms to
the Open Systems Interconnection (OSI) model (developed by the ISO - ISO 7498) which is defined in terms
of layers. Each layer in a device "communicates" with the same layer in another device. Actual
communication occurs between adjacent layers in each device. The devices are only connected by the
physical medium via the physical layer of the OSI model.

The CAN architecture defines the lowest two layers of the OSI model - the Data Link Layer and the Physical
Layer (lowest layer).

The Data Link Layer is the only layer that recognizes and understands the format of messages. This layer
constructs the messages to be sent to the Physical Layer, and decodes the messages received from the
Physical Layer. In CAN controllers, the Data Link Layer is usually implemented in hardware.

The Physical Layer specifies the physical and electrical characteristics of the CAN Bus, as well as the
hardware that converts the characters of a message into electrical signals for transmitted messages, and
electrical signals into characters for received messages. Although the other OSI layers may be implemented
in either hardware (as chip level functions) or software, the Physical Layer is always "real" hardware.

The most common physical medium consists of a twisted wire pair (shielded or unshielded) with appropriate
termination (i.e. 120 ohm resistance) at each end. ISO 11898 states that the impedance of the cable should
be 120 +- 12 ohms. The basic CAN design specification called for a high bit rate, a high immunity to electrical
interference, and an ability to detect any errors produced.

There are no standards for how CAN controllers are implemented, or how CAN controllers communicate with
their host microcontroller.

The maximum bus length for a CAN network depends on the bit rate used. It is a requirement that the wave
front of the bit signal have time to travel to the most remote node and back again (before the bit is sampled).
So, if the bus length is near the maximum for the bit rate used (see the table on the next page), then the
sampling point should be chosen very carefully.

Bus Length (in meters) Maximum Bit Rate (bits/second)

40 1 Mbit/s

http://www.semiconductors.bosch.de/en/20/can/index.asp
http://www.semiconductors.bosch.de/en/20/can/index.asp
http://www.iso.ch/iso/en/CatalogueListPage.CatalogueList
http://www.sae.org/servlets/index

The NetBurner Runtime Libraries Reference

15

100 500 Kbit/s

200 250 Kbit/s

500 125 Kbit/s

6 km 10 Kbit/s

There are two principal CAN hardware implementations. Suitably configured, each implementation (Basic
CAN and Full CAN) can handle both Normal and Extended CAN data formats. Note: Communication is
identical for all implementations of CAN.

Basic CAN is used in less expensive standalone CAN controllers or in smaller microcontrollers with an
integrated CAN controller. In the Basic CAN configuration, there is a strong bond between the CAN controller
and the associated microcontroller. Therefore, the microcontroller, which will have other system related
functions to administer, will be interrupted to deal with every (received and transmitted) CAN message.

Full CAN is used in more expensive, high performance CAN controllers and microcontrollers. Full CAN
devices contain additional hardware to provide a separate "server" that will automatically receive and
transmit CAN messages, without interrupting the associated microcontroller. Full CAN devices also service
simultaneous requests, carry out extensive acceptance filtering on incoming messages, and greatly reduce
the load on the microcontroller.

CAN identifiers come in two "flavors". These two "flavors" (i.e. protocol versions) define different formats of
the message frame (with the main difference being the identifier length). Your Mod5234 supports both CAN
versions. The two CAN protocol versions are:

Version 2.0A - Normal or Standard CAN - supports messages with 11 bit identifiers.

Version 2.0B - Extended CAN - supports messages with 29 bit identifiers (an 11 bit base identifier for
compatibility with Version 2.0A and an 18 bit extension identifier).

In the NetBurner Software API, we always refer to CAN identifiers as 32 bit DWORDS. A 32 bit DWORD is
bigger than either (Normal or Extended) Identifier. A Normal identifier will always have bits 0 to 17 as zero.
An Extended identifier can have bits 0 to 17 low. Extended identifiers that are received will have bit 29 set to
1. Note: Any ID input into the system will be treated as Extended if bit 29 is set, or if bits 0 to 17 are not zero.

There are three types of CAN controllers:

1. Part A (Version 2.0A)
2. Part B Passive (Version 2.0A)
3. Part B (Version 2.0B)

Version 2.0B (i.e. Part B) controllers are completely backward compatible with Version 2.0A (both Part A
and Part B Passive) controllers. Each CAN controller is able to handle the different parts of the CAN
standard as shown on the next page.

Message Format\CAN Chip Type Part A Part B Passive Part B

11 bit ID (Normal or Standard) Ver. 2.0A OK OK OK

29 bit ID (Extended) Ver. 2.0B ERROR Tolerated– but ignored OK

Note: If 29 bit identifiers are used on a CAN bus which contains Part A (Version 2.0A) controllers the bus will
not work (as shown above). However, it is possible to use both Part B Passive (Version 2.0A) and Part B
(Version 2.0B) controllers on a single network (also as shown above).

CAN is a multi-master Bus with an open linear structure, consisting of one logic bus line and equal nodes.
The number of nodes is not limited by the protocol. In either of the two CAN protocols (i.e. Version 2.0A and

The NetBurner Runtime Libraries Reference

16

Version 2.0B), the bus nodes do not have a specific address. Instead, the address information is contained in
the identifiers of the transmitted messages - indicating both the message content and the priority of the
message. Therefore, the number of nodes on a network may be changed dynamically without disturbing the
communication of the other nodes.

A high degree of system and configuration flexibility is achieved because of CAN's content-oriented
addressing scheme. Therefore, it is very easy to add additional stations (i.e. receivers) to an existing CAN
network - without making any hardware or software modifications to the existing stations. This feature follows
the concept of modular electronics, and permits multiple reception and synchronization of distributed
processes. Data (needed as information by one or more stations) can be transmitted via the network in such
a way that it is unnecessary for each station to know who produced it. This feature allows for the easy
servicing and upgrading of networks (data transmission is not based on the availability of specific types of
stations). Multicasting and Broadcasting are also supported by CAN.

There are two Bus states: Dominant and Recessive. The CAN Bus logic uses a "Wired-AND" mechanism.
Dominant bits (logic 0) overwrite the recessive bits (logic 1). If all nodes on the network transmit recessive
bits (Ones), the Bus is in the recessive state. However, as soon as one node transmits a dominant bit (Zero),
the Bus state changes to dominant. A dominant state will always have precedence over a recessive state.

The CAN protocol handles Bus accesses according to an arbitration process known as Carrier Sense
Multiple Access/Collision Detection (CSMA/CD). By using this non-destructive bitwise arbitration process the
CAN Bus:

Avoids collisions of messages whose transmission was started by more than one node simultaneously.

Sends the most important message out first without time loss.

A message in the CAN Standard/Normal or Extended Frame format begins with a start bit called the Start Of
Frame (SOF). This is a dominant bit for hard synchronization of all nodes on the network.

The Arbitration Field (12 bits) consists of the Message Identifier (11 bits) and the Remote Transmission
Request (RTR) bit. The RTR bit is used to distinguish between a Data Frame (RTR bit is dominant) and a
Remote Frame (RTR bit is recessive).

The Control Field (6 bits) contains the IDentifier Extension (IDE) bit (dominant to specify that the frame is a
Standard Frame), a reserved dominant bit, and the Data Length Code (DLC) (4 bits). The DLC is used to
indicate the number of data bytes in the Data Field. If the message is used as a Remote Frame, the DLC
contains the number of requested data bytes. The Data Field that follows can hold up to 8 data bytes.

The Cyclic Redundancy Field is used detect possible transmission errors. The integrity of the frame (Remote
or Data) is guaranteed by the following Cyclic Redundant Check (CRC) sum. The CRC sum contains a 15 bit
cyclic redundancy check code and a recessive delimiter bit.

The ACKnowledge (ACK) Field consists of two parts: the ACK Slot and the ACK Delimiter. The bit in the
ACK Slot is initially sent as a recessive bit. This recessive bit is converted to a dominant bit by those
receivers on the network that have received the data correctly. Correct messages are acknowledged by the
receivers regardless of the result of the acceptance test (i.e. positive acknowledgement). The ACK Delimiter
is also a recessive bit.

The end of the message is indicated by the End Of Frame (EOF) Field. This field contains seven recessive
bits.

The NetBurner Runtime Libraries Reference

17

The Intermission Frame Space (IFS) Field follows the EOF. This is the minimum number of bits separating
consecutive messages. After a three bit Intermission period, the Bus is recognized to be free. Note: The Bus
Idle time may be any arbitrary length including zero.

A message in the CAN Extended Frame format (i.e. Version 2.0B) is almost the same as a message in the
CAN Standard or Normal Frame format (i.e. Version 2.0A). One obvious difference is the length of the
identifier used. The Extended Frame format identifier is made up of the existing 11 bit identifier (base
identifier) and an 18 bit extension (identifier extension), for a total length of 29 bits. The distinction between
the CAN Standard Frame format and the CAN Extended Frame format is made by using the IDE bit. The IDE
bit is recessive to specify that the frame is an Extended Frame.

A Substitute Remote Request (SRR) bit is also included in the Arbitration Field (in Version 2.0B). The SRR
bit is always transmitted as a recessive bit to ensure that, in the case of arbitration between a Standard Data
Frame and an Extended Data Frame, the Standard Data Frame will always have priority if both messages
have the same base (11 bit) identifier.

CAN provides superior error-detection and error handling mechanisms (e.g. a CRC check and a high
immunity against electromagnetic interference). Erroneous messages are automatically retransmitted.
Temporary errors are recovered. Permanent errors are followed by an automatic switch-off of defective
nodes (stations). There is guaranteed system-wide data consistency.

CAN implements five different types of error detection - three at the message level and two at the bit level.

At the message level the three types of error detection are:

Cyclic Redundancy Check (CRC) - As already mentioned, the CRC safeguards the information in a frame
by adding redundant check bits at the transmission end. At the receiving end, these bits are re-computed
and tested against the received bits. If they do not match - a CRC error has occurred.

Frame Check - This mechanism verifies the structure of the transmitted frame by checking the bit fields
against the fixed format and the frame size. If they do not match - a frame check error has occurred. Errors
detected by frame checks are called Format errors.
ACK Errors - As already mentioned, frames received are acknowledged by all receivers through positive
acknowledgement. If no acknowledgement is received by the transmitter of the message - an ACK error has
occurred.

At the bit level the two types of error detection are:

Bit Monitoring - The ability of the transmitter to detect errors is based on monitoring the CAN bus signals.
Each transmitting station also observes the bus level, detecting differences between the bit sent and the bit
received. This permits the reliable detection of global errors, and the detection of errors that are local to the
individual transmitter.

Bit Stuffing - The coding of the individual bits is tested at bit level. The bit representation used by CAN is
called "Non Return to Zero" (NRZ) coding, which guarantees maximum efficiency in bit coding. The
synchronization edges are generated by means of bit stuffing. This means that after five consecutive equal
bits, the transmitter inserts into the bit stream a "stuff bit" with a complementary value which is removed by
the receivers.

If one or more errors are discovered (by at least one station), the current (message) transmission is aborted
by sending an "error flag". This error flag prevents other stations (on the same network) from accepting the
message, and ensures the consistency of data throughout the network. After the transmission of an
erroneous message (that has been aborted), the sender automatically re-attempts transmission (i.e.
automatic re-transmission) of the message. However, in the event of a defective station, all messages
(including valid ones) could be aborted.

The NetBurner Runtime Libraries Reference

18

Therefore, the CAN protocol also provides a mechanism to distinguish between sporadic errors, permanent
errors and local failures at the station. This is accomplished by the statistical assessment of station error
situations. The aim is - recognizing a station's (own) defects. Then, that station could switch to another
mode, so that the rest of the CAN network is not negatively affected. For example, the defective station could
switch itself off to prevent valid messages from erroneously being recognized as invalid.

A CAN higher level protocol (also known as the Application Layer) is a protocol implemented "on top" of the
two existing lower-level CAN layers (i.e. the Physical Layer and the Data Link Layer). The application levels
are linked to the physical medium by the layers of various emerging protocols, dedicated to a particular
industry plus any number of propriety schemes as defined by individual CAN users.

Many systems (e.g. the automotive industry) use a propriety Application Layer; but for many other industries,
this approach is not cost-effective. Several organizations have developed standardized open Application
Layers to ensure ease of system integration. See the CAN in Automation (CiA) web site for additional
information.

Suggested Reading:

CAN System Engineering: From Theory to Practical Applications by Wolfhard Lawrenz (ISBN - 0387949399)

Controller Area Network by Konrad Etschberger (ISBN - 3000073760)

http://www.can-cia.org/

The NetBurner Runtime Libraries Reference

19

3.2. CanRxMessage Class

Header File:

#include <canif.h> // Found in C:\Nburn\<HWPlatform>\include

Synopsis:

Class CanRxMessage

Description:

The CanRxMessage Class will hold incoming messages. Before using this class, the application must have
called CanInit, and be configured to receive incoming data on one or more ID’s. There are two constructors
that can be used to instantiate the class: using a FIFO and using an ID.

The NetBurner Hardware Platforms that support CAN are:

CB34EX (canif.h is located in C:\Nburn\CB34EX\include)
MOD5213 (canif.h is located in C:\Nburn\MOD5213\include)
MOD5234 (canif.h is located in C:\Nburn\MOD5234\include)
MOD5282 (canif.h is located inC:\Nburn\MOD5282\system)

The NetBurner Runtime Libraries Reference

20

3.3. Constructors and Destructor

3.3.1. CanRxMessage - FIFO

Synopsis:

CanRxMessage(OS_FIFO * pFifo, WORD timeout);

Description:

This constructor builds a CanRxMessage from a FIFO. The FIFO must be registered to listen for incoming
messages. The FIFO is a function of the RTOS. To use the FIFO, the application must:

1. Declare an OS_FIFO object
2. Initialize the FIFO with the OSFifoInit function
3. Register the FIFO to listen to a specific ID
4. Create an instance of a CanRxMessage with the FIFO constructor

Parameters:

Type Name Description

OS_FIFO * pFifo A pointer to the FIFO used to communicate between
the CAN subsystem and the CanRxMessage Class.
The FIFO must be initialized first.

WORD timeout How long to wait for confirmation. 0 = wait forever and
0xFFFF = don't wait at all.

Returns:

If no messages are received in the timeout interval (i.e. time ticks), then the returned CanRxMessage will be
marked as invalid

A Timeout value of 0 (zero) will wait forever

Note: The default value is 1/20th of a second

Example:

OS_FIFO fifo;

OSFifoInit(&fifo);

int chan = RegisterCanRxFifo(0x1234, &fifo);

if (chan > 0)

{

 CanRxMessage can_msg(&fifo, 30*TICKS_PER_SECOND);

}

The NetBurner Runtime Libraries Reference

21

3.3.2. CanRxMessage - ID

Synopsis:

 CanRxMessage(DWORD id, WORD timeout);

Description:

This constructor sends a RTR (Remote Transmission Request) to the device at a specified ID and waits for
a response.

Parameters:

Type Name Description

DWORD id The identifier to match on received frames.

WORD timeout How long to wait for confirmation. 0 = wait forever and
0xFFFF = don't wait at all.

Returns:

If no messages are received in the timeout interval (i.e. time ticks), then the returned CanRxMessage will be
marked as invalid

A Timeout value of 0 (zero) will wait forever. Note: The default timeout value is 1/20th of a second.

The CAN system uses any unused channel to send and receive the buffer. This constructor can return an
invalid message for two reasons:

1. The timeout interval has transpired
2. There were no free channels available to send the request

The NetBurner Runtime Libraries Reference

22

3.3.3. ~CanRxMessage

Synopsis:

~CanRxMessage();

Description:

The CanRxMessage destructor. This is called automatically when an instance goes out of scope.

Parameters:

None

The NetBurner Runtime Libraries Reference

23

3.4. Member Functions

3.4.1. GetLength

Synopsis:

BYTE GetLength();

Description:

This member function gets the amount of data stored in the message.

Parameters:

None

Returns:

The number of bytes stored as an unsigned 8 bit value

The NetBurner Runtime Libraries Reference

24

3.4.2. GetData

Synopsis:

BYTE GetData(BYTE * buffer, BYTE max_len);

Description:

This member function copies the data in a message object to the location pointed to by buffer up to a
maximum of max_len in bytes.

Parameters:

Type Name Description

BYTE * buffer A pointer to the buffer to put the data in.

BYTE max_len The maximum length to store (in bytes).

Returns:

The number of bytes stored

The NetBurner Runtime Libraries Reference

25

3.4.3. GetId

Synopsis:

DWORD GetId();

Description:

This member function gets the ID of the message. In the NetBurner Software API, we always refer to CAN
identifiers as 32 bit DWORDS. A 32 bit DWORD is bigger than either (Normal or Extended) Identifier.

A Normal identifier will always have bits 0 to 17 as zero. An Extended identifier can have bits 0 to 17 low.
Therefore, Extended identifiers that are received will have bit 29 set to 1. Note: Any ID input into the system
will be treated as Extended if bit 29 is set, or if bits 0 to 17 are not zero.

Parameters:

None

Returns:

The ID of the message object

The NetBurner Runtime Libraries Reference

26

3.4.4. GetTimeStamp

Synopsis:

WORD GetTimeStamp();

Description:

Each CAN message contains a time stamp indicating when it is sent. This member function gets the time
stamp from where it was sent.

Parameters:

None

Returns:

The time stamp of the message object

The NetBurner Runtime Libraries Reference

27

3.4.5. IsValid

Synopsis:

BOOL IsValid();

Description:

Each CanRxMessage object constructor has a timeout value. If a message object is created and a timeout
occurs the message object contains no data, and is marked as "invalid". This member function answers the
question: Is this CanRxMessage a valid message.

Parameters:

None

Returns:

TRUE --- If the CanRxMessage object contains a valid message
FALSE --- If the message is invalid

The NetBurner Runtime Libraries Reference

28

3.5. Functions

3.5.1. CanInit

Synopsis:

int CanInit(DWORD bit_rate, DWORD Global_Mask, BYTE irq_level=4);

Description:

This function initializes the CAN system. It must be called before any other CAN functions or the creation of
CanRxMessage objects.

Parameters:

Type Name Description

DWORD bit_rate The bit rate to run the CAN system at.

DWORD Global_Mask The mask used to mask received IDs.

BYTE irq_level The interrupt level you want the CAN system to operate at.

Note: The system will get as close as possible, but 1000000, 500000, 250000, and 125000 are the only
values that are known to work.

Value Meaning

0 Don't care

1 Care

Returns:

CAN_OK --- On success
CAN_RATE_FAIL --- If the bit rate could not be set within 1.5%
CAN_ALREAD_OPEN --- If the CAN system is already running - you must call CanShutDown first

The NetBurner Runtime Libraries Reference

29

3.5.2. CanShutDown

Synopsis:

void CanShutDown();

Description:

This function shuts down the CAN system.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

30

3.5.3. ChangeGlobalMask

Synopsis:

void ChangeGlobalMask(DWORD Global_Mask);

Description:

This function changes the global receive mask after the CAN system is started.

Parameters:

Type Name Description

DWORD Global_Mask The mask used to mask received IDs.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

31

3.5.4. FreeCanChannels

Synopsis:

int FreeCanChannels();

Description:

The CAN system has 16 available channels. Use this function return to determine which channels are
currently free.

Parameters:

None

Returns:

The number of channels that are currently not in use

The NetBurner Runtime Libraries Reference

32

3.5.5. IsChannelFree

Synopsis:

BOOL IsChannelFree(int channel);

Description:

This function tells you if a specific channel is currently free.

Parameters:

Type Name Description

int channel The specified channel.

Returns:

TRUE --- If the specified channel is currently free

The NetBurner Runtime Libraries Reference

33

3.5.6. RegisterCanRxFifo

Synopsis:

int RegisterCanRxFifo(DWORD id, OS_FIFO * pFifo, int channel=-1);

Description:

This function tells the CAN system to start listening for a specific CAN ID. Any incoming CAN frames that
match the ID as set by the appropriate mask will be placed into the FIFO. The FIFO is a function of the
RTOS. To use the FIFO, the application must:

 Declare an OS_FIFO object

 Initialize the FIFO with the OSFifoInit function.

 Register the FIFO to listen to a specific ID.

 Create an instance of a CanRxMessage with the FIFO constructor.

Parameters:

Type Name Description

DWORD id The identifier to match on received frames. The id is modified by the
global mask.

OS_FIFO * pFifo A pointer to the FIFO, used to communicate between the CAN subsystem
and the CanRxMessage Class. The FIFO must be initialized first. The
same FIFO can be passed to multiple receive registration functions.

int channel There are a total of 16 CAN channels. You can either specify a channel
to use for the receive request, or you can specify a value of -1, which
allows the system to select an unused channel.

Returns:

A value 0 to 15 --- The channel this request is assigned to.
Note: This value must be stored to later call UnRegisterCanFifo
CAN_CHANNEL_USED --- If the channel is used or there are no free channels

Example:

OS_FIFO fifo;

OSFifoInit(&fifo);

int chan = RegisterCanRxFifo(0x1234, &fifo);

if (chan > 0)

{

 CanRxMessage can_msg(&fifo, 30*TICKS_PER_SECOND);

}

The NetBurner Runtime Libraries Reference

34

3.5.7. RegisterCanSpecialRxFifo

Synopsis:

int RegisterCanSpecialRxFifo(DWORD id, DWORD spl_mask, OS_FIFO * pFifo, int channel=-1);

Description:

This function instructs the CAN system to start listening for a specific CAN ID. Any incoming CAN frames that
match the ID (as set by the appropriate mask) will be placed into the FIFO. Note: Some applications may
require more than one channel mask. The NetBurner CAN device can have up to 3 masks:

The global mask for channels 0 -13
A mask for channel 14
A mask for channel 15

Note: The masks for channels 14 and 15 are set using the spl_mask parameter unique to this function.

Parameters:

Type Name Description

DWORD id The identifier to match on received frames. This is modified by the
passed in mask.

DWORD spl_mask There are only two channels available for use with the special
mask so use this call sparingly and only if really needed.

OSFifo * pFifo A pointer to the FIFO, used to communicate between the CAN
subsystem and the CanRxMessage Class. The FIFO must be
initialized first. The same FIFO can be passed to multiple receive
registration functions.

int channel There are a total of 16 CAN channels. You can either specify a
channel to use for the receive request, or you can specify a value
of -1, which allows the system to select an unused channel.

Returns:

A value 0 to 15 --- The channel this request is assigned to.
Note: This value must be stored to later call UnRegisterCanFifo
CAN_CHANNEL_USED --- If the channel is used or there are no free channels

The NetBurner Runtime Libraries Reference

35

3.5.8. UnRegisterCanFifo

Synopsis:

int UnRegisterCanFifo(int channel);

Description:

This function disconnects a receiver channel from a FIFO.

Parameters:

Type Name Description

int channel The channel to remove.

Returns:

CAN_OK --- If successful
CAN_CHANNEL_NOT_USED --- If the channel is not currently in use

The NetBurner Runtime Libraries Reference

36

3.5.9. SendMessage

Synopsis:

int SendMessage(DWORD id, BYTE * data, BYTE len, WORD timeout, int channel = -1);

Description:

This function sends a message to a device with the specified id. To send a message, one of the 16 channels
must be available. Note: The channel will automatically be freed once the message has been sent.

Parameters:

Type Name Description

DWORD id The identifier to send.

BYTE * data A pointer to the data to send.

BYTE len The length of the data. It must be less than or equal to 8 bytes.

WORD timeout How long to wait for confirmation it sent. 0 = wait forever. 0xFFFF =
don't wait at all. Any other timeout value blocks until it is actually sent.

int channel The channel to use. A value of -1 will allow the system to select an
unused channel.

Returns:

CAN_OK --- If the message was sent
CAN_CHANNEL_USED --- Can't send because the channel was already in use or no channels available
CAN_TIMEOUT --- Did not send in the time allotted

The NetBurner Runtime Libraries Reference

37

3.6. MACROS

3.6.1. CAN_EXTENDED_ID_BIT

Synopsis:

#define CAN_EXTENDED_ID_BIT(0x20000000)

Description:

This macro takes the single bit used by the API to indicate an extended ID.

3.6.2. ExtToNbId

Synopsis:

#define ExtToNbId(id) (id | CAN_EXTENDED_ID_BIT)

Description:

This macro will make a system recognized Extended ID from either an Extended (29 bit) CAN Identifier or
from a Normal (11 bit) CAN Identifier.

3.6.3. NormToNbId

Synopsis:

#define NormToNbId(id) ((id & 0x7ff)<<18)

 Description:

This macro creates a Normal ID, and also an ID set from a normal id in the range 0 to 2048.

The NetBurner Runtime Libraries Reference

38

3.6.4. IsNBIdExt

Synopsis:

#define IsNBIdExt(id) ((id & (CAN_EXTENDED_ID_BIT|0x3FFFF))!=0)

Description:

This macro determines if the ID is extended.

3.6.5. NbToExtId

Synopsis:

#define NbToExtId(id) (id & 0x1FFFFFFF)

Description:

This macro strips the extra flag, removing the API extended flag from the ID.

3.6.6. NbToNormId

Synopsis:

#define NbToNormId(id) ((id >> 18)& 0x7FF)

Description:

This macro will shift a Normal ID so that it has a value 0 to 1023. Some CAN systems will treat normal ID's
as an integer from 0 to 2048. Other CAN systems may treat normal IDs as 28 bit values where the bottom 17
bits are zero. This macro will convert our Normal ID format into the 0 to 2048 format.

The NetBurner Runtime Libraries Reference

39

4. Command Processor Library

4.1. Introduction

The Command Processor is a system program that accepts user commands and converts them into the
machine commands required by the operating system. The Command Processor receives and executes
operating system commands. After you enter a command, the command processor analyzes the syntax to
make sure the command is valid, and then either executes the command or issues an error warning.

Header File

#include <command.h> // Found in C:\Nburn\include

Functions

CmdStartCommandProcessor --- Starts the command processor
CmdAddCommandFd --- Adds an established fd connection to the list of fds managed by the command
processor
CmdRemoveCommandFd --- Removes an established fd
CmdListenOnTcpPort --- Listens for a connection on a TCP port
CmdStopListeningOnTcpPort --- Stops listening for connections on the specified port
*CmdAuthenticateFunc --- Authenticates the username and password
*CmdCmd_func --- Processes a command
*CmdConnect_func --- Called whenever a new connection is established
*CmdPrompt_func --- Called to display a command prompt
*CmdDisConnect_func --- Called whenever a command is disconnected
SendToAll --- Send to all connected sockets, excluding "Listening" sockets

Globals

CmdIdleTimeout
*Cmdlogin_prompt

The NetBurner Runtime Libraries Reference

40

4.2. CmdStartCommandProcessor

Synopsis:

int CmdStartCommandProcessor(int priority);

Description:

This function starts the Command Processor.

Parameters:

Type Name Description

int priority The UCOS task priority

Returns:

CMD_OK --- On Success
CMD_FAIL --- On Failure

Example:

The newdemo application --- Located by default in your C:\Nburn\examples directory.

Warning: This application will not run on a SB72

The NetBurner Runtime Libraries Reference

41

4.3. CmdAddCommandFd

Synopsis:

int CmdAddCommandFd(int fd, int require_auth, int time_out_conn, int local_echo=TRUE)

Description:

This function adds an established file descriptor (fd) connection to the list of file descriptors managed by the
command processor.

Parameters:

Type Name Description

int fd The file descriptor

int require_auth Do we authenticate the connection on this file descriptor

int time_out_conn Do we time out the connection on this file descriptor

int local_echo=TRUE The command processor will echo the file descriptor.

Returns:

CMD_OK --- On Success
CMD_FAIL --- On Failure
CMD_TO_MANY_FDS --- If there are too many file descriptors

The NetBurner Runtime Libraries Reference

42

4.4. CmdRemoveCommandFd

Synopsis:

int CmdRemoveCommandFd(int fd);

Description:

This function removes an established file descriptor (either a TCP or a Serial connection).

Parameters:

Type Name Description

int fd The file descriptor

Returns:

CMD_OK --- On Success
CMD_FAIL --- On Failure

The NetBurner Runtime Libraries Reference

43

4.5. CmdListenOnTcpPort

Synopsis:

int CmdListenOnTcpPort(WORD port, int do_telnet_processing, int max_connections)

Description:

This function starts listening for a connection on a TCP port. Telnet is a user command and an underlying
TCP/IP protocol for accessing remote computers.

Parameters:

Type Name Description

WORD port The port number

int do_telnet_processing 1 = Negotiate a Telnet session
0 = Standard TCP connection

int max_connections Maximum number of connections allowed on this
port (system maximum is 30).

Returns:

CMD_OK --- On Success
CMD_FAIL --- On Failure

The NetBurner Runtime Libraries Reference

44

4.6. CmdStopListeningOnTcpPort

Synopsis:

int CmdStopListeningOnTcpPort(WORD port);

Description:

This function stops listening for connections on the specified port. Note: This function also closes all open
connections that were based on that specified port.

Parameters:

Type Name Description

WORD port TCP port number

Returns:

CMD_OK --- On Success
CMD_FAIL --- On Failure

The NetBurner Runtime Libraries Reference

45

4.7. *CmdAuthenticateFunc

Synopsis:

extern int (* CmdAuthenticateFunc)(const char * name, const char *passwd)

This function is of the form:

int AuthenticateCommand (const char * name, const char * passwd);

Description:

This external authentication function CALLBACK is used to verify the Username and Password. Note: If this
function pointer is not NULL, then each new Telnet session will be asked to authenticate the Username and
Password.

Parameters:

Type Name Description

const char *name A pointer to the Username.

const char *passwd A pointer to the Password.

Returns:

CMD_OK --- If the authentication was OK
CMD_CLOSE --- If the authentication causes the session to terminate (i.e. close)

The NetBurner Runtime Libraries Reference

46

4.8. *CmdCmd_func

Synopsis:

extern int (* CmdCmd_func)(const char *command, FILE *fRespondto, void *pData)

This function is of the form:

int ProcessCommand(const char * command, int fd_respondeto);

Description:

This is the command processing CALLBACK function.

Parameters:

Type Name Description

const char *command A pointer to the NULL terminated ASCII text of the
command.

FILE *fRespondto The file descriptor (fd) that all response should be sent to.
Note: Use fprintf or fiprintf to write to the file descriptor.

void *pData The pointer to a data object.

Returns:

CMD_OK --- If the command was OK
CMD_CLOSE --- If the command causes the session to terminate (i.e. close)

The NetBurner Runtime Libraries Reference

47

4.9. *CmdConnect_func

Synopsis:

extern void* (* CmdConnect_func)(FILE *fRespondto);

This function is of the form:

void ConnectCommand (FILE * fRespondto);

Description:

This is the connect CALLBACK function. Note: If this function pointer is not NULL, then the system will call
this function every time a new session is started.

Parameters:

Type Name Description

FILE *fRespondto The file descriptor (fd) that all response should be sent to.
Note: Use fprintf or fiprintf to write to the file descriptor.

Returns:

An arbitrary void * data item to be associated with this session

The NetBurner Runtime Libraries Reference

48

4.10. *CmdPrompt_func

Synopsis:

extern void (* CmdPrompt_func)(FILE *fRespondto, void *pData)

This function is of the form:

void PromptCommand(int fd_respondeto)

Description:

This is a prompt Callback function. Note: If this function pointer is not NULL, then the system will call this
function every time a new prompt line needs to be displayed.

Parameters:

Type Name Description

FILE *fRespondto The file descriptor (fd) that all response should be sent to.
Note: Use fprintf or fiprintf to write to the file descriptor.

void *pData The pointer to a data object that can be used in the prompt. The
value of pData is the value returned by *CmdConnect_func.
This means that you can change the value of pData for each
connection, and make that value part of the command prompt
(e.g. NB:1>, NB:2>, NB:3>, etc.).

Returns:

Nothing --- This is a void function

Example:

#include <command.h>

void ProcessPrompt(FILE *fp, void *pData)

{

 // The following code will produce the prompt: "MyPrompt> "

 fiprintf(fp, "\nMyPrompt> ");

}

void UserMain(void *pd)

{

 CmdPrompt_func = ProcessPrompt;

 while (1)

 OSTimeDly(TICKS_PER_SECOND);

}

The NetBurner Runtime Libraries Reference

49

4.11. *CmdDisConnect_func

Synopsis:

extern void (* CmdDisConnect_func)(FILE *fRespondto, int cause, void *pData)

This function is of the form:

void DisconnectCommand(int fd_respondeto, int cause);

Description:

This is a disconnect CALLBACK function. Note: If this function pointer is not NULL, then the system will call
this function every time a session is terminated.

Parameters:

Type Name Description

FILE *fRespondto The file descriptor (fd) that all responses should be sent
to. Note: Use fprintf or fiprintf to write to the file
descriptor.

int cause

The reason why it is disconnected. The current values of
cause are:
#define CMD_DIS_CAUSE_TIMEOUT (1)
#define CMD_DIS_CAUSE_CLOSED (2)
#define CMD_DIS_SOCKET_CLOSED (3) --- Do not
send a response for this case.
#define CMD_DIS_AUTH_FAILED (4) --- Do not send a
response for this case.

void *pData The pointer to a data object.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

50

4.12. SendToAll

Synopsis:

void SendToAll (char *buffer, int len, BOOL include_serial_ports)

Description:

This function will send to all connected sockets, excluding "Listening sockets".

Parameters:

Type Name Description

char *buffer Pointer to the buffer.

int len The length of what is in the buffer.

BOOL include_serial_ports Do you want to include Serial ports or just TCP ports?

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

51

4.13. Globals

4.13.1. CmdIdleTimeout

Synopsis:

extern int CmdIdleTimeout;

Description:

The number of seconds a connection is idle before it is terminated due to inactivity.

4.13.2. *Cmdlogin_prompt

Synopsis:

extern const char *Cmdlogin_prompt;

Description:

If this is not NULL, then it will be sent to the socket on connection (before authentication is tried).

The NetBurner Runtime Libraries Reference

52

5. DHCP Library

5.1. Introduction

This Library provides a DHCP Client to dynamically get IP Addresses using the RFC1541 DHCP protocol. To
use this Library you must call the StartDHCP() function after the IP stack is initialized. Once the DHCP
Client is stared, it will automatically renew the DHCP address when necessary.

The Network Programmers Guide provides a complete section on using DHCP as a simple function call, and
also a detailed implementation in which you can create your own DHCP object for more detailed control.

Header File

#include <dhcpclient.h> // Found in C:\Nburn\include

Most Commonly Used Functions

Advanced Functions for DHCP Objects

The following functions require an intimate understanding of the RFC DHCP implementation. Before using
any of these functions please read the Changing IP Address section of the Network Programming Guide,
which provides examples on how to use these functions. If the DHCP object was created using
GetDHCPAddress or GetDHCPAddressIfNecessary, it is also possible to get a hold of the DHCP object itself
from the network InterfaceBlock structure as the element “dhcpClient”.

StartDHCP Starts the DHCP client

StopDHCP Stops the DHCP client, and release any active DHCP lease

RebindDHCP Forces a DHCP rebind

RenewDHCP Forces a DHCP renew

GetDhcpRebindTime Returns time at which a rebind will occur in seconds (system clock)

GetDhcpRenewTime Returns time at which a renew will occur in seconds (system clock)

GetDhcpExpirationTime Returns time at which a lease will expire in seconds (system clock)

GetDHCPState Get the current DHCP state

SetDHCPDiscoverSeconds Set the number of second to be advertised when trying to get a DHCP
address

GetDHCPAddress Returns DHCP_OK on success. Automatic DHCP renewal.

GetDHCPAddressIfNecessary Same as GetDHCPAddress, but checks to verify EthernetIP is
0.0.0.0 so no static IP address is configured.

ValidDhcpLease Returns TRUE if lease is valid

GetRemainingDhcpLeaseTime Returns the number of seconds remaining on the current lease

The NetBurner Runtime Libraries Reference

53

5.2. Global Variables

const char *pDHCPOfferName Pointer to define a name for the DHCP device

Type Name Description

IPADDR DhcpClientIP The allocated IP Address.

IPADDR DhcpClientMask The allocated Subnet Mask.

IPADDR DhcpServerIP The Server ID.

IPADDR DhcpRelayIP The Relay Agent.

IPADDR DhcpRouterIP The Gateway IP Address.

IPADDR DhcpDNSIP The DNS IP Address.

Volatile DWORD DhcpLeaseTimer Tracks the current lease time.

DWORD DhcpLeaseStart IP Address lease start time in seconds.

DWORD DhcpLeaseTime IP Address lease time in seconds.

DWORD DhcpRenewTime Time to renewing state in seconds.

DWORD DhcpRebindTime Time to rebinding state in seconds.

const char *pDHCPOfferName The name to give this DHCP client.
Note: This name must be set before
calling StartDHCP.

5.3. DHCP Example

The most common method of starting DHCP is with the GetDhcpAddress() function, which will automatically
handle renewing the DHCP lease.

void UserMain(void *pd)

{

 iprintf("Mod5270 Factory Demo Program\r\n");

 InitializeStack(); // Initialize TCP/IP stack

 if (EthernetIP == 0)

 {

 iprintf("Trying DHCP\r\n");

 GetDHCPAddress();

 iprintf("DHCP assigned the IP address of :");

 ShowIP(EthernetIP);

 iprintf("\r\n");

 }

 // remainder of application

}

The NetBurner Runtime Libraries Reference

54

5.4. GetDHCPAddress

Synopsis:

int GetDHCPAddress(int interface = 0);

Description:

This function encapsulates all of the code necessary to start the DHCP Client and automatically renew the
lease.

Parameters:

The network interface. If no parameter is specified, the default interface will be used.

Return Values:

DHCP_OK (0) --- The system found a DHCP address
DHCP_FAILED (-1) --- The system failed to acquire a DHCP address

The NetBurner Runtime Libraries Reference

55

5.5. GetDHCPAddressIfNecessary

Synopsis:

int GetDHCPAddressIfNecessary(int interface = 0);

Description:

This function encapsulates all of the code necessary to start the DHCP Client and automatically renew the
lease. It is the most common way to use DHCP. It is similar to GetDHCPAddress, but adds a check to verify
the Ethernet IP address is 0.0.0.0 before attempting to get a DHCP IP address. The assumption is that if a
static IP address is configured, then DHCP should not be used.

Parameters:

The network interface. If no parameter is specified, the default interface will be used.

Return Values:

DHCP_OK (0) --- The system found a DHCP address
DHCP_FAILED (-1) --- The system failed to acquire a DHCP address

The NetBurner Runtime Libraries Reference

56

5.6. GetRemainingDhcpLeaseTime

Synopsis:

DWORD GetRemainingDhcpLeaseTime();

Description:

DHCP uses the concept of a "lease" or amount of time that a given IP address will be valid for a computer.
Therefore, call this function to retrieve the number of seconds remaining for the current valid "lease".

Parameters:

None

Returns:

The amount of times left (in seconds) on the current DHCP "lease"

The NetBurner Runtime Libraries Reference

57

5.7. ValidDhcpLease

Synopsis:

BOOL ValidDhcpLease();

Description:

DHCP uses the concept of a "lease" or amount of time that a given IP Address will be valid for a computer.
Therefore, call this function to determine the validity of the DHCP "lease".

Parameters:

None

Returns:

1 - TRUE --- If the “lease” is valid
0 - FALSE --- If the “lease” is not valid

The NetBurner Runtime Libraries Reference

58

5.8. StartDHCP

Synopsis:

void StartDHCP(OS_SEM * pDhcpSemaphore);

Description:

This function starts the DHCP client, and should only be used if you have a requirement to create your own
DHCP instance. Most application will use the functions: GetDhcpAddress() or GetDhcpAddressIfNecessary(
) that start the DHCP service automatically.

If you point the DHCP global variable pDHCPOfferName to a name, the DHCP system will assign that name.
It will return immediately, and you need to either watch the semaphore, or monitor the status of DHCP using
the GetDHCPState function before you assume that the IP Address has been setup. When you use this
function to start DHCP it will automatically renew the DHCP lease.

Parameters:

Type Name Description

OS_SEM *pDhcpSemaphore A pointer to a Semaphore - to notify when DHCP is
complete. Note: It may be passed in as NULL.

Returns:

Nothing --- This is a void function

Example Code:

Refer to the Network Programming Guide for detailed information on creating your own DHCP instance.

#include <dhcpclient.h>

{

 OS_SEM DHCPSem;

 OSSemInit(&DHCPSem,0);// Initialize the Semaphore

 StartDHCP(&DHCPSem); // Start DHCP

 if (OSSemPend(&dhcpSem,20*TICKS_PER_SECOND)==OS_TIMEOUT) // Wait 20 sec

 {

 // DHCP did not initialize, handle the error here

 }

}

The NetBurner Runtime Libraries Reference

59

5.9. StopDHCP

Synopsis:

void StopDHCP();

Description:

This function stops the DHCP client and releases any DHCP leases we own. Standard DHCP Client
operation does not need to call this function, it should only be used when creating your own DHCP object.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

60

5.10. RebindDHCP

Synopsis:

void RebindDHCP();

Description:

DHCP uses the concept of a "lease" or amount of time that a given IP Address will be valid for a computer.
Therefore, calling this function will result in a "lease" rebind (i.e. a forced rebinding of the lease). Standard
DHCP Client operation does not need to call this function, it should only be used when creating your own
DHCP object.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

61

5.11. RenewDHCP

Synopsis:

void RenewDHCP();

Description:

DHCP uses the concept of a "lease" or amount of time that a given IP Address will be valid for a computer.
Therefore, calling this function will result in the "lease" being renewed (i.e. a forced renew of the lease).
Standard DHCP Client operation does not need to call this function, it should only be used when creating
your own DHCP object.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

62

5.12. GetDHCPState

Synopsis:

int GetDHCPState();

Description:

This function returns the current state of the DHCP lease.

Parameters:

None

Returns:

SDHCP_DISCOVER --- The system is discovering the DHCP servers
SDHCP_OFFER --- The system has responded to an Offer
SDHCP_ACK --- The System has acknowledged the Offer
SDHCP_INIT --- The System is reinitializing
SDHCP_CMPL --- The System has completed the last transaction
SDHCP_RENEW --- The System is in the process of renewing
SDHCP_REBIND --- The System has failed the Renew and is trying to Rebind
SDHCP_RELEASE --- The System is trying to release the Lease
SDHCP_NOTSTARTED --- The System has not been initialized

The NetBurner Runtime Libraries Reference

63

5.13. GetDhcpRenewTime

Synopsis:

DWORD GetDhcpRenewTime() { return DhcpRenewTime; }

Description:

Returns time at which a renew will occur (50% of lease time), in seconds. The value is referenced to the
system seconds counter: Secs.

Parameters:

None

Returns:

Returns time at which a renew will occur in seconds. The value is referenced to the system seconds counter:
Secs.

The NetBurner Runtime Libraries Reference

64

5.14. GetDhcpRebindTime

Synopsis:

DWORD GetDhcpRenewTime()

Description:

Returns time at which a rebind will occur (approx. 87.5% of lease time) in seconds. The value is referenced
to the system seconds counter: Secs.

Parameters:

None

Returns:

Returns time at which a rebind will occur in seconds. The value is referenced to the system seconds counter:
Secs.

The NetBurner Runtime Libraries Reference

65

5.15. GetDhcpExpirationTime

Synopsis:

DWORD GetDhcpExpirationTime()

Description:

Returns time at which a lease will expire in seconds. The value is referenced to the system seconds counter:
Secs.

Parameters:

None

Returns:

Returns time at which a lease will expire in seconds. The value is referenced to the system seconds counter:
Secs.

The NetBurner Runtime Libraries Reference

66

6. AutoIP Library

6.1. Introduction
The AutoIP Library provides a client daemon (AutoIPClient) for assigning an IP address to a network
interface using the Auto IP configuration process. It allows a device to configure a nonconflicting IP address
dynamically without reliance on a central authority or resource (unlike DHCP). It should be noted that there
should never, under any circumstances, be a DHCP client and an AutoIP client running on the same
interface. This will lead to abarent behavior resulting in a shifting IP address and configurations for that
interface.

When this library is in use, the main library is compiled to create a multihome interface off of the primary
network interface that runs an AutoIP client. The intent of this feature is to allow a user to directly connect to
the device, without assigning a static ip to either the device or their computer, in order to facilitate
development or field access.

To disable the AutoIP library and the multihome interface, remove or comment out the #define AUTOIP in
<predef.h> and then recompile the main library.

Header File

#include <autoip.h> // Found in C:\Nburn\include

Functions for AutoIPClient objects

start Starts the AutoIPClient.

stop Stops the AutoIPClient and resets the interface’s
IP and configuration.

restart Resets the interface and restarts the AutoIPClient.

6.2. AutoIPClient

Synopsis:

AutoIPClient(int interface);

Description:

Constructor for the AutoIPClient autoip client daemon.

Parameters:

interface – The network interface number the client will be using/configuring.

Return Values:

None.

The NetBurner Runtime Libraries Reference

67

6.3. start

Synopsis:

void start();

Description:

This function starts the AutoIPClient state machine.

Parameters:

None.

Return Values:

None.

6.4. stop

Synopsis:

void stop();

Description:

This function stops the AutoIPClient state machine and resets its network interface’s IP and configuration.

Parameters:

None.

Return Values:

None.

6.5. restart

Synopsis:

void restart();

Description:

This function resets its network interface’s IP and configuration then restarts the AutoIPClient state machine.

The NetBurner Runtime Libraries Reference

68

Parameters:

None.

Return Values:

None.

7. FTP Client Library

7.1. Introduction

The FTP Client module provides code for sending and receiving files from a FTP server. Most embedded
platforms, including the NetBurner embedded development environment, do not have a built-in file system
(although you could implement a file system on your own). This means that the Client FTP code does not
use files as you might think of them on a computer's hard drive. Instead, you will create data streams that are
associated with file names. In other words, a "file" is just a collection of bytes that can be stored in Flash
memory or RAM.

When you read a file from the external FTP server using the FTPGetFile function, you will receive a file
descriptor (fd), not a file. If you read the bytes/data from this file descriptor you will receive the contents of
the remote file as a stream of data. The received data is stored in Flash or RAM.

When you create a file on a remote FTP server using the FTPSendFile, function, then you write the stream of
data that will become the remote file associated with the file descriptor. If the remote FTP server has a file
system (e.g. a Unix server running a FTP daemon), then the stream of data you wrote would likely be stored
as a file on a computer's hard drive.

Some basic knowledge of the inner workings of FTP will be helpful in using this module. Two recommended
references are TCP/IP Illustrated Volume 1 (Chapter 27) by Richard Stevens, and/or RFC 959.

Header File

#include <ftp.h> // Found in C:\Nburn\include

FTP Client Module Description

The basic procedure to use the FTP Client module is:

Open the FTP session (with the FTP_InitializeSession function)
Send commands within the FTP session (with the FTPGetList, FTPGetFileNames, FTPGetFile, and/or
FTPSendFile functions)
Close the session (with the FTP_CloseSession function)

FTP Client Functions to Initialize and/or Close a FTP Session

FTP_InitializeSession --- Create/Initialize a connection to an FTP Server
FTP_CloseSession --- Close the FTP session

The NetBurner Runtime Libraries Reference

69

FTP Client Directory Functions

FTPGetDir --- Get the current working directory
FTPSetDir --- Set the current working directory
FTPDeleteDir --- Delete a directory
FTPMakeDir --- Make a directory
FTPUpDir --- Move up one directory level

FTP Client Miscellaneous File Functions

FTPDeleteFile --- Delete a file on the server
FTPRenameFile --- Rename a file on the server

FTP Client Send File Function

FTPSendFile --- Setup to send a file on an existing FTP session

FTP Client Get File Functions

FTPGetFile --- Setup to receive a file on an existing FTP session
FTPGetList --- Setup to receive a directory on an existing FTP session
FTPGetFileNames --- Setup to receive a just the file names from the existing FTP session

FTP Client Low Level Functions

FTPRawCommand --- Send a command and get a response from the control connection
FTPGetCommandResult --- Get a response from the control connection without sending a command
FTPRawStreamCommand --- Send a command and get a response over a stream connection

FTP Client Example Program

See FTPClient example application in \nburn\examples\FTPClient

The NetBurner Runtime Libraries Reference

70

7.2. FTP_InitializeSession

Synopsis:

int FTP_InitializeSession(IPADDR server_address, WORD port, PCSTR UserName,
 PCSTR PassWord, DWORD time_out)

Description:

This function creates and initializes a connection to an FTP server. This call creates a connection to a FTP
server, and logs in with the username and password specified in the function call. The session handle
returned from this call is used by the FTP file and directory functions. Note: The FTP_CloseSession function
is used to close the session.

Parameters:

Type Name Description

IPADDR server_address The IP Address of the FTP Server.

WORD port The port number to connect to on the Server.

PCSTR UserName The account User Name.

PCSTR PassWord The account password.

DWORD time_out The number of time ticks to wait.

Return Values:

> 0 --- FTP session handle
FTP_TIMEOUT --- Time out
FTP_PASSWORDERROR --- Password error
FTP_CONNECTFAIL --- Network error
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

71

7.3. FTP_CloseSession

Synopsis:

int FTP_CloseSession(int session);

Description:

This function closes the specified FTP session. This function should be called when an FTP session is
complete.

Warning: Failure to call this function will result in memory/resource leaks.

Parameters:

Type Name Description

int session The FTP session handle.

Return Values:

FTP_OK --- Closed successfully
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command error
FTP_NETWORKERROR --- Network error
FTP_BADSESSION --- Invalid session number

The NetBurner Runtime Libraries Reference

72

7.4. FTPGetDir

Synopsis:

int FTPGetDir(int ftp_Session, char * dir_buf, int nbytes, WORD timeout)

Description:

This function gets the current working directory name on the FTP server. This function also copies the name
of the current working directory into the buffer specified by dir_buf.

Parameters:

Type Name Description
int ftp_Session The FTP session handle returned from the

FTP_InitializeSession call.
char *dir_buf A pointer to the buffer that will hold the directory name.
int nbytes The maximum number of bytes to copy.
WORD timeout The number of ticks to wait for timeout.

Return Values:

> 0 --- The number of bytes read
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Could not execute command
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

73

7.5. FTPSetDir

Synopsis:

int FTPSetDir(int ftp_Session, const char * new_dir, WORD timeout)

Description:

This function sets the current working directory of the FTP Server.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *new_dir The name of the directory to change to

WORD timeout The number of timer ticks to wait for timeout.

Return Values:

FTP_OK --- Set successfully
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

74

7.6. FTPDeleteDir

Synopsis:

int FTPDeleteDir(int ftp_Session, const char * dir_to_delete, WORD timeout)

Description:

This function deletes a directory on the FTP server.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *dir_to_delete The name of the directory to be deleted.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

FTP_OK --- Deleted successfully
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

75

7.7. FTPMakeDir

Synopsis:

int FTPMakeDir(int ftp_Session, const char * dir_to_make, WORD timeout)

Description:

This function makes a directory on the FTP server.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *dir_to_make The name of the directory to create.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

FTP_OK --- Created successfully
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

76

7.8. FTPUpDir

Synopsis:

int FTPUpDir(int ftp_Session, WORD timeout)

Description:

This function moves up one directory level in the directory hierarchy on the FTP server.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

FTP_OK --- Changed directory successfully
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

77

7.9. FTPDeleteFile

Synopsis:

int FTPDeleteFile(int ftp_Session, const char * file_name, WORD timeout)

Description:

This function deletes a file on the FTP server.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *file The file name to be deleted.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

FTP_OK --- Deleted successfully
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

78

7.10. FTPRenameFile

Synopsis:

int FTPRenameFile(int ftp_Session, const char * old_file_name, const char * new_file_name,
 WORD timeout)

Description:

This function renames a file on the FTP server.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *old_file_name The file name to be renamed.

const char *new_file_name The new file name.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

FTP_OK --- Renamed successfully
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

79

7.11. FTPSendFile

Synopsis:

int FTPSendFile(int ftp_Session, const char * full_file_name, BOOL bBinaryMode, WORD timeout)

Description:

This function call initializes the send file process to send a file to a FTP server. It sets up a new TCP
connection that will be used to transfer the file data. To actually send the file data, use the returned file
descriptor and the standard I/O write commands, such as write, writestring, or writeall. After sending the
data, close the returned file descriptor with the close function.

Important: After the file has been sent, you must call FTPGetCommandResult to get the result from the
write. Warning: Failing to do this will cause the system to get out of sync. A return value of 226 is
normal.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *full_file_name The file name that the FTP server should assign
to the data sent.

BOOL bBinaryMode True if the file is to be transferred in binary mode.
False for ASCII.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

> 0 --- FTP write file descriptor
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

80

Example:

// Setup to send file and get file descriptor fd

// The “ftp” session handle would has already been created by the

// FTP_Initialize Session()call

int fd = FTPSendFile(ftp,”FOOBAR.TXT”,FALSE,100);

if (fd > 0)

{

 writestring(fd,”This is a test file\r\n”);

 writestring(fd,”This is line 2 of the test file\r\n”);

 writestring(fd,”Last Line\r\n”);

 close(fd);

 rv = FTPGetCommandResult(ftp,tmp_resultbuff,255,100);

 if (rv != 226)

 iprintf(“Write Error Command result = %d

 %s\r\n",rv,tmp_resultbuff);

}

else

 iprintf(“Failed to create file FOOBAR.TXT\r\n”);

The NetBurner Runtime Libraries Reference

81

7.12. FTPGetFile

Synopsis:

int FTPGetFile(int ftp_Session, const char * full_file_name, BOOL bBinaryMode, WORD timeout)

Description:

This function call initializes the receive file process used to get a file from a FTP server. It sets up a new TCP
connection that will be used to transfer the file data. To actually receive the file data, use the returned file
descriptor and the standard I/O read commands, such as the ReadWithTimeout function.

Note: It would be unwise to use the read function, because it would block forever if the connection were lost
to the FTP Server. After reading the data, close the returned file descriptor with the close function.

Important: After the file descriptor has been returned, you must call the FTPGetCommandResult function to
get the result from the read. Warning: Failing to do this will cause the system to get out of sync. A
return value of 226 is normal.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *full_file_name The complete file name to be transferred,
including path.

BOOL bBinaryMode True if the file is to be transferred in binary mode.
False for ASCII.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

> 0 --- FTP read file descriptor
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

82

Example:

// Setup file transfer and get file descriptor fdr

int fdr = FTPGetFile(ftp, "FOOBAR.TXT", FALSE, 100);

if (fdr > 0)

{

 // The following function reads data from the specified file until complete.

 // This is the location where you could use

 // a different mechanism to retrieve the data.

 ShowFileContents(fdr);

 close(fdr);

 // Now read the command result code from the GetFile command

 rv = FTPGetCommandResult(ftp, tmp_resultbuff, 255, 100);

 if (rv != 226)

 iprintf("Error Command result = %d %s\r\n", rv, tmp_resultbuff);

}

else

 iprintf("Failed to get file FOOBAR.TXT\r\n");

// This function reads the data stream from the fd and

// displays it to stdout, which is usually the com1 serial

// port on the NetBurner board.

void ShowFileContents(int fdr)

{

iprintf("\r\n[");

int rv;

do

{

 rv = ReadWithTimeout(fdr,tmp_resultbuff,255,20);

 if (rv < 0)

 iprintf("RV = %d\r\n",rv);

 else

 {

 tmp_resultbuff[rv] = 0;

 iprintf("%s",tmp_resultbuff);

 }

}

while (rv > 0);

iprintf("]\r\n");

}

The NetBurner Runtime Libraries Reference

83

7.13. FTPGetList

Synopsis:

int FTPGetList(int ftp_Session, const char * full_dir_name, WORD timeout);

Description:

This function initializes the get directory process to receive a full directory listing from the FTP server. A new
TCP connection is created to receive the file listing from the server. To actually receive the list use the
returned file descriptor to read the list using the standard I/O read commands, such as ReadWithTimeout.
After reading the data, close the returned file descriptor with the close function.

Important: After you have received the list, you must call the FTPGetCommandResult function to get the
result from the read. Warning: Failing to do this will cause the system to get out of sync. A return value
of 226 is normal.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *full_dir_name The complete directory name to be transferred.
Can be NULL.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

> 0 --- FTP read file descriptor
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

84

Example:

int fdr = FTPGetList(ftp,NULL,100);

if (fdr > 0)

{

 //This function reads data from the fd until complete.

 ShowFileContents(fdr);

 // You would probably use a different function.

 // The source for this function is shown in the module example.

 close(fdr);

 // Now read the command result code from the GetList command

 rv = FTPGetCommandResult(ftp,tmp_resultbuff,255,100);

 if (rv != 226)

 iprintf("Error Command result = %d %s\r\n",rv,tmp_resultbuff);

}

else

 iprintf("Failed to get file list\r\n");

// This function reads the data stream from the fd and displays

// it to stdout, which is usually the com1 serial port on the

// NetBurner board.

void ShowFileContents(int fdr)

{

 iprintf("\r\n[");

 int rv;

 do

 {

 rv = ReadWithTimeout(fdr,tmp_resultbuff,255,20);

 if (rv < 0)

 {

 iprintf("RV = %d\r\n",rv);

 }

 else

 {

 tmp_resultbuff[rv] = 0;

 iprintf("%s",tmp_resultbuff);

 }

 }

 while (rv > 0);

 iprintf("]\r\n");

}

The NetBurner Runtime Libraries Reference

85

7.14. FTPGetFileNames

Synopsis:

int FTPGetFileNames(int ftp_Session, const char * full_dir_name, WORD timeout)

Description:

This function initializes the get directory process to receive just the file names listing from the server. It sets
up a new TCP connection to receive the file listing from the server. To actually receive the list, use the
returned file descriptor to read the data using the standard I/O read commands, such as ReadWithTimeout.

Warning: It would be unwise to use the read function, because it would block forever if the connection were
lost to the FTP Server. After reading the data, close the returned file descriptor with the close function.

After the file connection has been established, you must call the FTPGetCommandResult function to get the
result from the read. Warning: Failing to do this will cause the system to get out of sync. A return value
of 226 is normal.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *full_dir_name The complete file name to be transferred,
including the path.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

int --- The command success code
> 0 --- FTP read file descriptor
FTP_TIMEOUT --- Time out
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

86

Example:

int fdr = FTPFileNames(ftp,NULL,100);

if (fdr > 0)

{

 // This function reads data from the fd until complete. You may

 // want to use a different method here.

 ShowFileContents(fdr);

 close(fdr);

 // Now read the command result code from the GetList command

 rv = FTPGetCommandResult(ftp,tmp_resultbuff,255,100);

 if (rv != 226)

 iprintf("Error Command result = %d %s\r\n",rv,tmp_resultbuff);

}

else

 iprintf("Failed to get file list\r\n");

// This function reads the data stream from the fd and

// displays it to stdout, which is usually the com1 serial

// port on the NetBurner board.

void ShowFileContents(int fdr)

{

 iprintf("\r\n[");

 int rv;

 do

 {

 rv = ReadWithTimeout(fdr,tmp_resultbuff,255,20);

 if (rv < 0) iprintf("RV = %d\r\n",rv);

 else

 {

 tmp_resultbuff[rv] = 0;

 iprintf("%s",tmp_resultbuff);

 }

 }

 while (rv > 0);

 iprintf("]\r\n");

}

The NetBurner Runtime Libraries Reference

87

7.15. FTPRawCommand

Synopsis:

int FTPRawCommand(int ftp_Session, const char * cmd, char * cmd_buf, int nbytes, WORD timeout)

Description:

This function sends a command and gets a response from the FTP control connection. This command is the
basis for most of the FTP commands in the FTP module. It is used where a stream return is not expected.
Important: Using this command requires that you are familiar with the FTP Protocol details.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *cmd The command to send - not including the \r\n termination.

char *cmd_buf The buffer to hold the result from the server which
includes a CLF/LF at the end.

int nbytes

The maximum number of bytes in server response to copy
(including numeric code and null terminator).

WORD timeout The number of ticks to wait for a timeout.

Return Values:

> 0 --- The FTP numeric response code
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

88

7.16. FTPGetCommandResult

Synopsis:

int FTPGetCommandResult(int ftp_Session, char * cmd_buf, int nbytes, WORD timeout)

Description:

This function gets a response from the control connection without sending a command. This command may
be used after the following four functions to get the command result:

FTPGetList
FTPGetFileNames
FTPGetFile
FTPSendFile

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

char *cmd_buf The buffer to hold the result.

int nbytes The maximum number of bytes to copy.

WORD timeout The number of ticks to wait for a timeout.

Return Values:

> 0 --- The FTP read file descriptor
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

89

7.17. FTPRawStreamCommand

Synopsis:

int FTPRawStreamCommand(int ftp_Session, const char * cmd, int * pResult,
 char * cmd_buf, int nbytes, WORD timeout)

Description:

This function sends a command and gets a response over a stream connection. This command is the basis
for functions such as FTPGetList and FTPGetFiles. It is used where a stream return is expected.

After you have received or sent the data stream you must call FTPGetCommandResult to get the result from
the read or write. Warning: Failing to do this will cause the system to get out of sync. A return value of
226 is normal. However, other values such as 250 are also possible depending on the FTP server.

Parameters:

Type Name Description

int ftp_Session The FTP session handle returned from the
FTP_InitializeSession call.

const char *cmd The command to send - not including the \r\n termination.

int *pResult The FTP command result code.

char *cmd_buf The buffer to hold the command connection results from the
server, which includes a CR/LF at the end.

int nbytes The maximum number of bytes to copy into the cmd_buf
(includes numeric response code and null terminator).

WORD timeout The number of ticks to wait for a timeout.

Return Values:

> 0 --- FTP data channel file descriptor (Note: The FTP server will drop the data channel after completion of
sending data to the client that will cause a read error)
FTP_TIMEOUT --- Time out
FTP_COMMANDFAIL --- Command failed (e.g. a nonexistent directory)
FTP_CONNECTFAIL --- FTP failure
FTP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

90

8. FTP Server Library

8.1. Introduction

Implementing an FTP server in an embedded system without a built-in file system is not a trivial undertaking.
Most embedded applications do not require a file system, and a file system is not part of the standard
NetBurner package. If a file system is required for a specific application, it is the responsibility of the
programmer to implement the required features. A file system could be the trivially simple example of a
single file, or it could be quite complex.

Using the FTP Server requires that you, the programmer, write the functions defined in the FTP
documentation. These functions are "callback" functions that allow you to customize the FTP server actions
to suit your particular application. Note: All callback functions required for your application must be
implemented by you.

The NetBurner examples (C:\Nburn\examples) directory has three FTP server sample applications:

ftpd_trivial --- A simple example that reads and writes a single file.
ftpd_expose_html --- A more complex example that exposes all HTML served files to the FTP server.
ftpd_code_update --- This example shows you how to upgrade the NetBurner firmware and reset the system
using FTP.

Header File

#include <ftpd.h> // Found by default in C:\Nburn\include

Operational Functions

FTPDStart --- Starts the FTP Server task
FTPDStopReq --- Sends a stop request to the currently running FTPD

FTP Session Callback typedef

(FTPDCallBackReportFunct) --- The typedef for all directory reporting callbacks

FTP Session Callback Functions (These functions must be implemented by the programmer)

FTPDSessionStart --- Function called to indicate the start of a user session
FTPDSessionEnd --- Function called to indicate a user session will be terminated

FTP Directory Callback Functions (These functions must be implemented by the programmer)

FTPD_DirectoryExists --- Function called by the FTP Server to test for the existence of a directory
FTPD_CreateSubDirectory --- Function called by the FTP Server to create a directory
FTPD_DeleteSubDirectory --- Function called by the FTP Server to delete a directory
FTPD_ListSubDirectories --- Function called by the FTP Server to list all subdirectories under the current
directory

The NetBurner Runtime Libraries Reference

91

FTP File Callback Functions (These functions must be implemented by the programmer)

FTPD_FileExists --- Function to report on the whether or not a file exists
FTPD_SendFileToClient --- Function to send the contents of a file to a file descriptor
FTPD_AbleToCreateFile --- Function to report on the ability to create/receive a file
FTPD_GetFileFromClient --- Function to create/get a file
FTPD_DeleteFile --- Function to delete a file
FTPD_DeleteFile --- User supplied function to delete a file
FTPD_ListFile --- Lists every file in the current directory
FTPD_ListFile --- User supplied function that lists every file in the directory
FTPD_Rename --- User supplied function to rename a file

The NetBurner Runtime Libraries Reference

92

8.2. FTPDStart

Synopsis:

int FTPDStart(WORD port, BYTE server_priority)

Description:

This function starts the FTP Server task, which listens for incoming connections.

Warning: Only one instance of the FTPD is allowed.

Parameters:

Type Name Description

WORD port The TCP port to listen to for incoming FTP requests.

BYTE server_priority The uC/OS task priority for the FTP Server.

Return Values:

FTPD_RUNNING --- The FTPD is already running
FTPD_LISTEN_ERR --- The listen socket could not be opened
FTPD_OK --- The FTPD was successfully started
FTPD_FAIL --- The FTPD task could not be created

The NetBurner Runtime Libraries Reference

93

8.3. FTPDStopReq

Synopsis:

int FTPDStopReq()

Description:

This function sends a stop request to the currently running FTPD.

Parameters:

None

Return Values:

FTPD_RUNNING --- The FTPD is still running
FTPD_NOT_RUNNING --- The FTPD is no longer running

The NetBurner Runtime Libraries Reference

94

8.4. (FTPDCallBackReportFunct)

Synopsis:

typedef void (FTPDCallBackReportFunct)(int handle, const char * name_to_report)

Description:

This is the typedef for all directory reporting callbacks. This callback type definition is used by the directory
reporting functions.

Parameters:

Type Name Description

int handle The handle passed into the listing function.

const char *name_to_report The file name to report for use in a directory
listing.

Return Value:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

95

8.5. FTPDSessionStart

Synopsis:

void * FTPDSessionStart(const char * user, const char * passwd, const IPADDR hi_ip)

Description:

This function is called to indicate the start of a user Session. This function is called following the creation of a
new FTP session. This function needs to determine the validity of the user/password pair. The returned void
pointer will be passed to all access functions, which will then be asked to determine the validity of the
operation based on the permissions associated with the return value.

Parameters:

Type Name Description

const char *user The name of the user attempting to establish an
FTP session.

const char *passwd The password of the user attempting to establish an
FTP session.

const IPADDR hi_ip The IP Address of the Server trying to establish this
connection.

Return Values:

NULL --- The user name/password set is invalid
(obj) --- A non-null void pointer to an object that will be associated with this login session

The NetBurner Runtime Libraries Reference

96

8.6. FTPDSessionEnd

Synopsis:

void FTPDSessionEnd(void * pSession)

Description:

This function is called to indicate that a user session will be terminated. This callback function gives the user
program the opportunity to clean up any storage associated with the void pointer returned from the
FTPDSessionStart call.

Parameters:

Type Name Description

void *pSession The void * object returned from the FTPDSessionStart
function call.

Return Value:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

97

8.7. FTPD_DirectoryExists (User Defined)

Synopsis:

int FTPD_DirectoryExists(const char * full_directory, void * pSession)

Description:

This function called by the FTP Server to test for the existence of a directory. This function is called by the
FTP Server as the result of an attempt to change to a new directory. This function can also be used to
validate the permissions of the session. This function must be implemented by the programmer.

Parameters:

Type Name Description

const char *full_directory The name of the new directory to test.

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested directory exists
FTPD_FAIL --- The requested directory does not exist, or access is not permitted for the user

The NetBurner Runtime Libraries Reference

98

8.8. FTPD_CreateSubDirectory (User Defined)

Synopsis:

int FTPD_CreateSubDirectory(const char * current_directory, const char * new_dir, void * pSession)

Description:

This function is called by the FTP Server to create a directory. This function is called by the FTP Server as
the result of an attempt to create a new directory. This function can also be used to validate the permissions
of the session. This function must be implemented by the programmer.

Parameters:

Type Name Description

const char *current_directory The current value of the session directory.

const char *new_dir The directory to create under the current_directory.

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested directory was created
FTPD_FAIL --- The requested directory could not be created

The NetBurner Runtime Libraries Reference

99

8.9. FTPD_DeleteSubDirectory (User Defined)

Synopsis:

int FTPD_DeleteSubDirectory(const char *current_directory, const char * sub_dir, void * pSession)

Description:

This function is called by the FTP Server to delete a directory. This function is called by the FTP Server as
the result of an attempt to delete a subdirectory. This function call can be used to validate the permissions of
this session. This function must be implemented by the programmer.

Parameters:

Type Name Description

const char *current_directory The current value of the session directory.

const char *sub_dir The directory to delete under the
current_directory

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested directory was deleted
FTPD_FAIL --- The requested directory could not be deleted

The NetBurner Runtime Libraries Reference

100

8.10. FTPD_ListSubDirectories (User Defined)

Synopsis:

int FTPD_ListSubDirectories(const char * current_directory, void * pSession,
 FTPDCallBackReportFunct * pFunc, int handle)

Description:

This function is called by the FTP Server to list all subdirectories under the current directory. This function is
called by the FTP Server as the result of a client's attempt to list the contents of a directory. This function
must be implemented by the programmer.

Parameters:

Type Name Description

const char *current_directory The current value of the session directory.

void *pSession The void * object returned from the
FTPDSessionStart function call.

FTPDCallBackReportFunct *pFunc The pointer to the callback function to be
called for each subdirectory.

int handle The handle value to be passed back into
the pFunc.

Return Values:

FTPD_OK --- The requested listing was successfully delivered
FTPD_FAIL --- The requested directory could not be listed

Example:

Everything inside the callback function stub must be supplied by the programmer.

The FTP server will automatically call this function and provide values for the function variables. It is the
programmer's responsibility to execute pFunc() with the provided handle and a pointer to the string
representing the subdirectory name. Note: pFunc() must be executed once for each subdirectory name.
In the example below, the variables number_of_directories and DirectoryName must be declared and
initialized elsewhere in the application program:

int FTPD_ListSubDirectories(const char *current_directory, void *pSession, FTPDCallBackReportFunct
*pFunc, int handle);
{
 for (int n = 0; n < number_of_dir; n++)
 pFunc(handle, DirectoryName[n]);
 return FTPD_OK;
}

The NetBurner Runtime Libraries Reference

101

8.11. FTPD_FileExists (User Defined)

Synopsis:

int FTPD_FileExists(const char * full_directory, const char * file_name, void * pSession)

Description:

This function reports on whether or not a file exists. This function checks for the existence of a file, usually
just before an attempt is made to download the file. This function must be implemented by the
programmer.

Parameters:

Type Name Description

const char *full_directory The current value of the session directory.

const char *file_name The name of the file to check.

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested file exists
FTPD_FAIL --- The requested file does not exist

The NetBurner Runtime Libraries Reference

102

8.12. FTPD_SendFileToClient (User Defined)

Synopsis:

int FTPD_SendFileToClient(const char * full_directory, const char * file_name,
 void * pSession, int fd)

Description:

This function sends the contents of a file to a file descriptor. This function sends a file to an FTP client. This
function must be implemented by the programmer.

Parameters:

Type Name Description

const char *full_directory The current value of the session directory.

const char *file_name The name of the file to send.

void *pSession The void * object returned from the
FTPDSessionStart function call.

int fd The file descriptor to send to.

Return Values:

FTPD_OK --- The requested file was sent
FTPD_FAIL --- The requested file was not sent

The NetBurner Runtime Libraries Reference

103

8.13. FTPD_AbleToCreateFile (User Defined)

Synopsis:

int FTPD_AbleToCreateFile(const char * full_directory, const char * file_name, void * pSession)

Description:

This function will report on the ability to create/receive a file. This function determines if a file can be created.
This function must be implemented by the programmer.

Parameters:

Type Name Description

const char *full_directory The current value of the session directory.

const char *file_name The name of the file to create.

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested file can be written (i.e. created)
FTPD_FAIL --- The requested file could not be created

The NetBurner Runtime Libraries Reference

104

8.14. FTPD_GetFileFromClient (User Defined)

Synopsis:

int FTPD_GetFileFromClient(const char * full_directory, const char * file_name,
 void * pSession, int fd)

Description:

This function is used to create/get a file or to receive a file from the FTP client. This function must be
implemented by the programmer.

Parameters:

Type Name Description

const char *full_directory The current value of the session directory.

const char *file_name The name of the file to create.

void *pSession The void * object returned from the FTPDSessionStart
function call.

int fd The file descriptor that will be used to receive the file.

Return Values:

FTPD_OK --- The requested file was written (i.e. created)
FTPD_FAIL --- The requested file was not created

The NetBurner Runtime Libraries Reference

105

8.15. FTPD_DeleteFile

Synopsis:

int FTPD_DeleteFile(const char * current_directory, const char * file_name, void * pSession)

Description:

This function is used to delete a file.

Parameters:

Type Name Description

const char *current_directory The current value of the session directory.

const char *file_name The name of the file to delete.

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested file was deleted
FTPD_FAIL --- The requested file was not deleted

The NetBurner Runtime Libraries Reference

106

8.16. FTPD_DeleteFile (User Defined)

Synopsis:

int FTPD_DeleteFile(const char * current_directory, const char * file_name, void * pSession)

Description:

This is a user written function to delete a file. This function must be implemented by the programmer.

Parameters:

Type Name Description

const char *current_directory The current value of the session directory.

const char *file_name The name of the file to delete.

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested file was deleted
FTPD_FAIL --- The requested file could not be deleted

The NetBurner Runtime Libraries Reference

107

8.17. FTPD_ListFile

Synopsis:

int FTPD_ListFile(const char * current_directory, void * pSession, FTPCallBackReportFunct * pFunc,
 int handle)

Description:

This is a callback function, with the name of every file in the directory.

Parameters:

Type Name Description

const char *current_directory The current value of the session
directory.

void *pSession The void * object returned from the
FTPDSessionStart function call.

FTPCallBackReportFunct *pFunc The pointer to the callback function to be
called for each file name. This is a
callback function provided and used by
the NetBurner internal FTP code.

int handle The handle value to be passed back into
the pFunc. This is a handle provided
and used by the NetBurner internal FTP
code.

Return Values:

FTPD_OK --- The requested files were listed
FTPD_FAIL --- The requested files were not listed

The NetBurner Runtime Libraries Reference

108

8.18. FTPD_ListFile (User Defined)

Synopsis:

int FTPD_ListFile(const char * current_directory, void * pSession,
 FTPDCallBackReportFunct * pFunc, int handle);

Description:

This function is a user supplied function that lists all files in the current directory. This function must be
implemented by the programmer.

Parameters:

Type Name Description

const char *current_directory The current value of the session
directory.

void *pSession The void * object returned from the
FTPDSessionStart function call.

FTPCallBackReportFunct *pFunc The pointer to the callback function to be
called for each file name. This is a
callback function provided and used by
the NetBurner internal FTP code.

int handle The handle value to be passed back into
the pFunc. This is a handle provided
and used by the NetBurner internal FTP
code.

Return Values:

FTPD_OK --- The requested files were listed
FTPD_FAIL --- The requested files were not listed

The NetBurner Runtime Libraries Reference

109

Example:

Everything inside the callback function stub must be supplied by the programmer. The FTP server
will automatically call this function and provide values for the function variables.

Important: It is the programmer's responsibility to execute pFunc() with the provided handle and a
pointer to the string representing the file name.

Note: pFunc() must be executed once for each file name. In the example on the next page, the
variables number_of_directories and FileNames must be declared and initialized elsewhere in the
application program:

int FTPD_ListFile(const char *current_directory, void *pSession,

 FTPDCallBackReportFunct *pFunc, int handle);

 {

 for (int n = 0; n < numberof_files; n++)

 pFunc(handle, FileNames[n]);

 return FTPD_OK;

 }

The NetBurner Runtime Libraries Reference

110

8.19. FTPD_Rename (User Defined)

Synopsis:

int FTPD_Rename(const char * current_directory, const char * cur_file_name,
 const char * new_file_name, void * pSession)

Description:

This is a user written function; this function is used to rename a file. This function must be implemented
by the programmer.

Parameters:

Type Name Description

const char *current_directory The current value of the session directory.

const char *cur_file_name The current name of the file to rename.

const char *new_file_name The new file name.

void *pSession The void * object returned from the
FTPDSessionStart function call.

Return Values:

FTPD_OK --- The requested file was deleted
FTPD_FAIL --- The requested file could not be renamed

The NetBurner Runtime Libraries Reference

111

9. HTTP and HTML Libraries

Header Files

#include <http.h> // Found in C:\Nburn\include
#include <htmlfiles.h> // Found in C:\Nburn\include

HTTP Dameon Functions

StartHTTP --- Starts the HTTP server
StopHTTP --- Stops the HTTP subsystem
SetNewPostHandler --- Setup a custom Post Handler
SetNewGetHandler --- Setup a custom Get Handler
SetNewHeadHandler --- Setup a custom Head Handler
HTTP Password Processing --- Basic HTML Password Support
CheckAuthentication --- Checks the HTTP request for password information
RequestAuthentication --- Rejects the current HTTP request and request for a password

HTML Header Functions

SendHTMLHeader --- Sends an html response header
SendHTMLHeaderWCookie --- Sends an html response header with a cookie
SendTextHeader --- Sends a text header
SendGifHeader --- Sends a gif header

Other HTML Responses

RedirectResponse --- Sends a response that redirects the request to the new page
NotFoundResponse --- Sends a response that indicates the page can't be found

Form Posting Functions

ExtractPostData --- Decodes post data
ExtractPostFile --- Extracts a file from the post data stream
EnableMultiPartForms --- Enables multipart form posts
DisableMultiPartForms --- Frees up the buffer

 Useful HTML/HTTP Functions

writesafestring --- Writes out a string while escaping all special characters
httpstricmp --- This is a special case insensitive prefix match compare

HTML Encoded File Functions

SendFullResponse --- Sends a complete encoded file as a response
SendFileFragment --- Sends an encoded file as a part of a response

The NetBurner Runtime Libraries Reference

112

HTTP Password Support Functions

#include <httppass.h> // Found in C:\Nburn\include

CheckAuthentication --- Check the HTTP request for password information
RequestAuthentication --- Rejects the current HTTP request and request for password

The NetBurner Runtime Libraries Reference

113

9.1. StartHTTP

Synopsis:

void StartHTTP(WORD port = 80)

Description:

This function starts the HTTP Server. You must have initialized the IP stack before starting the HTTP Server.
If no port number is specified, the default of 80 will be used.

Parameters:

Type Name Description

WORD port The port on which to open the HTTP Server. This
defaults to the standard HTTP port (i.e. port 80).

Returns:

Nothing --- This is a void function

Example:

Simple Html --- Found by default in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

114

9.2. StopHTTP

Synopsis:

void StopHTTP()

Description:

Use this function to shutdown the HTTP Server.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

115

9.3. SetNewPostHandler

Synopsis:

typedef int (http_posthandler)(int sock, PSTR url, PSTR pData, PSTR rxb)

http_posthandler * SetNewPostHandler(http_posthandler * newhandler)

Description:

When the HTTP Server receives a POST request from an HTML form that request needs to be processed by
a custom function, this call sets up that function. Note: This custom function must be of the form:

int yourposthandler(int sock, PSTR url, PSTR pData, PSTR rxb);

Parameters:

Type Name Description

int sock The File descriptor for the socket that this function
should send a response to.

PSTR (char *) url The URL that this POST was directed at. This is used to
select what form this was posted from.

PSTR pData The encoded data fields from the form. See the
ExtractPostData function to decode this data.

PSTR rxb A pointer to the entire HTTP request. This is not usually
needed.

Returns:

The function pointer to the previously registered post handler

Example:

FlashForm --- Found by default in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

116

9.4. SetNewGetHandler

Synopsis:

typedef int (http_gethandler)(int sock, PSTR url, PSTR rxb)

http_gethandler * SetNewGetHandler(http_gethandler * newhandler)

Description:

When the HTTP Server receives a GET request, that request needs to be processed. The default GET
processing looks for files stored in the compressed file data section by CompHtml. This allows both static
and dynamic HTML responses; this is usually sufficient. If your application needs to have complete
(program) control of GET requests (e.g. to implement Password protection), you may replace the default
GET processing by registering a new function. Note: This custom function must be of the form:

int yourgethandler(int sock, PSTR url, PSTR rxb);

Parameters:

Type Name Description

int sock The File descriptor for the socket that this function should
send a response to.

PSTR (char *) url The URL that this GET was directed at. This is used to
select what form this was posted from.

PSTR rxb A pointer to the entire HTTP request.

Returns:

The function pointer to the previously registered get handler

Example:

Simple HTML --- Found by default in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

117

The Default GET Handler:

int BaseDoGet(int sock, PSTR url, PSTR rxBuffer)

{

 if (*url==0) // The default value

 {

 RedirectResponse(sock,default_page);

 return 1;

 }

 if (httpstricmp(url,"ECHO"))

 {

 while (*url) url++;

 *url=' ';

 SendTextHeader(sock);

 writestring(sock,rxBuffer);

 return 1;

 }

 if(!SendFullResponse(url,sock))

 {// we failed

 NotFoundResponse(sock,url);

 DBPRINT(DB_HTTP,"Did not find:");

 DBPRINT(DB_HTTP,url);

 DBPRINT(DB_HTTP,"\r\n");

 }

 return 0;

}

The NetBurner Runtime Libraries Reference

118

9.5. SetNewHeadHandler

Synopsis:

typedef int (http_headhandler)(int sock, PSTR url, PSTR rxb)

http_headhandler * SetNewHeadHandler(http_headhandler * newhandle)

Description:

When the HTTP server receives a HEAD, the default response does nothing. If you want to handle HEAD
requests in any special way, you can write a custom function to do so. You must use this call to register this
function.

The custom function must be of the form:

int yourheadhandler(int sock, PSTR url, PSTR rxb);

Parameters:

Type Name Description

int sock The File descriptor for the socket that this function should
send a response to.

PSTR (char *) url The URL that this GET was directed at.

PSTR rxb A pointer to the entire HTTP request.

Returns:

The function pointer to the previously registered head handler

The NetBurner Runtime Libraries Reference

119

9.6. CheckAuthentication

Synopsis:

int CheckAuthentication(PSTR url, char ** pPassword, char ** pUser)

Description:

This password support function checks the HTTP request for password information. This function examines
the PASSWORD field stored in the HTTP request.

Parameters:

Type Name Description

PSTR url A pointer to the url as passed to the user provided
get function.

char **pPassword A char pointer that will be set to point to the
password in the request.

char **pUser A char pointer that will be set to point to the user
name in the request.

Returns:

0 on Failure
1 on Success

The NetBurner Runtime Libraries Reference

120

Example:

#include <http.h>

#include <httppass.h>

static http_gethandler * oldhand;

// Initialize somewhere in your application:

oldhand=SetNewGetHandler(MyDoGet);

int MyDoGet(int sock, PSTR url, PSTR rxBuffer)

{

 char * pPass;

 char * pUser;

 if (!CheckAuthentication(url,&pPass,&pUser))

 {

 RequestAuthentication(sock,"YourNameHere");

 return 1;

 }

 else

 {

 if (password is not ok)

 {

 RequestAuthentication(sock,"YourNameHere");

 return 1;

 }

 }

 // If we got here the password was acceptable

 return (* oldhand)(sock,url,rxBuffer);

}

The NetBurner Runtime Libraries Reference

121

9.7. RequestAuthentication

Synopsis:

void RequestAuthentication(int sock, PCSTR name)

Description:

This password support function rejects the current HTTP request and request for password. This function will
send a 401 authentication requested message to the socket.

Parameters:

Type Name Description

int sock The socket file descriptor to get the request.

PCSTR name The Name that should appear in the password request.

Returns:

Nothing ---This is a void function

The NetBurner Runtime Libraries Reference

122

9.8. SendHTMLHeader

Synopsis:

void SendHTMLHeader(int sock)

Description:

This function sends an HTML header response to the selected socket. This function is used if you are
building your own HTML response (programmatically) from scratch.

Parameters:

Type Name Description

int sock The socket that you want to send the Redirect to.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

123

9.9. SendHTMLHeaderWCookie

Synopsis:

void SendHTMLHeaderWCookie(int sock, char * cookie)

Description:

This function sends an HTML response header and includes a cookie to be stored by the browser.

Parameters:

Type Name Description

int sock The socket that you want to send the Redirect to.

char *cookie A char pointer that will be set to point to the cookie.

Returns:

Nothing ---This is a void function

Example Application:

HtmlCookie --- Found in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

124

9.10. SendTextHeader

Synopsis:

void SendTextHeader(int sock)

Description:

This function is used if you want to build a plain text response from scratch. It should be sent before any
other part of the HTTP response.

Parameters:

Type Name Description

int sock The socket that you want to send the Redirect to.

Returns:

Nothing --- This is a void function

Example:

The default GET response ECHO uses this function

The NetBurner Runtime Libraries Reference

125

9.11. SendGifHeader

Synopsis:

void SendGifHeader(int sock)

Description:

This function sends a GIF response header. This function is used to set the header type for stored GIF files
in the system. This function can be used to generate a GIF header for dynamically generated GIF files.

Parameters:

Type Name Description

int sock The socket that you want to send the Redirect to.

Returns:

Nothing ---This is a void function

The NetBurner Runtime Libraries Reference

126

9.12. RedirectResponse

Synopsis:

void RedirectResponse(int sock, PCSTR new_page);

Description:

When an HTTP GET or POST request should be redirected to a different page, use this function to do so.

Parameters:

Type Name Description

int sock The socket that you want to send the Redirect to.

PCSTR (const char *) new_page The URL of the redirected destination.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

127

9.13. NotFoundResponse

Synopsis:

void NotFoundResponse(int sock, PCSTR errored_page);

Description:

This function responds to an HTTP GET or POST request by indicating the page does not exist.

Parameters:

Type Name Description

int sock The socket that you want to send the Redirect to.

PCSTR (const char *) errored_page The URL of the requested page that does not exist.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

128

9.14. ExtractPostData

Synopsis:

int ExtractPostData(PCSTR name, PCSTR data, PSTR dest_buffer,

 int maxlen);

Description:

This function takes the HTML post data sent to the DoPost function, extracts the data associated with a
specific name, and returns it in dest_buffer.

Parameters:

Type Name Description

PCSTR name The name of the HTML form data element to extract the data from.

PCSTR data The data pointer passed in to the process post function.

PCSTR dest_buffer The location of the data after it has been extracted.

int maxlen The maximum length of the string.

Returns:

-1 --- If no data of that name was found
0 --- If the data field was presented, but empty
Otherwise, the number of chars extracted and copied into dest_buffer

Example Application:

FlashForm --- Found by default in your C:\Nburn\examples directory

The NetBurner Runtime Libraries Reference

129

9.15. ExtractPostFile

Synopsis:

ExtractPostFile(PCSTR name, PCSTR pData);

Description:

This function extracts a file from the post data stream. Note: The stream must be closed just like any other
stream.

Parameters:

Type Name Description

PCSTR name The name of the HTML form data element to extract the data from.

PCSTR pData The encoded data fields from the form.

Returns:

> 0 --- If successful

The NetBurner Runtime Libraries Reference

130

9.16. EnableMultiPartForms

Synopsis:

BOOL EnableMultiPartForms(DWORD maxfile_size);

Description:

This function enables multipart form posts and set the max file size you will accept. This function also
mallocs the file buffer.

Parameters:

Type Name Description

DWORD maxfile_size The maximum file size.

Returns:

True --- If successful

The NetBurner Runtime Libraries Reference

131

9.17. DisableMultiPartForms

Synopsis:

void DisableMultiPartForms();

Description:

This function frees up the buffer.

Parameters:

None

Returns:

Nothing ---This is a void function

The NetBurner Runtime Libraries Reference

132

9.18. writesafestring

Synopsis:

void writesafestring(int fd, PCSTR str);

Description:

When sending HTML test responses certain characters (e.g. '<') are interpreted by the browser as formatting,
not as text. Note: This function properly escapes the text so it will appear as desired, and sends it out the
associated socket descriptor.

Parameters:

Type Name Description

int fd The file descriptor to send the string to.

PCSTR (const char *) str The NULL terminated string to send.

Returns:

The number of chars sent

The NetBurner Runtime Libraries Reference

133

9.19. httpstricmp

Synopsis:

int httpstricmp(PCSTR s1, PCSTR sisupper2);

Description:

This function is used internally to match URLs with stored file prefixes.

Parameters:

Type Name Description

PCSTR s1 The string to test.

PCSTR sisupper2 The reference string (which must already be
all uppercase).

Returns:

0 --- If the string prefixes do not match
1 --- If the string prefixes do match

Example:

httpstricmp (s1,"LED.HTML") would return:

s1 Value Return Value

LED 1

led.HTML 1

led.html? 1

LED.HTM? 0

The NetBurner Runtime Libraries Reference

134

9.20. SendFullResponse

Synopsis:

int SendFullResponse(char * name, int fd);

Description:

This function looks for the file named "name" in the files stored in the system with CompHtml. If it finds the
file, it sends the proper HTTP header and renders the file to the socket. Note: If the stored file has
embedded dynamic HTML, these functions will be filled in.

Parameters:

Type Name Description

char *name The name of the file to send.

int fd The file descriptor or socket to send the file to.

Returns:

1 --- If the file was found and returned
0 --- If the file was not found

The NetBurner Runtime Libraries Reference

135

9.21. SendFileFragment

Synopsis:

int SendFileFragment(char * name, int fd);

Description:

This function looks for the file named "name" in the files stored in the system with CompHtml. If it finds this
file, it sends the file as a fragment. It does not send the HTTP header. If the stored file has embedded
dynamic HTML, these functions will be filled in. If you want to build HTML responses with large chunks of
pre-configured HTML, you can store these in the system and then send them out sequentially using this
function.

Parameters:

Type Name Description

char *name The name of the file fragment to send.

int fd The file descriptor or socket to send the file to.

Returns:

1 --- If the file was found and returned
0 --- If the file was not found

The NetBurner Runtime Libraries Reference

136

10. Interrupts

10.1. INTERRUPT MACRO

Header Files:

#include <ucos.h> // Found in C:\Nburn\include

#include <cfinter.h> // Found in C:\Nburn\include (must be after ucos.h)

Synopsis:

INTERRUPT(function_name, sr_value)

Description:

The INTERRUPT macro sets up an interrupt function and the code block that will do the necessary things to
save and restore the CPU registers. In addition, this macro tells the RTOS that an Interrupt is happening.
All level 7 interrupts are non-maskable.

Parameters:

Type Description

function_name The name of the interrupt service routine.

sr_value The SR register value that the processor will have during the interrupt.

The eight permitted SR register values are:

0x2000 - Allows all interrupts
0x2100 - Blocks all interrupts below level 2
0x2200 - Blocks all interrupts below level 3
0x2300 - Blocks all interrupts below level 4
0x2400 - Blocks all interrupts below level 5
0x2500 - Blocks all interrupts below level 6
0x2600 - Blocks all interrupts below level 7
0x2700 - Blocks all interrupts below level 7

Important: The code within an INTERRUPT macro can be called at any time. Certain OS and I/O functions
cannot be called from within an Interrupt routine.

The NetBurner Runtime Libraries Reference

137

Warning: The following functions are not legal within an interrupt routine.

All μC/OS critical section functions:

USER_ENTER_CRITICAL
USER_EXIT_CRITICAL
UCOS_ENTER_CRITICAL
UCOS_EXIT_CRITICAL

All μC/OS init and pend functions (all OsxxPendNoWait functions are okay):

OSxxInit
OSxxPend
OSCritEnter
OSChangePrio
OSTaskDelete
OSLock
OSUnlock
OSTaskCreate
OSTimeDly

I/O functions from within the ISR (interrupt service routine):

write
writeall
read
printf
fprintf
iprintf
scanf
gets
puts

Memory management functions:

malloc
free
new
delete

Important: Once you use the INTERRUPT macro to define the interrupt function, you will need to use the
SetIntc (set interrupt controller) function to set up your interrupt controller variables and point the interrupt
vector at that function. Please refer to the appropriate Freescale hardware reference manual (in
\Nburn\docs\FreescaleManuals) for your specific interrupt source number and controller number (only for
processors that have more than one interrupt controller).

The NetBurner Runtime Libraries Reference

138

10.2. SetIntc (MCF5234 and MCF5282 Only)

Synopsis:

void SetIntc(int intc, long func, int source, int level, int prio)

Usage:

extern "C"

{

 void SetIntc(int intc, long func, int source, int level, int prio)

}

Description:

This function sets up the interrupt controller for a specified interrupt function and source.

Parameters:

Type Name Description

int intc The interrupt controller number: 0 or 1. This number can be found in your
Freescale hardware reference manual.

long func The interrupt service routine function to call.

int source The source number that can be found in your Freescale hardware reference
manual (in \Nburn\docs\FreescaleManuals).

int level The interrupt level you want to assign. This value can be anything from 1 to 6.

int prio The interrupt priority used to resolve who goes first if multiple interrupts at the
same level are occurring. This value can be between 0 and 7.

Returns:

Nothing – this is a void function.

The NetBurner Runtime Libraries Reference

139

10.3. SetIntc (MCF5270 Only)

Synopsis:

void SetIntc(long func, int source, int level, int prio)

Usage:

extern "C"

{

 void SetIntc(long func, int source, int level, int prio)

}

Description:

This function sets up the interrupt controller for a specified interrupt function and source.

Parameters:

Type Name Description

long func The interrupt service routine function to call.

int source The source number that can be found in your Freescale hardware reference
manual (in \Nburn\docs\FreescaleManuals).

int level The interrupt level you want to assign. This value can be anything from 1 to 6.

int prio The interrupt priority used to resolve who goes first if multiple interrupts at the
same level are occurring. This value can be between 0 and 7.

Returns:

Nothing – this is a void function.

The NetBurner Runtime Libraries Reference

140

10.4. Pseudo-Example for MCF5234 and MCF5282 Only

/*

 * Include/define the proper preprocessor statements.

 */

#include <cfinter.h>

extern "C"

{

 void SetIntc(int intc, long func, int source, int level, int prio)

}

/**

 * Define the ISR function and SR mask. The SR mask can be 0x2N00 where ‘N’

 * is a value between 0 and 7. The SR mask indicates what interrupt levels will

 * be blocked while the ISR is running (refer to the Parameters subsection near

 * the beginning of this chapter). The ‘N’ value must be at least as high as

 * the level of the interrupt define in SetIntc. Note that level 7 is

 * un-maskable.

 */

INTERRUPT(My_ISR, 0x2N00)

{

 /* Write your interrupt service routine here */

}

/**

 * The main task.

 */

void UserMain(void *pd)

{

 ...

 /*

 * Initialize the interrupt – the following is sets up the DMA Timer 1

 * interrupt source.

 */

 Setintc(0, /* Interrupt controller 0 */

 (long) My_ISR, /* The function to call */

 20, /* Interrupt source number from Freescale manual */

 3, /* Interrupt level */

 1); /* Interrupt priority within level */

 ...

}

The NetBurner Runtime Libraries Reference

141

10.5. SetPinIrq

Synopsis:

BOOL SetPinIrq(int pin, int polarity, void (*func)(void));

Description:

This function helps simplify the process of setting up the interrupt service routine and initializing the interrupt
controller into one call when used to set up the IRQ1 (pin J2-43), IRQ3 (pin J2-45), or IRQ5 (pin J2-47)
external interrupt as the source.

Note: This function is only supported on the MOD5234, MOD5270, MOD5272, and MOD5282 modules.

Parameters:

Type Name Description

int pin The external interrupt input pin to configure. Valid values are "43"
(IRQ1), "45" (IRQ3), and "47" (IRQ5).

int polarity This determines whether the interrupt is triggered on the rising edge or
falling edge of the input signal. Any positive integer sets for rising
edge trigger. Any negative integer sets for falling edge trigger.

void (*func)(void) The address of the void function that takes no input parameters. This
is the function used to define the interrupt service routine.

Returns:

BOOL – TRUE if the pin is valid; FALSE if the pin is not supported.

The NetBurner Runtime Libraries Reference

142

10.6. EnableIrq

Synopsis:

void EnableIrq(int pin);

Description:

After the SetPinIrq() function is called to configure the external interrupt pin, this function can be used in
conjunction with the DisableIrq() function to toggle the disable and re-enable of interrupts.

Note: This function is only supported on the MOD5234, MOD5270, MOD5272, and MOD5282 modules.

Parameters:

Type Name Description

int pin The external interrupt input pin to enable interrupts. Valid values are
"43" (IRQ1), "45" (IRQ3), and "47" (IRQ5). SetPinIrq() must be called
for the appropriate IRQ pin first before this function can be used.

Returns:

Nothing – this is a void function.

The NetBurner Runtime Libraries Reference

143

10.7. DisableIrq

Synopsis:

void DisableIrq(int pin);

Description:

After the SetPinIrq() function is called to configure the external interrupt pin, this function can be used in
conjunction with the EnableIrq() function to toggle the disable and re-enable of interrupts.

Note: This function is only supported on the MOD5234, MOD5270, MOD5272, and MOD5282 modules.

Parameters:

Type Name Description

int pin The external interrupt input pin to enable interrupts. Valid values are
"43" (IRQ1), "45" (IRQ3), and "47" (IRQ5). SetPinIrq() must be called
for the appropriate IRQ pin first before this function can be used.

Returns:

Nothing – this is a void function.

The NetBurner Runtime Libraries Reference

144

10.8. Example of SetPinIrq Usage

For this example to work, a MOD5234, MOD5270, MOD5272, or MOD5282 module must be mounted on a
MOD-DEV-100 development board. The following code takes advantage of the "IRQ1" button located next
to the "Reset" button in order to manually trigger interrupts. For every time the "IRQ1" button is pressed, an
interrupt will be triggered upon release. Pressing the button forces the IRQ1 signal in a low state, and upon
release it transitions to a high state, resulting in a rising-edge signal. The following code is configured to
trigger on the rising edge of the IRQ1 interrupt source. Every time an interrupt occurs, the 8 LEDs along the
edge of the development board will toggle on and off with every release of the button.

#include "predef.h"

#include <stdio.h>

#include <ctype.h>

#include <startnet.h>

#include <autoupdate.h>

#include <dhcpclient.h>

#include <pin_irq.h>

#include <pins.h>

#define PIN (43) /* J2-43 = IRQ1, J2-45 = IRQ3, J2-47 = IRQ5 */

#define POLARITY (1) /* 1 = Rising Edge, -1 = Falling Edge */

extern "C"

{

 void UserMain(void *pd);

}

const char *AppName = "MOD52XX-SetPinIrqExample";

BOOL bLedOn; /* For indicating status of LEDs */

/**

 * The interrupt service routine.

 */

void TestISRFunction(void)

{

 if (bLedOn)

 {

 putleds(0x00);

 bLedOn = FALSE;

 }

 else

 {

 putleds(0xFF);

 bLedOn = TRUE;

 }

}

/**

 * The main task.

 */

void UserMain(void *pd)

{

 InitializeStack();

 if (EthernetIP == 0) GetDHCPAddress();

The NetBurner Runtime Libraries Reference

145

 OSChangePrio(MAIN_PRIO);

 EnableAutoUpdate();

 /*

 * Initialize the 8 LEDs

 */

 putleds(0xFF);

 bLedOn = TRUE;

 if (SetPinIrq(PIN, POLARITY, &TestISRFunction))

 {

 iprintf("STATUS -- Pin %d set for IRQ\r\n", PIN);

 }

 else

 {

 iprintf("ERROR -- Failed to set pin %d for IRQ\r\n", PIN);

 return;

 }

 while (1)

 {

 OSTimeDly(TICKS_PER_SECOND);

 }

}

The NetBurner Runtime Libraries Reference

146

11. I/O System Library

Header File

#include<iosys.h> // Found in C:\Nburn\include

General File Descriptor Functions

 close --- Close open file descriptors

 read --- Read data from a file descriptor

 ReadWithTimeout --- Read from a FD with timeout

 dataavail --- Check to see if data is available for read

 charavail --- Check to see if data is available for read on stdin

 write --- Write data to a file descriptor

 writestring --- Write a string to the file descriptor

 writeall --- Write data to a file descriptor and block until complete

FD Set and Select Related Functions

 FD_ZERO --- Zero a file descriptor set

 FD_CLR --- Clear a specific fd in a fd_set

 FD_SET --- Set a specific fd in a fd_set

 FD_ISSET --- Test to see if a specific fd is set in an fd_set

 select --- ZeroWaitSelect

 ZeroWaitSelect --- ZeroWaitSelect

Standard I/O Modification Functions

 ioctl --- Control translation and formatting for stdio

 ReplaceStdio --- Replace (i.e. override) the stdio file descriptor with a new one

Miscellaneous Functions

Header File

#include<syslog.h> // Found in C:\Nburn\include

 SysLog --- Sends output on UDP Port 514

The NetBurner Runtime Libraries Reference

147

11.1. close

Synopsis:

int close(int fd);

Description:

This function closes the resources associated with a file descriptor (fd). This can be a TCP socket or a Serial
I/O port.

Parameters:

Type Name Description

int fd The file descriptor number

Returns:

0 (zero) --- On success
A resource specific error code --- On failure

See Also:

 read --- Read data from a file descriptor

 ReadWithTimeout --- Read from a FD with timeout

 write --- Write data to a file descriptor

 writestring --- Write a string to the file descriptor

The NetBurner Runtime Libraries Reference

148

11.2. read

Synopsis:

int read(int fd, char * buf, int nbytes);

Description:

This function reads data from a file descriptor (fd), and will block forever until at least one byte is available to
be read (as opposed to the ReadWithTimeout function which reads data from a file descriptor with a
specified time-out value). This function can be used to read from stdio, TCP sockets, or Serial ports.

Parameters:

Type Name Description

int fd The file descriptor number

char *buf A pointer to the read destination.

int nbytes Maximum number of bytes to read.

Returns:

The number of bytes read, or
A negative number if there was an error when reading from a TCP connection:

 TCP_ERR_TIMEOUT (-1) --- Indicates that the connection has timed out.

 TCP_ERR_NOCON (-2) --- Indicates that you have attempted to read/write from a socket that does
not have a connection established yet.

 TCP_ERR_CLOSING (-3) --- Indicates that you have attempted to read/write from a socket that has
already been closed.

 TCP_ERR_NOSUCH_SOCKET (-4) --- Indicates that you have attempted to allocate a socket that
does not exist.

 TCP_ERR_NONE_AVAIL (-5) --- Indicates that you have attempted to allocate a socket, but no
socket it currently available.

 TCP_ERR_CON_RESET (-6) --- Indicates that you have attempted to read/write from a connection
that has been reset by the other side.

 TCP_ERR_CON_ABORT (-7) --- This is an internal error that the client won't usually see.

See Also:

 close --- Close open file descriptors

 ReadWithTimeout --- Read from a FD with timeout

 write --- Write data to a file descriptor

 writestring --- Write a string to the file descriptor

The NetBurner Runtime Libraries Reference

149

11.3. ReadWithTimeout

Synopsis:

int ReadWithTimeout(int fd, char * buf, int nbytes,

 unsigned long timeout);

Description:

This function reads data from a file descriptor (fd), with a specified time-out value (as opposed to the read
function which will block forever until at least one byte is available to be read). This function will block
until either the time-out expires or at least one byte is available to be read. This function can be used to read
from stdio, TCP sockets, or Serial ports.

Important: This function operates like a read function in that it reads all available bytes and returns. The
addition of a time-out does not cause the function to block until the maximum number of bytes specified in
the function call is available. As with read, the application must use the return value of the ReadWithTimeout
function to determine how many bytes were read, and call the function again if necessary.

Parameters:

Type Name Description

int fd The file descriptor number

char *buf A pointer to the read destination.

int nbytes Maximum number of bytes to read.

unsigned long timeout The number of timer ticks to wait for data.

Returns:

0 = timeout, but TCP connection is still valid
>0 = The number of bytes read
-1 = TCP connection is no longer valid

See Also:

 close --- Close open file descriptors.

 read --- Read data from a file descriptor

 write --- Write data to a file descriptor

 writestring --- Write a string to the file descriptor

The NetBurner Runtime Libraries Reference

150

11.4. dataavail

Synopsis:

int dataavail(int fd);

Description:

This function checks to see if data is available for read.

Parameters:

Type Name Description

int fd The file descriptor number

Returns:

1 --- If data is available
0 --- If no data is available

See Also:

 charavail --- Is data is available for read on stdin?

 read --- Read data from a file descriptor

The NetBurner Runtime Libraries Reference

151

11.5. charavail

Synopsis:

int charavail();

Description:

This function checks to see if data is available for read on stdin.

Parameters:

None

Returns:

1 --- If data is available
0 --- If no data is available

See Also:

 dataavail --- Is data is available for read?

 read --- Read data from a file descriptor

The NetBurner Runtime Libraries Reference

152

11.6. write

Synopsis:

int write(int fd, const char * buf, int nbytes);

Description:

This function writes data to the stream associated with a file descriptor (fd). This function can be used to
write data to stdio, a TCP socket, or a Serial port. Note: The write function will block until at least one byte is
written, but does not have to write all the bytes requested. For example, if you wanted to write 100 bytes,
and there was only room in the buffer for 5, then the write function would return 5.

Parameters:

Type Name Description

int fd The file descriptor number

const char *buf A pointer to the byte to write.

int nbytes Maximum number of bytes to write.

Returns:

The number of bytes written (Note: This value can be less than the number of bytes requested)
0 (zero) --- If the write timed out
A negative number --- If an error occurred

See Also:

 close --- Close open file descriptors

 read --- Read data from a file descriptor

 ReadWithTimeout --- Read from a FD with timeout

 writestring --- Write a string to the file descriptor

 writesafestring --- Write out a string while escaping all special HTML characters

 writeall --- Write data to a file descriptor and block until complete

The NetBurner Runtime Libraries Reference

153

11.7. Writestring

Synopsis:

int writestring(int fd, const char * str);

Description:

This function writes null terminated string data to the stream associated with a file descriptor (fd).
This function can be used to write data to stdio, a TCP socket, or a Serial port.

Parameters:

Type Name Description

int fd The file descriptor number

const char *str A pointer to the NULL terminated string to write.

Returns:

The number of bytes written (Note: This value can be less than the number of bytes requested.)
0 (zero) --- If the write timed out
A negative number --- If an error occurred

See Also:

 close --- Close open file descriptors

 read --- Read data from a file descriptor

 ReadWithTimeout --- Read from a FD with timeout

 write --- Write data to a file descriptor

 writesafestring --- Write out a string while escaping all special HTML characters

The NetBurner Runtime Libraries Reference

154

11.8. writeall

Synopsis:

int writeall(int fd, const char * buf, int nbytes);

Description:

This function writes data to the stream associated with a file descriptor (fd). This function can be used to
write data to stdio, a TCP socket, or a Serial port. It will block and wait for the fd to either send the whole
requested amount or to return an error.

Parameters:

Type Name Description

int fd The file descriptor number

const char *buf A pointer to the byte to write.

int nbytes Maximum number of bytes to write.

Returns:

The number of bytes written
A negative number --- If an error occurred

See Also:

 close --- Close open file descriptors

 read --- Read data from a file descriptor

 ReadWithTimeout --- Read from a FD with timeout

 write --- Write data to a file descriptor

 writestring --- Write a string to the file descriptor

 writesafestring --- Write out a string while escaping all special HTML characters

The NetBurner Runtime Libraries Reference

155

11.9. FD_ZERO

Synopsis:

void FD_ZERO(fd_set * pfds);

Description:

This function zero's a fd_set (file descriptor set) so that it has no file descriptors (fds) selected.

Parameters:

Type Name Description

fd_set *pfds A pointer to the fd_set

Returns:

Nothing --- This is a void function

See Also:

 FD_CLR --- Clear a specific fd in a fd_set

 FD_SET --- Set a specific fd in a fd_set

 FD_ISSET --- Test to see if a specific fd is set in an fd_set

 select --- Wait for I/O events

The NetBurner Runtime Libraries Reference

156

11.10. FD_CLR

Synopsis:

void FD_CLR(int fd, fd_set * pfds);

Description:

A fd_set (file descriptor set) holds a set of file descriptors (fds). This function clears or removes a specific file
descriptor in an fd_set.

Parameters:

Type Name Description

int fd The file descriptor number.

fd_set *pfds A pointer to the fd_set to modify.

Returns:

Nothing --- This is a void function

See Also:

 FD_ZERO --- Zero a file descriptor set

 FD_SET --- Set a specific fd in a fd_set

 FD_ISSET --- Test to see if a specific fd is set in a fd_set

 select --- Wait for I/O events

The NetBurner Runtime Libraries Reference

157

11.11. FD_SET

Synopsis:

void FD_SET(int fd, fd_set * pfds);

Description:

A fd_set (file descriptor set) holds a set of file descriptors (fds). This function sets or adds a specific file
descriptor to an fd_set.

Parameters:

Type Name Description

int fd The file descriptor number.

fd_set *pfds A pointer to the fd_set to modify.

Returns:

Nothing --- This is a void function

See Also:

 FD_ZERO --- Zero a file descriptor set

 FD_CLR --- Clear a specific fd in a fd_set

 FD_ISSET --- Test to see if a specific fd is set in an fd_set

 select --- Wait for I/O events

The NetBurner Runtime Libraries Reference

158

11.12. FD_ISSET

Synopsis:

int FD_ISSET(int fd, fd_set * pfds);

Description:

A fd_set (file descriptor set) holds a set of file descriptors (fds). This function indicates whether (or not) a
specific fd is in a specific fd_set.

Parameters:

Type Name Description

int fd The file descriptor number.

fd_set *pfds A pointer to the fd_set to test.

Returns:

0 (zero) --- If the fd is not in the set
A non zero --- If the fd is in the set

See Also:

 FD_ZERO --- Zero a file descriptor set

 FD_CLR --- Clear a specific fd in a fd_set

 FD_SET --- Set a specific fd in a fd_set

 select --- Wait for I/O events

The NetBurner Runtime Libraries Reference

159

11.13. select

Synopsis:

int select(int nfds, fd_set * readfds, fd_set * writefds,

 fd_set * errorfds, unsigned long timeout);

Description:

This function waits for events to occur on one or more I/O resources associated with a set of file descriptors
(fds). The user indicates his/her interest in specific fds by setting them in the fd_sets (file descriptor set) that
are passed into the function. Note: This function will "unblock" when at least one byte is available for the file
descriptor you add to the output set.

Parameters:

Type Name Description

int nfds The number of file descriptors to examine. Note: This
parameter is currently ignored

fd_set *readfds A pointer to the fd_set to select for read events. Note:
This parameter can be NULL. It is modified on exit to
reflect the read availability of the selected fds in the set.

fd_set *writefds A pointer to the fd_set to select for write availability
events. Note: This parameter can be NULL. It is modified
on exit to reflect the write availability of the selected fds in
the set.

fd_set *errorfds

A pointer to the fd_set to select for error events. Note:
This parameter can be NULL. It is modified on exit to
reflect the error state of the selected fds in the set.

unsigned long timeout The number of time ticks to wait before timing out if no
events occurred in the selected fd set.

Returns:

The number of fds in all of the non null fd_sets or 0 (zero) if the function timed out

See Also:

 FD_ZERO --- Zero a file descriptor set

 FD_CLR --- Clear a specific fd in a fd_set

 FD_SET --- Set a specific fd in a fd_set

 FD_ISSET --- Test to see if a specific fd is set in an fd_set

The NetBurner Runtime Libraries Reference

160

11.14. ZeroWaitSelect

Synopsis:

int ZeroWaitSelect(int nfds, fd_set * readfds, fd_set * writefds,

 fd_set * errorfds)

Description:

This function waits for events to occur on one or more I/O resources associated with a set of file descriptors
(fds). The user indicates his/her interest in specific fds by setting them in the fd_sets (file descriptor set) that
are passed into the function.

Parameters:

Type Name Description

int nfds The number of file descriptors to examine. Note: This
parameter is currently ignored

fd_set *readfds A pointer to the fd_set to select for read events. Note: This
parameter can be NULL. It is modified on exit to reflect the read
availability of the selected fds in the set.

fd_set *writefds A pointer to the fd_set to select for write availability events.
Note: This parameter can be NULL. It is modified on exit to
reflect the write availability of the selected fds in the set.

fd_set *errorfds

A pointer to the fd_set to select for error events. Note: This
parameter can be NULL. It is modified on exit to reflect the error
state of the selected fds in the set.

Returns:

The number of fds in all of the non null fd_sets or 0 (zero) if there are no valid fds

See Also:

FD_ZERO --- Zero a file descriptor set
FD_CLR --- Clear a specific fd in a fd_set
FD_SET --- Set a specific fd in a fd_set
FD_ISSET --- Test to see if a specific fd is set in an fd_set

The NetBurner Runtime Libraries Reference

161

11.15. ioctl

Synopsis:

int ioctl(int fd, int cmd);

Description:

This function controls the selection of three options for stdio: stdin = 0, stdout = 1 and stderr = 2. The four
legal options are:

IOCTL_TX_CHANGE_CRLF (1) /* When set transmitted char \n gets converted to \r\n */
IOCTL_RX_CHANGE_CRLF (2) /* When set received \r\n get turned into \n */
IOCTL_RX_PROCESS_EDITS (4) /* When set Process backspace and do simple line editing */
IOCTL_RX_ECHO (8) /* When set echo chars received to tx*/

Parameters:

Type Name Description

int fd The file descriptor number. The three options are:

 0 = stdin

 1 = stdout

 2 = stderr

int cmd The ioctl command consists of IOCTL_SET or
IOCTL_CLR and the bit of the associated options.

Returns:

The old option value

See Also:

ReplaceStdio --- Replace the stdio file descriptor with a new one.

The NetBurner Runtime Libraries Reference

162

11.16. ReplaceStdio

Synopsis:

int ReplaceStdio(int stdio_fd, int new_fd);

Description:

This function allows you to map stdio to any file descriptor (fd). If the file descriptor generates an error (like a
closed TCP connection), then stdio will be remapped to a negative fd (this will cause stdio to generate
errors). When this function is used to remap an errored stdio channel, then the error will be cleared.

Parameters:

Type Name Optional Description

int stdio_fd No The stdio file descriptor to map
to

 (0 = stdin, 1 = stdout, and 2 =
stderr).

int new_fd No The file descriptor to replace stdio with.
Note: A value of 0 returns stdio to the
default debug monitor based traps

Returns:

The value of the fd for the previous stdio override
0 (zero) --- If stdio had not been mapped previously

See Also:

ioctl --- Control translation and formatting for stdio

The NetBurner Runtime Libraries Reference

163

11.17. SysLog

Header File:

#include<syslog.h> // Found in C:\Nburn\include

Synopsis:

int SysLog(const char * format, ...);

Description:

This function works very similar to a standard printf function, in regards to input arguments, return values,
and resulting output. The output is sent via UDP port 514, and it can be sent as either a broadcast or a
unicast message. This function is useful for users who have no serial ports, are out of serial ports, or desire
to send the debug output to a remote location.

If you do not specify an IP address to send to, then the message will be broadcasted. Note: If you are in
crowded network, or if you desire to send a message to a particular IP address, then you will need to add the
following line to your start-up code:

SysLogAddress = AsciiToIp("<Destination IP Address>");

For example:

SysLogAddress = AsciiToIp("10.1.1.228");

To make this function work in a normal project application, all you have to do is include the header file, and
then in the program body, you use the SysLog() function as you would with an iprintf function. Some
examples are:

SysLog("Hello World!");

SysLog("This number of seconds have passed: %d\r\n", Secs);

SysLog("%d plus %d equals %d.\r\n", num1, num2, sum);

To see the output generated by SysLog, open the UDP Terminal Tool application. From Windows: Start
Programs Netburner NNDK UDP Terminal Tool. By default this program is located in C:\Nburn\pcbin.
Next, set the Display Format drop-down box to Plain Text and set the Local (listening) Port to 514 as shown
on the next page.

If you have your NetBurner hardware connected to the network, and are periodically sending SysLog output,
you will see the result in the UDP Terminal window. By default, it will broadcast whatever message is written
to the network.

Warning: If a person is on a crowded network, sending broadcast messages to the
SYSLOG port (i.e. Port 514) then using this function will increase traffic.

The NetBurner Runtime Libraries Reference

164

Parameters:

The message (output string) to send followed by any number of variables - it works similar to the printf
function.

Returns:

The number of bytes in the output string, excluding the terminating NULL.

Example:

#include <syslog.h>

void UserMain(void *pd)

{

 // your start-up code here

 SysLogAddress = AsciiToIp("10.1.1.228"); // Only for unicasting

 while (1)

 {

 OSTimeDly(TICKS_PER_SECOND);

 SysLog("This is only a test! %d\r\n", Secs);

 }

The NetBurner Runtime Libraries Reference

165

12. I²C Library

12.1. Introduction

In the early 1980's, Philips Semiconductors developed a simple bidirectional 2-wire bus for efficient inter-IC
control. This bus is called the Inter-IC or I²C-bus. Its name literally explains its purpose: to provide a
communication link between Integrated Circuits. Its original purpose was to provide an easy way to connect
a CPU to peripheral chips in a TV-set. All I²C-bus compatible devices incorporate an on-chip interface, which
allows them to communicate directly with each other via the I²C-bus. This design concept solves the many
interfacing problems encountered when designing digital control circuits. I²C has become a de facto world
standard. The I²C-bus is patented by Philips.

The I²C-bus physically consists of two active wires and a ground connection. The active wires are called
SDA and SCL. SDA is the Serial DAta line and SCL is the Serial CLock line. Every device hooked up to the
bus has its own unique address. Each of these chips can act as a receiver and/or transmitter, depending on
the functionality.

Both SDA and SCL are bi-directional signals, implemented in the following way : Each device on the I²C-bus
can monitor the voltage or logic level on both signals. In addition, a device may connect the line to the
system ground rail through an electronic switch or it may leave it floating. (For those of you who have done a
bit of digital electronics, this is known as an `open collector' output.) External resistors (typically about 4.7k)
are connected between each of the 2 signal lines and the +5V/3.3V power supply rail, so that if no device on
the bus is connecting a line to ground, then that line appears to be in a logic 1 state.

The I²C-bus is a multi-master bus. This means that more than one IC capable of initiating a data transfer can
be connected to it. The I²C protocol specification states that the IC that initiates a data transfer on the bus is
considered the Bus Master (generally a microcontroller) and all the other ICs (at that time) are Bus Slaves.
The most important thing to realize about data transfer on the I²C-bus is that the state of the SDA line can
only change when the SCL line is in the logic low state. The reason for this is that the I²C protocol defines
two special conditions to start and stop communications over the bus, they are:

A Start condition - defined as a change of SDA from logic 1 to logic 0 while SCL is high.
A Stop condition - defined as a change of SDA from logic 0 to logic 1 while SCL is high.

Prior to any transaction on the bus, a START condition needs to be issued on the bus by the Master. This
start condition acts as a signal to all connected IC's that something is about to be transmitted on that bus. As
a result, all connected chips will listen to the bus. The master controls the Clock line and always generates
the Clock pulses.

Once a transmission is complete, the Master device can retain control of the bus by issuing a repeated start
or RESTART condition. This gives the Master device the ability to immediately communicate with another
device on the bus or to change transmission directions (read or write) with the current device.

After a message has been completed, a STOP condition is sent by the master. This is the signal for all
devices on the bus that the bus is now available (i.e. idle). If a chip was accessed, and received data during
the last transaction, it will now process that information (if it was not already processed during the reception
of the message).

Devices on the I²C-bus are selected by an 8-bit address that is sent over the bus in the same way as data
bytes. The least significant bit of this address acts as a read/write control signal and is set to 0 to make the
Slave a Receiver and 1 to make the Slave a Transmitter. The address byte is the first byte transmitted after a
Start condition. It is always transmitted by the master. By convention, if the slave is a receiver (and contains

The NetBurner Runtime Libraries Reference

166

several registers), then the next byte transmitted after the address byte is an internal register address for that
device. However, this is not required by the I²C specification.

12.2. The NetBurner I²C API

The NetBurner I²C API creates an easy interface to use interrupt driven I²C communication. The API will
work only on those platforms that include the I2C hardware. The NetBurner I²C API comes in two flavors, I²C
master and I²C multi.

The I²C master API allows you to configure the NetBurner device to act as the sole master device on an I²C
bus while the I²C multi API configures the NetBurner device to be a multi-master device.

The I²C multi API should be used any time you wish to be able to have your NetBurner device act as both a
bus master and slave device. This is very useful if you wish to have multiple smart-devices (e.g. NetBurner
devices, Microcontrollers, etc.) on the same I²C bus. This API includes all the functions included in the I²C
master API plus extra functions to handle slave mode transmissions and arbitration when attempting to
become bus master.

The I²C master API is a limited functionality version of the I²C multi interface. Note: This mode will not work
properly if there are other masters or multi-master devices on the same I²C bus. The master-only mode has
the benefit of using less FLASH and RAM for space sensitive projects that only need to interface with slave
devices. The space saved in FLASH is around 20 KB, and the space saved in RAM is dependent on the
sizes configured for the slave mode RX/TX buffers.

Header Files:

#include <i2cmulti.h> // Found in C:\Nburn\<HWPlatform>\include

#include <i2cmaster.h> // Found in C:\Nburn\<HWPlatform>\include

Simple NetBurner I²C Functions

These functions are used in both I²C multi and master modes. They are simple in the fact that they require
little configuration or code to send and receive buffers over I²C. Most devices that follow Philips I²C standard
will work with these functions.

 I2CInit

 I2CSendBuf

 I2CReadBuf

 I2CRestart

The NetBurner Runtime Libraries Reference

167

Simple NetBurner Slave Mode I²C Functions

These functions can only be implemented when the I²C multi driver is being used. These functions provide
both slave RX and TX ability.

 I2CRXAvail

 I2CTXAvail

 I2CGetByte

 I2CFillSlaveTXBuf

Advanced NetBurner I²C Functions

These functions are used in both I²C multi mode and master mode. They allow the user to control all aspects
of I²C communication including start, stop, restart, and sending and receiving at single BYTE level. Note:
These functions are useful when communicating with devices that do not follow Philips I²C standard exactly.

 I2CStart

 I2CStop

 I2CSend

 I2CRead

Note: An example I²C application can be found in C:\Nburn\examples\<HWPlatform>.

The NetBurner Runtime Libraries Reference

168

12.3. Simple I²C Functions

12.3.1. I2CInit

Synopsis:

void I2CInit(BYTE slave_Addr = 0x08, BYTE freqdiv = 0x11);

Note: This version is used when including i2cmulti.h

Synopsis:

void I2CInit(BYTE freqdiv = 0x15);

Note: This version is used when including i2cmaster.h

Description:

The I²C master and slave initialization routine must be called before performing any I²C functions.

Parameters:

Type Name Description

BYTE slave_Addr The 7-bit slave address assigned to NetBurner and is only
used in i2cmulti API. Note: Phillips I²C Standard states
that the two group addresses 0000XXX and 1111XXX are
reserved for advanced purposes. The addresses 11110XX
are also reserved for the 10-bit addressing I²C protocol.

BYTE freqdiv This value is used in the Coldfire I2FDR as a prescaler of
the system clock to generate a max baud rate of the
master mode I²C bus. Valid values for freqdiv are found in
the I²C section of your Freescale MCF Manual (in
C:\Nburn\docs). All the processors are set to be
approximately 100Kbits by default, which is the max I²C
standard speed.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

169

12.3.2. I2CSendBuf

Synopsis:

BYTE I2CSendBuf(BYTE addr, PBYTE buf, int num, bool stop = true);

Description:

This function sends a buffer to an address on the I²C bus in master mode without the need of a start and
stop bit.

Parameters:

Type Name Description

BYTE addr The 7-bit address you wish to send the buffer to.

PBYTE buf A pointer to the BYTE buffer you wish to write from.

int num The number of bytes to write.

bool stop True (default): Terminate communication with stop.
False: Do not terminate transmission. (This is useful if
the user wishes to send a restart instead of a stop.)

Returns:

The standard NetBurner I²C return values

The NetBurner Runtime Libraries Reference

170

12.3.3. I2CReadBuf

Synopsis:

BYTE I2CReadBuf(BYTE addr, PBYTE buf, int num, bool stop = true);

Description:

This function allows a buffer to be read from an address on the I²C bus in master mode without the need of a
start and stop bit.

Parameters:

Type Name Description

BYTE addr The 7-bit address you wish to read the buffer from.

PBYTE buf A pointer to the BYTE buffer you wish to read to.

int num The number of bytes to read.

bool stop True (default): Terminate communication with stop.
False: Do not terminate transmission. (This is useful if
the user wishes to send a restart instead of a stop.)

Returns:

The standard NetBurner I²C return values

The NetBurner Runtime Libraries Reference

171

12.3.4. I2CRestart

Synopsis:

int I2CRestart(BYTE addr, BOOL Read_Not_Write,

 DWORD ticks_to_wait = I2C_RX_TX_TIMEOUT);

Description:

This function will send a restart signal on the I²C bus instead of a stop. Note: This function should only be
used when in master mode and you have control of the bus.

Parameters:

Type Name Description

BYTE addr The 7-bit address you wish to send the restart to.

BOOL Read_Not_Write True to read. False to write. Note: You can use
I2C_START_READ or I2C_START_WRITE as values.

DWORD ticks_to_wait The number of ticks to wait on restart before failing.
Note: The default value in i2cmaster/multi.h =
I2C_RX_TX_TIMEOUT.

Returns:

The standard NetBurner I²C return values

The NetBurner Runtime Libraries Reference

172

12.4. Slave I²C Functions

12.4.1. I2CRXAvail

Synopsis:

bool I2CRXAvail();

Description:

This function determines if there is data available in the I²C slave receive buffer.

Parameters:

None

Returns:

True --- If there is data in slave RX buffer
False --- If slave RX buffer is empty

The NetBurner Runtime Libraries Reference

173

12.4.2. I2CTXAvail

Synopsis:

DWORD I2CTXAvail();

Description:

This function determines the free space available in the I²C slave TX buffer.

Parameters:

None

Returns:

The number of bytes remaining in the I²C slave TX buffer

The NetBurner Runtime Libraries Reference

174

12.4.3. I2CGetByte

Synopsis:

BYTE I2CGetByte();

Description:

This function will pend on a slave receive I²C semaphore.

Parameters:

None

Returns:

The oldest unread byte in the I²C slave RX buffer

The NetBurner Runtime Libraries Reference

175

12.4.4. I2CFillSlaveTXBuf

Synopsis:

BYTE I2CFillSlaveTXBuf(PBYTE buf, DWORD num, bool restart = true);

Description:

This function is used to fill the I²C slave TX buffer.

Parameters:

Type Name Description

PBYTE buf A pointer to the BYTE buffer that contains data for the slave TX
buffer.

DWORD num The number of BYTE to send from buf to TX buffer.

BOOL restart If true then restart next TX from beginning TX buffer. (A new slave
fill replaces buffer.) If false then continue next TX from last slave
TX. (A new slave fill adds to buffer at last unread byte.)

Returns:

Returns false if it failed to copy data

The NetBurner Runtime Libraries Reference

176

12.5. Advanced I²C Functions

12.5.1. I2CRead

Synopsis:

int I2CRead(PBYTE val, DWORD ticks_to_wait = I2C_RX_TX_TIMEOUT);

Description:

This function reads a single byte in master mode from the I²C bus.

Parameters:

Type Name Description
PBYTE val A pointer to byte location to store read value.
DWORD ticks_to_wait The number of system time ticks before a timeout occurs.

Returns:

The standard NetBurner I²C return values

The NetBurner Runtime Libraries Reference

177

12.5.2. I2CSend

Synopsis:

int I2CSend(BYTE val, DWORD ticks_to_wait = 5);

Description:

This function sends a single byte in master mode on the I²C bus.

Parameters:

Type Name Description

BYTE val The byte to send.

DWORD ticks_to_wait The number of system time ticks before a timeout occurs.

Returns:

The standard NetBurner I²C return values

The NetBurner Runtime Libraries Reference

178

12.5.3. I2CStart

Synopsis:

int I2CStart(BYTE addr, BOOL Read_Not_Write,

 DWORD ticks_to_wait = I2C_START_TIMEOUT);

Description:

This function is used to obtain an I²C bus and start communication in master mode.

Parameters:

Type Name Description

BYTE addr The 7-bit address you wish to send the start to.

BOOL Read_Not_Write True to read. False to write. Note: You can use
I2C_START_READ or I2C_START_WRITE as values

DWORD ticks_to_wait The number of ticks to wait on restart before failing.
Note: The default value in i2cmaster/multi.h =
I2C_RX_TX_TIMEOUT

Returns:

The standard NetBurner I²C return values

The NetBurner Runtime Libraries Reference

179

12.5.4. I2CStop

Synopsis:

void I2CStop();

Description:

This function ends communication and releases control of the I²C bus. This function puts your NetBurner
board into idle/slave mode.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

180

13. Multicast Library

13.1. Introduction

This Module provides code for joining multicast groups. This module uses the IGMP protocol defined in
RFC1112 and RFC 2236. IGMP Multicast is a method for distributing UDP packets within a group of hosts
and servers.

The NetBurner Multicast functions extend the NetBurner UDP interface. Instead of using the
RegisterUDPFifo function, you would use the RegisterMulticastFifo function to listen for Multicast UDP
packets. Note: To transmit Multicast packets, just use the normal UDP Send with a multicast IP Address.

Header File

#include <multicast.h> // Found in C:\Nburn\include

Multicast Group Functions

 RegisterMulticastFifo --- Register to join a Multicast group

 UnregisterMulticastFifo --- Register to leave a Multicast group

Multicast Example

See Multicast example in c:\nburn\examples

The NetBurner Runtime Libraries Reference

181

13.2. RegisterMulticastFifo

Synopsis:

void RegisterMulticastFifo(IPADDR group, WORD dest_port,

 OS_FIFO *pfifo);

Description:

This call initializes the Multicast system. Register to join a Multicast group. Note: It is not active until at least
one join has taken place.

Parameters:

Type Name Description

IPADDR group The IP Address of the group to join.

WORD dest_port The UDP Port to listen on.

OS_FIFO *pfifo The fifo to put incoming packets into.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

182

13.3. UnregisterMulticastFifo

Synopsis:

void UnregisterMulticastFifo(IPADDR group, WORD destination_port);

Description:

This call removes the NetBurner device from the specified multicast group.

Parameters:

Type Name Description

IPADDR group The IP Address of the group to leave

WORD dest_port The UDP Port to listen on.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

183

14. NBTime Library

14.1. Introduction

The NBTime library allows users to set and read the system time manually, or by using an NTP server to set
the system time. The system time runs internally to a core module and will be lost whenever it loses power
or is reset.

For information on how to keep time running when the module loses power or is reset, refer to the section on
the RTC library (the real-time clock library is only supported with modules mounted on MOD-DEV-40, -70,
and -100 development boards).

Header File

#include <nbtime.h> // Found in \Nburn\include

Functions

 time --- Reads the system time.

 set_time --- Sets the system time.

 GetNTPTime --- Reads time from an NTP server.

 SetNTPTime --- Sets the system time using time read from an NTP server.

 tzsetchar --- Sets the local time zone information for standard time and, if applicable, daylight savings

time.

The NetBurner Runtime Libraries Reference

184

14.2. time

Synopsis:

time_t time(time_t *pt)

Description:

This function reads the system time and returns it as type time_t. If pt is not null, then it will also write the

system time to its pointed location.

Parameters:

Type Name Description

time_t *pt A pointer to a location of type time_t that will be written with
the read system time. It can be null if the user wishes not to
store the read time.

Returns:

The read system time in time_t format.

The NetBurner Runtime Libraries Reference

185

14.3. set_time

Synopsis:

time_t set_time(time_t time_to_set)

Description:

This function sets the system time with the value given by time_to_set.

Parameters:

Type Name Description

time_t time_to_set A value of type time_t that will be used to set the system
time.

Returns:

The set system time in time_t format.

The NetBurner Runtime Libraries Reference

186

14.4. GetNTPTime

Synopsis:

DWORD GetNTPTime(IPADDR NTP_server_ip)

Description:

This function gets time from an NTP server.

Parameters:

Type Name Description

IPADDR NTP_server_ip The IP address of the NTP server.

Returns:

The NTP time to the nearest second of type DWORD if successful, zero (0) if it fails.

The NetBurner Runtime Libraries Reference

187

14.5. SetNTPTime

Synopsis:

BOOL SetNTPTime(IPADDR ntpserver)

Description:

This function gets time from an NTP Server and uses it to set the system time.

Parameters:

Type Name Description

IPADDR ntpserver The IP address of the NTP server.

Returns:

TRUE --- Succeeds in getting time from an NTP server.
FALSE --- Fails to get time from an NTP server.

The NetBurner Runtime Libraries Reference

188

14.6. tzsetchar

Synopsis:

void tzsetchar(char *tzenv)

Description:

This function uses the TZ environment variable to set the local time zone conversion information for standard
time and, if applicable, daylight savings time (DST) in the system. The TZ environment variable is also used

by the ctime(), localtime(), mktime(), and strftime() functions of the standard time.h library.

Once the TZ variable is set, the time library functions can use it to determine when DST is in effect when

type conversions are made, or what time zone string gets outputted in the case of the strftime() function.

Calling this function configures the system time to the local time zone desired, relative to UTC/GMT.

Therefore, SetNTPTime() should be called first to set the system time to UTC before calling tzsetchar()

to set it locally.

The following is an example of a tzsetchar() function call:

 tzsetchar(“PST8PDT7,M3.2.0/02:00:00,M11.1.0/02:00:00”);

These are also acceptable formats and perform the same function (usage of abbreviation and expansion
formats for offsets and time do not have to be consistent for each segment between the commas):

 tzsetchar(“PST08:00:00PDT07:00:00,M3.2.0/2,M11.1.0/2”);

 tzsetchar(“PST8PDT7,M3.2.0/2,M11.1.0/2”);

 tzsetchar(“PST8PDT,M3.2.0,M11.1.0”);

 tzsetchar(“PST8PDT7“);

The format above is a local time zone with DST support. It sets the local time to Pacific Standard Time
(PST) or Pacific Daylight Time (PDT). PDT is only set if the local time is after the second Sunday of March at
2:00 AM and before the first Sunday of November at 2:00 AM. The following is a breakdown of what each
segment between the commas of the TZ string represents:

PST8PDT7 – This provides the name of the time zone and the hour offset relative to UTC for both standard

and daylight savings time. “PST” is the standard time zone name for “Pacific Standard Time” and “PDT” is
the DST zone name for “Pacific Daylight time”. The hour offsets ‘8’ and ‘7’ represent the number of hours
that must be added to the PST and PDT local times respectively in order to reach UTC time. Note that time
zone offsets west of UTC must be positive, and time zone offsets east of UTC must be negative (the number
of hours subtracted from local time in order to reach UTC). If the hour offset for DST is omitted (for example,
“PST8PDT”), then the DST is automatically calculated by advancing the standard local time by one hour.

M3.2.0/02:00:00 – This indicates the starting date and time for daylight savings time. “M3” represents

the month of March (valid values are 1-12), ‘2’ represents the second week of the month (valid values are 1-
5; ‘5’ will always represent the last week even if there are only four weeks for a particular day selected), and
‘0’ represents Sunday (valid values are 0-6). “02:00:00” represents the 24-hour notation or Military time in
hours, minutes, and seconds. If the 24-hour notation is omitted, then 2:00 AM is used by default. If the
starting and ending date/time information are omitted but still provide a standard and daylight time name and
offset, then the U.S. rules (effective 2007) for starting and ending date/time are used by default.

The NetBurner Runtime Libraries Reference

189

M11.1.0/02:00:00 – This indicates the ending date and time for daylight savings time. The rules of this

format is the same as the starting date and time mentioned above.

If setting the local time in an area that does not support daylight savings time is desired, then it can be
written this way:

 tzsetchar(“JST-9”);

In the example above, “JST” represents Japan Standard Time followed by an offset of nine hours east of
UTC.

Parameters:

Type Name Description
char* tzenv The value of the TZ variable. The value can take one of two

formats: 1) local time zone without DST support, and 2) local
time zone with DST support.

Returns:

This is a void function – there is nothing to return.

The NetBurner Runtime Libraries Reference

190

15. The POP3 Client Library

15.1. Introduction

This module provides functions for receiving and managing mail from a Post Office Protocol version 3
(POP3) server. POP3 is defined in RFC1939. For sending mail, please see the SendMail section.

Header Files

#include<pop3.h> // Found in C:\Nburn\include

POP3 Client Functions

POP3_InitializeSession --- Initialize the POP3 network connection
POP3_CloseSession --- Close the POP3 network connection
POP3_StatCmd --- Get the status of the Mailstore on the POP3 server
POP3_ListCmd --- Get the size of the specified message
POP3_DeleteCmd --- Delete a specific message on the server
POP3_RetrieveMessage --- Retrieve a specific message from the server
GetPOPErrorString --- Returns the Error text for a specific code

The NetBurner Runtime Libraries Reference

191

POP3 Example

#include <pop3.h>

#include <dns.h>

#define USERID "username"

#define USERPASS "password"

#define SERVERNAME "pop.yourserver.com"

#define POP_PORT (110)

int StartSession()

{

 IPADDR srvr_addr;

 if (GetHostByName(SERVERNAME,&srvr_addr,0,TICKS_PER_SECOND*10)==DNS_OK)

 {

 iprintf("Got Server IP = ");

 ShowIP(srvr_addr);

 printf("\r\n");

 // Create the POP 3 session with the server

 int session = POP3_InitializeSession(srvr_addr, POP_PORT, USERID,

 USERPASS, TICKS_PER_SECOND*10);

 return session;

 }

 else

 {

 iprintf("Failed to get Server IP Address\n");

 return 0;

 }

}

#define MSG_BUF_SIZ (16000)

static char messagebuffer[MSG_BUF_SIZ];

void GetMessages()

{

 DWORD num_mess;

 DWORD num_bytes;

 int session = StartSession();

 if (session > 0)

 {

 int rv = POP3_StatCmd(session, &num_mess, &num_bytes,

 10*TICKS_PER_SECOND);

 if (rv == POP_OK)

 {

 iprintf("The server has %ld messages and %ld bytes\r\n",

 num_mess, num_bytes);

 if (num_mess == 0)

 return;

 for (DWORD nmsg = 1; nmsg <= num_mess; nmsg++)

 {

 char * psub;

 char * pbody;

 DWORD predict_size;

 rv = POP3_ListCmd(session,nmsg, &predict_size,

 TICKS_PER_SECOND*10);

 iprintf("Predicted message size is %ld\r\n", predict_size);

 rv = POP3_RetrieveMessage(session,nmsg,messagebuffer,

 &psub, &pbody,MSG_BUF_SIZ-1,

 TICKS_PER_SECOND*20);

 if (rv > 0)

 {

 iprintf("Received a message of %d bytes\r\n", rv);

 messagebuffer[rv] = 0;

 if (pbody)

The NetBurner Runtime Libraries Reference

192

 {

 iprintf("Body Size %ld\r\n, <Start of Message:>\r\n

 %s\r\n<End of Message>\r\n", strlen(pbody), pbody);

 }

 else

 {

 iprintf("Unable to locate body.\r\nPrinting the entire

 message\r\n<Start of Message:>\r\n %s\r\n<End

 of Message>\r\n",pbody);

 }

 char c;

 do

 {

 iprintf("Delete this message (Y/N?)");

 c = toupper(getchar());

 }

 while ((c != 'N') && (c != 'Y'));

 if (c == 'Y')

 {

 rv = POP3_DeleteCmd(session,nmsg, TICKS_PER_SECOND*10);

 if (rv == POP_OK)

 iprintf("Message deleted\r\n");

 else

 iprintf("Delete command processing failed with

 error:%s\r\n", GetPOPErrorString(rv));

 }

 else

 iprintf("Message not deleted\r\n");

 }

 else

 iprintf("Retrieve command processing failed with error:%s\r\n",

 GetPOPErrorString(rv));

 }

 }

 else

 {

 iprintf("STAT command processing failed with error:%s\r\n",

 GetPOPErrorString(rv));

 }

 POP3_CloseSession(session);

 }

 else

 {

 iprintf("Failed to create session with error:%s\r\n",

 GetPOPErrorString(session));

 }

}

The NetBurner Runtime Libraries Reference

193

15.2. POP3_InitializeSession

Synopsis:

int POP3_InitializeSession(IPADDR server_address, WORD port,

 PCSTR UserName, PCSTR PassWord, DWORD time_out)

Description:

This function initializes the POP3 network connection. This call makes the connection to the POP Server and
logs in with the Username and Password.

Parameters:

Type Name Description

IPADDR server_address The IP Address of the Server.

WORD port The port to connect to on the Server.

PCSTR UserName The account Username.

PCSTR PassWord The account Password.

DWORD time_out The number of ticks to wait.

Return Values:

int --- The command success code
> 0 --- Mail session
POP_TIMEOUT --- Time out
POP_PASSWORDERROR --- Network error
POP_CONNECTFAIL--- Password error
POP_NETWORKERROR --- Network error

The NetBurner Runtime Libraries Reference

194

15.3. POP3_CloseSession

Synopsis:

Int POP3_CloseSession(int session);

Description:

This function closes the POP3 network connection. This function also flushes deleted messages.
(See RFC1939 for additional information.)

Parameters:

Type Name Description

int session The POP3 session

Return Values:

int --- The command success code
POP_OK --- Closed successfully
POP_TIMEOUT --- Time out
POP_COMMANDFAIL --- Command error
POP_NETWORKERROR --- Network error
POP_BADSESSION--- Bad session number

The NetBurner Runtime Libraries Reference

195

15.4. POP3_StatCmd

Synopsis:

int POP3_StatCmd(int session, DWORD * num_messages,

 DWORD * total_bytes, DWORD time_out);

Description:

This function gets the status of the Mailstore on the POP3 server and retrieves the state of the mail store
associated with this session.

Parameters:

Type Name Description

int session The POP3 session.

DWORD *num_messages The DWORD variable to hold the number of pending
messages.

DWORD *total_bytes The DWORD variable to hold the total number of
bytes in the pending messages.

DWORD time_out The number of ticks to wait.

Return Values:

int --- The command success code
POP_OK --- Command OK
POP_TIMEOUT --- Time out
POP_COMMANDFAIL --- Command error
POP_NETWORKERROR --- Network error
POP_BADSESSION--- Bad session number

The NetBurner Runtime Libraries Reference

196

15.5. POP3_ListCmd

Synopsis:

int POP3_ListCmd(int session, DWORD message_number, DWORD * total_bytes,

 DWORD time_out);

Description:

This function gets the size of the specified message and retrieves the size of the message.

Parameters:

Type Name Description

int session The POP3 session.

DWORD message_number Retrieves the size of the message.

DWORD *total_bytes The DWORD variable to hold the total number of
bytes in the pending messages.

DWORD time_out The number of ticks to wait.

Return Values:

int --- The command success code
POP_OK --- Command OK
POP_TIMEOUT --- Time out
POP_COMMANDFAIL --- Command error
POP_NETWORKERROR --- Network error
POP_BADSESSION--- Bad session number

The NetBurner Runtime Libraries Reference

197

15.6. POP3_DeleteCmd

Synopsis:

int POP3_DeleteCmd(int session, DWORD message_number,

 DWORD time_out)

Description:

This function deletes a specific message on the server. Note: The message is not actually deleted until the
session is closed.

Parameters:

Type Name Description

int session The POP3 session.

DWORD message_number The message to delete.

DWORD time_out The number of ticks to wait.

Return Values:

int --- The command success code
POP_OK --- Command OK
POP_TIMEOUT --- Time out
POP_COMMANDFAIL --- Command error
POP_NETWORKERROR --- Network error
POP_BADSESSION--- Bad session number

The NetBurner Runtime Libraries Reference

198

15.7. POP3_RetrieveMessage

Synopsis:

int POP3_RetrieveMessage(int session, DWORD message_number, char * buffer,

 char ** subject_ptr, char ** body_ptr,

 int max_bufferlen, DWORD time_out);

Description:

This function retrieves a specific message from the server. The message is retrieved as a large block with all
of the headers first. Note: The message is left on the server and will not be deleted until you call
POP3_DeleteCmd.

Parameters:

Type Name Description

int session The POP3 session.

DWORD message_number The message to retrieve.

char *buffer The buffer to hold the message.

char **subject_ptr If not NULL, the char pointer will be left pointing at the
message subject.

char **body_ptr If not NULL, the char pointer will be left pointing at the
message body.

int max_bufferlen The maximum size of the retrieved message.

DWORD time_out The number of ticks to wait.

Return Values:

int --- The command success code
> 0 --- The length of the message retrieved
POP_TIMEOUT --- Time out
POP_COMMANDFAIL --- Command error
POP_NETWORKERROR --- Network error
POP_BADSESSION --- Bad session number

The NetBurner Runtime Libraries Reference

199

15.8. GetPOPErrorString

Synopsis:

PCSTR GetPOPErrorString(int err);

Description:

This function returns the error text for a specific code.

Parameters:

Type Name Description

int err The error code

Return Value:

The text string

The NetBurner Runtime Libraries Reference

200

16. QSPI Library

16.1. Introduction

The Queued Serial Peripheral Interface (QSPI) is a full duplex synchronous serial data link that operates in
master/slave mode. Note that Freescale microprocessors do not provide support for slave mode; they must
always be the QSPI master. The QSPI is functionally the same as SPI, but also provided a hardware queue
for data and commands. Up to 16 transfers can be queued at one time, eliminating CPU intervention
between transfers. The NetBurner QSPI driver and API provide interrupt driven QSPI communication.

The QSPI specification allows for sharing the QSPI bus with multiple devices. However, when desiging your
system you must consider what devices are connected and the desired throughput. For example, if you are
using the Embedded Flash File System (EFFS) with external SD flash cards, or the WiFi module, they will
require exclusive use of the QSPI.

The QSPI uses the following hardware signals:

SCLK Serial clock output from master
MOSI Master data output (transmit), slave data input (receive)
MISO Master data input (receive), slave data output (transmit)
QSPI_CS Optional QSPI chip selects

Programming tip: If you are new to QSPI and require a chip select for your device, we recommend using a
GPIO signal during initial development to simplify your application code. Once proper operation has been
achieved, modify the code to use the QSPI chip selects.

Header File

#include <qspi.h> // Located in \nburn\include

Function Summary

QSPIInit() Initialize QSPI subsystem.

QSPIStart() Start a QSPI transfer using the transmit, receive and control queues.

QSPIdone() Returns TRUE when a QSPI transfer is complete. Used only for single threaded
 applications in place of a semaphore.

The NetBurner Runtime Libraries Reference

201

16.2. QSPI Configuration and Initialization

Use of the QSPI requires:

1. Identify which pins on your NetBurner device provide primary or seconday QSPI functionality.Use the
NetBurner Pins class functions to configure these pins for QSPI operation.

2. Single task applications: you can choose to call the QSPIdone() function to determine when the
QSPI transfer is complete, or use a semaphore and pend for completion.

3. Multitask applications: If your application has more than one task that will access the QSPI, your
must create a semaphore to control access to the QSPI resource.

4. Initialize the QSPI with the QSPIInit() function.
5. When you have data to send, or want to read data from the QSPI slave device, call the QSPIStart()

function to initiate the data transfer.
6. The semaphore will post when the data transfer is complete.

16.3. Example Program

The QSPI example programs are located in the c:\nburn\examples\<platform> directory, where <platform>
represents your specific NetBurner device, such as Mod5270. The following example is for a Mod5270 core
module. The example is a serial to QSPI converter, in which all data received by the QSPI is sent to the
debug serial port, and all data received from the debug serial port is sent out the QSPI interface.

void UserMain(void * pd)

{

 InitializeStack();

 if (EthernetIP==0)GetDHCPAddress();

 OSChangePrio(MAIN_PRIO);

 EnableAutoUpdate();

 //Initialize buffers

 static BYTE RXBuffer[10000], TXBuffer[10000];

 // Initialize pins needed for QSPI

 J2[25].function(PINJ2_25_SPI_CLK);

 J2[27].function(PINJ2_27_SPI_DIN);

 J2[28].function(PINJ2_28_SPI_DOUT);

 // The QSPI functionality can be tested with a simple jumper from J2[27] to J2[28]

 // Create and initialize semaphore for QSPI (optional)

 OS_SEM QSPI_SEM;

 OSSemInit(& QSPI_SEM, 0);

 /* Initialize QSPI options

 void QSPIInit(DWORD Baudrate = 2000000, BYTE QueueBitSize = 0x8, BYTE CS = 0x0,

 BYTE CSPol = 0x1, BYTE ClkPolarity = 0x0, BYTE ClkPhase = 0x1,

 BOOL DoutHiz = FALSE)

 */

 QSPIInit(); // Keep overloaded defaults

 // Open UART1 and get FD

 int U1FD = OpenSerial(1, 115200, 1, 8, eParityNone);

The NetBurner Runtime Libraries Reference

202

 while (1)

 {

 if(dataavail(U1FD))

 {

 int num = read(U1FD, (char*)TXBuffer, 10000); // Read data from UART1

 QSPIStart(TXBuffer, RXBuffer, num, &QSPI_SEM); // Send data via QSPI

 OSSemPend(&QSPI_SEM, 0); // Wait for QSPI to complete

 writeall(U1FD, (char*)RXBuffer, num); // Send QSPI RX via UART1

 }

 }

}

The default/overloaded QSPI configuration settings are used because QSPIInit() is called with no
parameters. Custom settings can be configured by calling QSPIInit() with all the parameters as shown in the
example comment above the QSPIInit() call.

A semaphore is used to determine when the transfer is complete. This may be more than is necessary for a
simple single threaded application, but is used to demonstrate the most common usage. Alternatively the
OSSemPend() call could be replaced with a while loop waiting for QSPIdone() to return TRUE.

16.4. Additional Information

Please refer to the Freescale Users Manual for for detailed information on QSPI chip selects, polarity, phase
and delay settings. The Freescale manuals are located in the \nburn\docs directory.

The NetBurner Runtime Libraries Reference

203

16.5. QSPIInit

Synopsis:

BYTE QSPIInit(DWORD baudRateInBps = 2000000, BYTE transferSizeInBits = 8,

 BYTE peripheralChipSelects = 0x0F, BYTE chipSelectPolarity = 1,

 BYTE clockPolarity = 0, BYTE clockPhase = 1, BOOL doutHiz = TRUE,

 BYTE csToClockDelay = 0, BYTE delayAfterTransfer = 0);

BYTE QSPIInit() // Uses default parameters

Description:

Initialize the QSPI hardware and software driver.

Parameters:

Type Name Description

DWORD baudRateInBps Maximum requested baud rate in bits per second. The maximum
possible baud rate is determined by the system clock. The function will
select the highest possible baud rate if the specified value cannot be
achieved.

BYTE transferSizeInBits Size of data values to be transferred. Values can be 8, 16 or 32 bits.
Note that 16 and 32 bit size values must be word (16-bit) aligned (16-
bit).

BYTE PeripheralChipSelects Peripheral chip select drive level. Used to select an external device for
serial data transfer. More than one chip select may be active at once,
and more than one device can be connected to each chip select. Bits
3–0 map directly to QSPI_CS[3:0], respectively. For each bit:
0 = Chip select is 0 during a transfer.
1 = Chip select is 1 during a transfer.

BYTE chipSelectPolarity Peripheral chip select inactive level (no transfer in progress). Applies to
all chip selects.
0 = 0 when inactive
1 = 1 when inactive

BYTE clockPolarity Clock polarity:
0 = The inactive state value of QSPI_CLK is logic level 0.
1 = The inactive state value of QSPI_CLK is logic level 1.

BYTE clockPhase Clock phase:
0 = Data captured on the leading edge of QSPI_CLK and changed
 on the following edge of QSPI_CLK.
1 = Data changed on the leading edge of QSPI_CLK and captured
 on the following edge of QSPI_CLK.

BOOL doutHiz Data output high impedance enable. Selects QSPI_DOUT mode of
operation.

The NetBurner Runtime Libraries Reference

204

0 = Default value after reset. QSPI_DOUT is actively driven between
 transfers.
1 = QSPI_DOUT is high impedance between transfers.

BYTE csToClockDelay QCD, QSPICLK delay. When the DSCK bit in the command RAM is set
this field determines the length of the delay from assertion of the chip
selects to valid QSPI_CLK transition.

BYTE delayAfterTransfer Delay after transfer. When the DT bit in the command RAM is set this
field determines the length of delay after the serial transfer.

Returns:

Current QSPI state: QSPI_OK on success or QSPI_BUSY

The NetBurner Runtime Libraries Reference

205

16.6. QSPIStart

Synopsis:

BYTE QSPIStart(PBYTE transmitBufferPtr, volatile BYTE* receiveBufferPtr,

 DWORD byteCount, OS_SEM* finishedSem = NULL);

Description:

Initiate a QSPI data transfer

Parameters:

Type Name Description

PBYTE transmitBufferPtr Pointer to the buffer to use in the transfer. Specify NULL for receive only.

BYTE * receiveBufferPtr Pointer to buffer to store received data. NULL for transmit only.

DWORD byteCount Number of bytes to send or receive. If the data size is greater than 8-bit,
you must provide the total numer of bytes.

FinishedSem * OS_SEM Pointer to pre-initialized semaphore to post to when transfer is complete.
A value of NULL disables the semaphore function.

Returns:

Current QSPI state: QSPI_OK on success or QSPI_BUSY

The NetBurner Runtime Libraries Reference

206

16.7. QSPIdone

Synopsis:

BOOL QSPIdone()

Description:

Can be called after QSPIStart(). Returns TRUE when transfer is complete. This is an alternative to using a
semaphore.

Parameters:

None

Returns:

TRUE when transfer is complete. Otherwise returns FALSE.

The NetBurner Runtime Libraries Reference

207

17. The SendMail SMTP Library

17.1. Introduction
This Module provides code for sending email using Simple Mail Transfer Protocol (SMTP). You can send
mail with or without plain text password authentication. Attachments can be sent in MIME format as plain text
or binary.

Header Files
 #include <mailto.h> // Found in C:\Nburn\include

SendMail Functions
SendMail ---Send a message without authentication
SendMailEx --- Send an E-Mail using the selected POP server
SendMailAuth --- Send an E-Mail using the selected POP server and a password
SendMailAuthStartMIME --- Initiate a MIME session
SendMailAuthAddMIME --- Call one or more times to add MIME parts
SendMailAuthEndMIME --- Send the MIME message and close session

Error Reporting Functions
int IsMailError() --- returns 0 or error code
void PrintNBError(int FDout = 0) --- Prints NB Error string of last mail transaction to FD,
 or stdio if parameter not included
void PrintServerLog(int FDout = 0) --- Prints Server Log of last mail transaction to FD, or stdio
 if parameter not included

Error Reporting Variables
int NB_Mail_Error_Code --- Contains 0 or error code
char NB_Mail_Error_String[] --- Last error string reported by NetBurner mail library. This is
 usually displayed on the debug serial port.
char Server_Mail_Log_String[] --- Last error string received from SMTP server

Error Codes (located in c:\nburn\include\mailto.h)
#define STATUS_OK (0)
#define CONNECT_TO_SMTP_SERVER_FAILED (-1)
#define INITIAL_SERVER_REPLY_FAILED (-2)
#define HELO_SERVER_REPLY_FAILED (-3)
#define MAIL_FROM_SERVER_REPLY_FAILED (-4)
#define RCPT_TO_SERVER_REPLY_FAILED (-5)
#define DATA_SERVER_REPLY_FAILED (-6)
#define DATA_END_SERVER_REPLY_FAILED (-7)
#define AUTH_LOGIN_SERVER_REPLY_FAILED (-8)
#define USER_ID_SERVER_REPLY_FAILED (-9)
#define PASSWORD_SERVER_REPLY_FAILED (-10)
#define CONNECT931_SMTP_SERVER_FAILED (-11)

The NetBurner Runtime Libraries Reference

208

17.2. SendMail

Synopsis:

int SendMail(IPADDR smtp_server, PCSTR userid, PCSTR from_addr,

 PCSTR to_addr, PCSTR subject, PCSTR textbody);

Description:

Send an email message. The function will open a TCP connection to the specified SMTP server, create a
message based on the parameters, and send the message.

Parameters:

Type Name Description

IPADDR smtp_server Name or IP Address of the SMTP Server

PCSTR userid The ASCII string to provide for RFC931 Identification.

PCSTR from_addr The "from" E-Mail address.

PCSTR to_addr The "to" E-Mail address (i.e. where to send the E-Mail).

PCSTR subject The E-Mail subject.

PCSTR textbody The body of the E-Mail.

Return Values:

0 --- If it fails
1 --- If successful

The NetBurner Runtime Libraries Reference

209

17.3. SendMailEx

Synopsis:

int SendMailEx(IPADDR smtp_server, PCSTR userid, PCSTR from_addr_rev_path,

 PCSTR from_addr_memo_hdr, PCSTR to_addr, PCSTR subject,

 PCSTR textbody);

Description:

Send an email message with extended parameters. The function will open a TCP connection to the specified
SMTP server, create a message based on the parameters, and send the message. This function is identical
to SendMail(), with the addition of the from_addr_rev_path and from_addr_memo_hdr parameters.

Parameters:

Type Name Description

IPADDR pop_server Name or IP Address of the SMTP Server

PCSTR userid The ASCII string to provide for RFC931
Identification.

PCSTR from_addr_rev_path The "from" E-Mail address - RFC 821 - <reverse-
path>.

PCSTR from_addr_memo_hdr The "from” E-Mail address - RFC 821- memo
header.

PCSTR to_addr “Send To” E-Mail address

PCSTR subject The E-Mail subject.

PCSTR textbody The body of the E-Mail.

Return Values:

0 --- If it fails
1 --- If successful

The NetBurner Runtime Libraries Reference

210

17.4. SendMailAuth

Synopsis:

int SendMailAuth(IPADDR smtp_server, PCSTR userid, PCSTR pass,

 PCSTR from_addr, PCSTR to_addr, PCSTR subject,

 PCSTR textbody);

Description:

Send an email message with SMTP plain text authentication per RFC 931. The function will open a TCP
connection to the specified SMTP server, authenticate the connection with the specified user name and
password, create a message based on the parameters, and send the message.

Parameters:

Type Name Description
IPADDR pop_server Name or IP Address of the SMTP Server
PCSTR userid The ASCII string to provide for RFC931 Identification.
PCSTR pass The ASCII String to provide for AUTH Identification.
PCSTR from_addr The "from" E-Mail
PCSTR to_addr The "to" E-Mail address (i.e. where to send the E-Mail).
PCSTR subject The E-Mail subject.
PCSTR textbody The body of the E-Mail.

Return Values:

0 --- If it fails
1 --- If successful

The NetBurner Runtime Libraries Reference

211

17.5. Sending MIME Attachments

Sending an E-Mail message with Multipurpose Internet Mail Extensions (MIME) is a multi step process:

 Call SendMailAuthStartMIME() to begin a Session with the SMTP server

 Call SendMailAuthAddMIME() for each MIME attachment you want to add

 Call SendMailAuthEndMIME() to send the email message and close the Session

The following MIME types are supported by default. The binary attachment should cover most types such as
jpg, gif, etc. The type are defined in \nburn\include\mailto.h, and the functions are implemented in
\nburn\system\mailto.cpp.

// MIME Content Types defined in mailto.h
extern enum CONTENT_TYPE_ENUM
{
 CONTENT_TYPE_PLAIN_TEXT, // for message body
 CONTENT_TYPE_PLAIN_TEXT_ATTACH,
 CONTENT_TYPE_BINARY_ATTACH,
 // Add additional types above CONTENT_TYPE_END
 CONTENT_TYPE_END
} CONTENT_TYPE;

The NetBurner Runtime Libraries Reference

212

17.5.1. SendMailAuthStartMIME

Synopsis:

int SendMailAuthStartMIME(IPADDR smtp_server, PCSTR userid, PCSTR pass,

 PCSTR from_addr, PCSTR to_addr, PCSTR subject,

 int &fd)

Description:

Start a MIME session with plain text password authentication. This function will open a TCP connection to
the SMTP server, authenticate, then return while leaving the TCP connection open. The Session file
descriptor is returned in the “int &fd” reference variable. This function must be called before any other
SendMail MIME function.

Parameters:

Type Name Description
IPADDR pop_server Name or IP Address of the SMTP Server
PCSTR userid The ASCII string to provide for RFC931 Identification.
PCSTR pass The ASCII String to provide for AUTH Identification.
PCSTR from_addr The "from" E-Mail
PCSTR to_addr The "to" E-Mail address (i.e. where to send the E-Mail).
PCSTR subject The E-Mail subject.
Int & fd A “reference” (or pointer) to an integer value of the calling

function. The value of fd is modified by this function and
will contain the file descriptor for the open SMTP Session.
This value must always be checked to be greater than 0
for a valid Session. The fd is passed to other MIME
functions to identify the open Session.

Return Values:

0 --- If it fails
1 --- If successful

The NetBurner Runtime Libraries Reference

213

17.5.2. SendMailAuthAddMIME

Synopsis:

int SendMailAuthAddMIME(int fd, int ContentType, const char *pContent,

 const char *FileName)

Description:

Add a MIME part or attachment to an open MIME Session. This function should be called for each
part/attachment you wish to add to the email message.

Parameters:

Type Name Description
int fd The file descriptor of the open MIME Session returned by

SendMailAuthStartMIME().
int ContentType MIME Content Type, such as : CONTENT_TYPE_PLAIN_TEXT,

CONTENT_TYPE_PLAIN_TEXT_ATTACH,
CONTENT_TYPE_BINARY_ATTACH

const char * pContent A pointer to the MIME content
const char * FileName File name for the attachment

Return Values:

0 --- If it fails
1 --- If successful

The NetBurner Runtime Libraries Reference

214

17.5.3. SendMailAuthEndMIME

Synopsis:

int SendMailAuthEndMIME(int fd, PCSTR userid)

Description:

Send a MIME email message and close the SMTP Session.

Parameters:

Type Name Description
int fd The file descriptor of the open MIME Session returned by

SendMailAuthStartMIME().
PCSTR Userid The user id used to open the Session in

SendMailAuthStartMIME()

Return Values:

0 --- If it fails
1 --- If successful

The NetBurner Runtime Libraries Reference

215

18. RTC Library

18.1. Introduction

The RTC (real-time clock) library allows users to set and read the real-time clock manually, or use the current
system time to set the RTC time or use the current RTC time to set the system time. The RTC is external to
the core module and is located on the MOD-DEV-40, -70, and -100 development boards. While the system
time inside a core module can be lost when it loses power or is reset, the RTC is sustained by a
supercapacitor which is also located on the development boards. This library acts as an interface between
the system and RTC time clocks.

Header File

#include <rtc.h> // Found in \Nburn\<HardwarePlatform>\include

Parameters

The following chart defines the contents of struct tm, as it is utilized by the RTCGetTime and RTCSetTime
functions.

Type Name Description

int tm_sec Seconds (0-59).

int tm_min Minutes (0-59).

int tm_hour Hour (0-23).

int tm_mday Day of the month (1-31).

int tm_mon Month of the year: January (0) to December (11).

int tm_year Years since 1900.

int tm_wday Day of the week: Sunday (0) to Saturday (6).

int tm_yday Days since January 1
st

(0-365).

int tm_isdst Daylight Saving Time flag (greater than zero if in effect; zero if
not in effect; less than zero if information not available).

Functions

 RTCGetTime --- Gets the current RTC time.

 RTCSetTime --- Sets the RTC time with a given tm structure.

 RTCSetSystemFromtRTCTime --- Sets the system time with the current RTC time.

 RTCSetRTCfromSystemTime --- Sets the RTC time using the current system time.

The NetBurner Runtime Libraries Reference

216

18.2. RTCGetTime

Synopsis:

int RTCGetTime(struct tm &bts)

Description:

This function gets the current RTC time.

Parameters:

Type Name Description

struct tm &bts The basic time structure used to store the current time read
from the RTC clock.

Returns:

0 if successful, 1 if failed.

The NetBurner Runtime Libraries Reference

217

18.3. RTCSetTime

Synopsis:

int RTCSetTime(struct tm &bts)

Description:

This function sets the RTC time with a given time structure.

Parameters:

Type Name Description

struct tm &bts The basic time structure used to set the RTC time.

Returns:

0 if successful, 1 if failed.

The NetBurner Runtime Libraries Reference

218

18.4. RTCSetSystemFromRTCTime

Synopsis:

int RTCSetSystemFromRTCTime()

Description:

This function sets the system time with the current RTC time.

Parameters:

None.

Returns:

0 if successful, 1 if failed.

The NetBurner Runtime Libraries Reference

219

18.5. RTCSetRTCfromSystemTime

Synopsis:

int RTCSetRTCfromSystemTime()

Description:

This function sets the RTC time with the current system time.

Parameters:

None.

Returns:

0 if successful, 1 if failed.

The NetBurner Runtime Libraries Reference

220

19. Serial Library

19.1. Introduction

All available I/O functions in the NetBurner I/O system library work with serial ports. When the NetBurner

device boots up, the serial ports are running in a polled mode. Calling either the OpenSerial() or

SimpleOpenSerial() function will open the serial port in an interrupt-driven and buffered mode that will

result in an increase in performance.

In order to enable the interrupt-driven mode for the default debug port (UART 0), SerialClose() needs to

be called, followed by either OpenSerial() or SimpleOpenSerial(). Once the serial port is closed,

UART 0 will no longer be connected to stdio (stdin, stdout, stderr). If stdio calls such as iprintf(),

printf(), siprintf(), and sprintf() are used, then stdio must be reconnected to the appropriate

serial port with ReplaceStdio(). For example, assuming “fdSerial” is the return value from

OpenSerial():

SerialClose(0);

fdSerial = OpenSerial(0, 115200, 1, 8, eParityNone);

ReplaceStdio(0, fdSerial); // stdin via UART 0

ReplaceStdio(1, fdSerial); // stdout via UART 0

ReplaceStdio(2, fdSerial); // stderr via UART 0

Header File:

#include <serial.h> // Found in C:\Nburn\include

Applicable to All NetBurner Platforms

 OpenSerial – Opens a serial port

 SimpleOpenSerial – Shortcut macro to open a serial port

 SerialClose – Closes a serial port [using close() works as well]

 SerialEnableTxFlow – Enables software flow control on transmit (XON/XOFF)

 SerialEnableRxFlow – Enables software flow control on receive (XON/XOFF)

 SerialEnableHwTxFlow – Enables hardware flow control on transmit (RTS/CTS)

 SerialEnableHwRxFlow – Enables hardware flow control on receive (RTS/CTS)

 Serial485HalfDupMode – Configures for RS-485 half- or full-duplex mode

 SendBreak – Sets a break in the transmission for a given period of time

 serwriteaddress – Writes address values (used only with multidrop parity setting)

 GetUartErrorReg – Reads the status of the UART error register

Applicable to the CB34EX, SB72EX, and SB700EX Platforms

 GetCD – Reads the state of the Carrier Detect (CD) pin of a serial port

 GetRI – Reads the state of the Ring Indicator (RI) pin of a serial port

 GetDSR – Reads the state of the Data Set Ready (DSR) pin of a serial port

 SetDTR – Writes the state of the Data Terminal Ready (DTR) pin of a serial port

The NetBurner Runtime Libraries Reference

221

19.2. OpenSerial

Synopsis:

int OpenSerial(int portnum, unsigned int baudrate, int stop_bits,

 int data_bits, parity_mode parity);

Description:

This function opens a serial port.

Parameters:

Type Name Description

int portnum The UART to open; valid values are ‘0’, ‘1’, and ‘2’ (not
available on all platforms). MOD5441X adds valid values ‘4’,
‘5’, ‘7’, ‘8’, and ‘9’. NANO54415 adds valid values ‘4’, ‘5’, ‘6’,
‘8’, and ‘9’.

unsigned int baudrate The speed of the serial port in bits per second.

int stop_bits The number of stop bits to append to character data; valid
values are ‘1’ and ‘2’.

int data_bits The number of data bits sent per character or frame; valid
values are 5, 6, 7, and 8.

parity_mode parity The type of parity checking to use; valid values are
eParityNone, eParityEven, eParityOdd, and eParityMulti.

Returns:

The file descriptor of the initialized port if successful; otherwise, one of the error codes is returned:

 SERIAL_ERR_NOSUCH_PORT (-1)

 SERIAL_ERR_PORT_ALREADYOPEN (-3)

 SERIAL_ERR_PARAM_ERROR (-4) – This error will be returned if either the number of stop bits or
data bits are outside a valid range.

The NetBurner Runtime Libraries Reference

222

19.3. SimpleOpenSerial

Synopsis:

int SimpleOpenSerial(int portnum, unsigned int baudrate);

Description:

This is a macro that opens a serial port with the most common default values for the stop bit (1), data bits (8),
and parity (no parity) already provided; all that is required in the call is the UART to open and the configuring
baud rate.

The following provides an example between calling the normal OpenSerial() function and the

SimpleOpenSerial() function:

int fd = OpenSerial(0, 115200, 1, 8, eParityNone);

int fd = SimpleOpenSerial(0, 115200);

Both statements above perform the same operation in configuring UART 0 to operate at 115,200 bps, 1 stop

bit, 8 data bits, and no parity, with the difference being that the SimpleOpenSerial() already provides the

last three parameters by default.

If one needs to use different parameters other than what the last three input parameters provide by default,

then the OpenSerial() function must be used.

Parameters:

Type Name Description

int port The UART to open; valid values are ‘0’, ‘1’, and ‘2’ (not
available on all platforms).

unsigned int baudrate The speed of the serial port in bits per second.

Returns:

The file descriptor of the initialized port if successful; otherwise, one of the error codes is returned:

 SERIAL_ERR_NOSUCH_PORT (-1)

 SERIAL_ERR_PORT_ALREADYOPEN (-3)

The NetBurner Runtime Libraries Reference

223

19.4. SerialClose

Synopsis:

int SerialClose(int portnum);

Description:

This function closes a UART serial port. It is valid to close a serial port that is not open, and allows a port in
an unknown state to be closed. Port settings can be changed by closing and reopening the port. The

close() function can also be used in place of this function.

Parameters:

Type Name Description

int portnum The UART port to close; valid values are ‘0’, ‘1’, and ‘2’ (not
available on all platforms).

Returns:

‘0’ if successful; otherwise, one of the following error codes is returned:

 SERIAL_ERR_NOSUCH_PORT (-1)

 SERIAL_ERR_PORT_NOTOPEN (-2)

The NetBurner Runtime Libraries Reference

224

19.5. SerialEnableTxFlow

Synopsis:

void SerialEnableTxFlow(int port, int enab);

Description:

Enables or disables software flow control (XON/XOFF) on transmit. The NetBurner device will recognize the
special XON and XOFF characters being sent from another device in order to throttle the output when
enabled.

Parameters:

Type Name Description

int port The UART whose flow control will be toggled; valid values are
‘0’, ‘1’, and ‘2’ (not available on all platforms).

int enab ‘0’ disables flow control; ‘1’ (or any non-zero number) will
enable it.

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

225

19.6. SerialEnableRxFlow

Synopsis:

void SerialEnableRxFlow(int port, int enab);

Description:

Enables or disables software flow control (XON/XOFF) on receive. The NetBurner device will send special
XON and XOFF characters to another device in order to control the flow of incoming data when enabled.

Parameters:

Type Name Description

int port The UART whose flow control will be toggled; valid values are
‘0’, ‘1’, and ‘2’ (not available on all platforms).

int enab ‘0’ disables flow control; ‘1’ (or any non-zero number) will
enable it.

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

226

19.7. SerialEnableHwTxFlow

Synopsis:

void SerialEnableHwTxFlow(int port, int enab);

Description:

This function enables or disables transmitter hardware flow control for the specified serial port number. The
transmitter is throttled via the CTS (Clear-to-Send) input signal line, which would be linked to the RTS
(Request-to-Send) output line on the receiver. The transmitter starts sending data to the receiver when it
receives a request on its CTS line from the receiver.

Note: Calling this function to disable Tx hardware flow control after enabling RS-485 full-duplex mode
configures the port for RS-422 mode (Tx stays actively driven).

Parameters:

Type Name Description

int port The UART whose flow control will be toggled; valid values are
‘0’, ‘1’, and ‘2’ (not available on all platforms).

int enab ‘0’ disables flow control; ‘1’ (or any non-zero number) will
enable it.

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

227

19.8. SerialEnableHwRxFlow

Synopsis:

void SerialEnableHwRxFlow(int port, int enab);

Description:

This function enables or disables receiver hardware flow control for the specified serial port number. The
receiver controls the flow of incoming data via the RTS (Request-to-Send) output signal line, which would be
linked to the CTS (Clear-to-Send) input line on the transmitter. The receiver sets RTS when it is ready to
receive data, thereby enabling the transmitter to start sending information to the receiver.

Parameters:

Type Name Description

int port The UART whose flow control will be toggled; valid values are
‘0’, ‘1’, and ‘2’ (not available on all platforms).

int enab ‘0’ disables flow control; ‘1’ (or any non-zero number) will
enable it.

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

228

19.9. Serial485HalfDupMode

Synopsis:

void Serial485HalfDupMode(int port, int enab);

Description:

Enables or disables RS-485 half-duplex mode. Full-duplex mode is automatically enabled when half-duplex
mode is disabled. This must be explicitly called before RS-485 functionality can be used.

Parameters:

Type Name Description

int port The UART port to use; the UART that can only be used for
RS-485 depends on the platform.

int enab ‘0’ disables half-duplex (enables full-duplex); ‘1’ enables half-
duplex (disables full-duplex).

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

229

19.10. SendBreak

Synopsis:

void SendBreak(int port, DWORD time);

Description:

Sets a break in the UART transmission for a given period of time. The break starts when character
transmission completes. The break is delayed until any character in the transmitter shift register is sent. Any
character in the transmitter holding register is sent after the break.

Parameters:

Type Name Description

int port The UART whose transmitter will be forced low (start break).

DWORD time Specifies the amount of time in ticks that the break will hold;
when time expires, the break will be stopped; 20 ticks equal 1
second by default.

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

230

19.11. serwriteaddress

Synopsis:

int serwriteaddress(int fd, const char c);

Description:

Sends an address character via the UART port number associated with the given file descriptor. This
function can only be utilized if the UART is initialized in multidrop mode.

Parameters:

Type Name Description

int fd The file descriptor associated with the UART serial port that
will be used.

const char c The address character to be sent.

Returns:

‘1’ if successful; otherwise, one of the following error codes is returned (note that
SERIAL_ERR_PORT_NOTOPEN is also returned if UART is not initialized to be in multidrop mode):

 SERIAL_ERR_NOSUCH_PORT (-1) – The file descriptor is associated with a serial port that does
not exist, therefore the file descriptor is invalid.

 SERIAL_ERR_PORT_NOTOPEN (-2) – The file descriptor is associated with a closed serial port.

The NetBurner Runtime Libraries Reference

231

19.12. GetUartErrorReg

Synopsis:

int GetUartErrorReg(int fd);

Description:

Gets the UART error register. Any errors are added to this register in a logical OR operation. Calling this
function to read the error status will clear the register. The meaning of each bit in the error status register is
shown in the table below.

Bit Description

3 Received break

2 Framing error

1 Parity error

0 Overrun error

Parameters:

Type Name Description

int fd The file descriptor associated with the UART serial port whose
error register is to be retrieved.

Returns:

The value of the read error register if successful; otherwise, one of the error codes is returned:

 SERIAL_ERR_NOSUCH_PORT (-1) – The file descriptor is associated with a serial port that does
not exist, therefore the file descriptor is invalid.

 SERIAL_ERR_PORT_NOTOPEN (-2) – The file descriptor is associated with a closed serial port.

The NetBurner Runtime Libraries Reference

232

19.13. GetCD

Synopsis:

BOOL GetCD(int port);

Description:

This function gets the current state of the Carrier Detect signal from the specified serial port (CB34EX,
SB72EX, and SB700EX platforms only).

Parameters:

Type Name Description

int port The UART port whose CD signal will be read.

Returns:

‘TRUE’ if set, ‘FALSE’ if cleared; ‘0’ is returned if port number is invalid.

The NetBurner Runtime Libraries Reference

233

19.14. GetRI

Synopsis:

BOOL GetRI(int port);

Description:

This function gets the current state of the Ring Indicator signal from the specified serial port (CB34EX,
SB72EX, and SB700EX platforms only).

Parameters:

Type Name Description

int port The UART port whose RI signal will be read.

Returns:

‘TRUE’ if set, ‘FALSE’ if cleared; ‘0’ is returned if port number is invalid.

The NetBurner Runtime Libraries Reference

234

19.15. GetDSR

Synopsis:

BOOL GetDSR(int port);

Description:

This function gets the current state of the Data Set Ready signal from the specified serial port (CB34EX,
SB72EX, and SB700EX platforms only).

Parameters:

Type Name Description

int port The UART port whose DSR signal will be read.

Returns:

‘TRUE’ if set, ‘FALSE’ if cleared; ‘0’ is returned if port number is invalid.

The NetBurner Runtime Libraries Reference

235

19.16. SetDTR

Synopsis:

void SetDTR(int port, BOOL val);

Description:

Sets or clears the Data Terminal Ready signal for the specified serial port (CB34EX, SB72EX, and SB700EX
platforms only).

Parameters:

Type Name Description

int port The UART port whose DTR signal will be set or cleared.

BOOL val The Boolean value to configure the signal; ‘TRUE’ sets it,
while ‘FALSE’ clears it.

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

236

20. SNMP Library

20.1. Introduction

Simple Network Management Protocol (SNMP) is a system for exposing a number of variables to a Network
Management System. These variables are grouped together into SNMP MIB’s (Management Information
Bases). It is common to underestimate the complexity and time required to implement SNMP for a product.
The purpose of this section is to provide a general idea of the complexity and effort required to implement
SNMP, and to describe the provisions of the NetBurner SNMP package.

The NetBurner SNMP package is sold as a licensed option only, and is not part of the standard development
kit package. Please contact our Sales Department to purchase the SNMP package.

SNMP is complex, and the standard NetBurner SNMP package is intended for customers that have a SNMP
expert on staff. If you do not know how to use and configure SNMP tools such as SNMPWALK, SNMPGET,
and SNMPSET, you must acquire that capability before you attempt to implement SNMP on your system. If
you do not know what a MIB is and do not know how to write one, you must acquire that capability before
you attempt to implement a custom SNMP MIB. For additional information, please read the SNMP FAQ
(http://www.faqs.org/faqs/snmpfaq/).

Implementation Requirements

 The Provisions of the NetBurner SNMP Package

 Items Not Included in the NetBurner SNMP Package

 Additional Support for SNMP

A Short Startup Guide for using NetBurner's SNMP Library

 Level 0 - Basic instructions on using the SNMP tools provided with the NetBurner SNMP package

 Level 1 - Enable SNMP at the absolute minimum level without custom MIBs

 Level 2 - A simple custom MIB to set/clear community names and trap destinations

Notes

 Note 1 - Custom tables (no external example code provided)

 Note 2 - Custom community name parsing and protection

 Note 3 - Traps and custom traps

Header File

 #include <snmp.h> // Found in C:\Nburn\include

Functions

 Snmpget - Get a single SNMP variable

 Snmpgetnext - Get the next variable following the specified variable

 Snmpset - Set a single SNMP variable

 Snmpwalk - Walk the SNMP tree

mailto:sales@netburner.com

The NetBurner Runtime Libraries Reference

237

20.2. SNMP Implementation Requirements

Provisions of the NetBurner SNMP Package

MIB-II (RFC 1213) implementation reports network usage variables from MIB-II. MIB-II is supported 100%
with the following exceptions:

 The PPP interface does not support SNMP.

 The ipForwarding variable is read only and set to non-forwarding.

 The ipRouteTable - since the forwarding gateway is fixed; the route table is read only and set to a
single value. The table will reflect the current state of the IP connections and routes stored in the
ARP table, but it is not writable.

 The egp table and values are not applicable because NetBurner hardware is not a router and does
not do egp.

SNMP requires the maintenance and storage of a number of persistent variables

 The methods to set or modify variables such as SysLocation are defined in the MIB-II specification.
The mechanisms to set or modify other variables (such as community names and trap destination IP
addresses) are not defined and require the implementation of a custom mechanism. NetBurner
provides a trivial NetBurner custom MIB to accomplish this task, but it should be part of your custom
MIB. You will also have to write code that will take a structure containing this information and store it
in nonvolatile memory so the names will be persistent (otherwise the SNMP community names will
be hard coded to default values and traps will not be sent.).

Tools for implementing a custom MIB on the NetBurner platform

 The tools provided will parse a custom MIB input file and produce a .CPP output file that implements
the MIB. You will be responsible for hand editing this source file to populate the data in the MIB.

Items NOT Included in the NetBurner SNMP Package

The NetBurner SNMP License Package explicitly does not provide:

Education on the SNMP protocol and how to use it
Technical support for writing your own custom MIB

Additional Support for SNMP

NetBurner can provide this support on an hourly consulting basis. Given a group of experienced embedded
developers with no SNMP knowledge or experience, the effort required to implement a custom SNMP MIB
and learn to use the SNMP tools can easily exceed 100 hours of consulting time. In the extreme case of a
complex implementation, it can exceed 300 hours. For more information on purchasing this support option,
please contact our Sales Department.

mailto:sales@netburner.com

The NetBurner Runtime Libraries Reference

238

20.3. Level 0 --- Basic Instructions Using the SNMP Tools

NetBurner provides a set of SNMP tools with its SNMP package. They are intended to assist in your SNMP
development, but we consider them to be a convenience and not part of the core SNMP package. It is
expected that anyone needing to develop SNMP application will already have some basic SNMP tools in-
house. The four functions provided are:

 Snmpget --- Get a single SNMP variable

 Snmpgetnext --- GetNext a single SNMP variable

 Snmpset --- Set a single SNMP variable

 Snmpwalk --- Walk the SNMP tree

The SNMP protocol knows nothing about human readable names. The protocol only knows about variables
identified by OIDs (Object Identifiers). For instance, the variable commonly referred to as sysDescr is really
the OID 1.3.6.1.2.1.1.1.0.

The protocol on the wire will never know that .1.3.6.1.2.1.1.1.0 is usually called sysDescr. The SNMP tools
do all of the translation from OID to human readable names by parsing MIB text files. Important: The
NetBurner tools assume that these MIB’s are stored in the C:\Nburn\mibs directory.

Caution: By convention, MIBS are never supposed to change. If you change the data stored in a MIB, then
you are supposed to release a new MIB with a different OID. The meaning of a single OID and the contents
of a specific MIB file, are never supposed to change. This is what the tools expect. This is completely
unrealistic for a development environment, and hence developers typically use the following workaround: If
you ever change the contents in any of the textual MIB files in the C:\Nburn\mibs directory, you must erase
the file .index as that keeps a parsed and cached copy of the MIB information. Otherwise, the changes you
made will seem to have no effect.

The NetBurner Runtime Libraries Reference

239

20.4. Level 1 --- Enable SNMP at the Absolute Minimum Level without
Custom MIBs

To enable SNMP at the absolute minimum level (without custom MIBs), you need to do two things:

 Provide system identification information

 Provide storage and recall for the SYSInfo structure

You will find an example of this in your C:\Nburn\examples\snmp\simplesnmp directory.

Providing System Identification Information

Every model of SNMP device is supposed to have a unique system identifier or OID. It is also supposed to
have a human readable name. These are reported in the SNMP MIB-II standard variables sysDescr and
sysObjectID. To define these constants you must define the following two variables in your application:

 const char * SYSDESC="NetBurner SNMP Test application";

 const char * SYSOID="1.3.6.1.4.1.8174.2.40";

The number sequence 1.3.6.1.4.1 is the SNMP tree pointing to the custom MIB area. Warning: The number
sequence 8174 is the Private Enterprise Number uniquely issued to NetBurner. You should create a
SYSOID that starts with 1.3.6.1.4 followed by your own company identifier. You can obtain an identifier
from the Internet Assigned Numbers Authority (http://www.iana.org/protocols/forms.htm).

Providing Storage and Recall for the SYSInfo Structure

The SNMP system needs to store and recall information that will be nonvolatile. This will usually be done by
storing data in the UserFlash area. However, this was not done by default, as it is expected that the Users
will probably be using this data area for their own storage structures. This SNMP storage is encapsulated in
a SysInfo structure defined in snmp.h (found in
C:\Nburn\include):

struct SysInfo

 {

 char SysContact[256];

 char SysName[256];

 char SysLocation[256];

 unsigned char ReadCommunity[40];

 unsigned char WriteCommunity[40];

 IPADDR trap_destination;

 DWORD trap_enable_flags;

 DWORD valid;

 };

This data is accessed and stored using two user written functions:

const SysInfo * GetSysInfo(); /* Returns a SysInfo structure */

The NetBurner Runtime Libraries Reference

240

void SetSysInfo(SysInfo si); /* Saves a SysInfo structure */

Note: Simple examples of these functions can be found in C:\Nburn\examples\snmp\main.cpp. If this
structure has never been initialized it is suggested that SysContact, SysName, and SysLocation default to
either the empty string or to Not Set. The two community names should default to what ever you want your
default read and write SNMP community names to be. (Think of community names as passwords.)

The NetBurner Runtime Libraries Reference

241

20.5. Level 2 --- A Simple Custom MIB to Set/Clear Community Names

SNMP specifies that community names are to be used for access control, but it does not specify how they
are to be changed. The typical solution is to change them as part of your custom MIB. The example below
will create an absolutely trivial custom MIB, and implement the ability to change the community name
settings using this MIB. You will find a completed version of this project in your
C:\Nburn\examples\snmp\nburnmib directory. There are five parts to this process.

1. Writing your Custom MIB

For this example we are going to implement the absolute minimal MIB. You can copy this text into a text file.
We will assume that this is named NburnCnameMib.txt for the purposes of this discussion. The full text is
shown below.

Beginning of MIB file

NBURNSAMPLE-MIB DEFINITIONS ::= BEGIN

IMPORTS

 mgmt, enterprises, IpAddress

 FROM RFC1155-SMI

 OBJECT-TYPE

 FROM RFC-1212;

netburner OBJECT IDENTIFIER ::= { enterprises 8174 }

READCOMMUNITY OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(1..255))

ACCESS read-write

STATUS mandatory

DESCRIPTION

"Description: ReadCommunity name"

::= {netburner 1}

WRITECOMMUNITY OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(1..255))

ACCESS read-write

STATUS mandatory

DESCRIPTION

"Description: ReadCommunity name"

::= {netburner 2}

TRAPDESTINATION OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-write

STATUS mandatory

DESCRIPTION

"Description: The Trap destination IP address”

::= {netburner 3 }

END

End of MIB file

The NetBurner Runtime Libraries Reference

242

2. Compiling your Custom MIB

The NetBurner SNMP tools provide a utility SNMPTRANSLATE that will convert a custom MIB into a cpp
source file to implement the MIB. Important: The MIB requires several inputs, specifically RFC1155-SMI. Just
copy this file from the C:\Nburn\mibs directory to the directory where your custom MIB is located. To do this
(copy) from the command line:

 snmptranslate -M yourmibdir -Tn > yourmibfile.cpp

Therefore, the example below generates the cpp file that will be the new custom MIB.

 snmptranslate -M ./ -Tn > Nburn_Cname_Mib.cpp

3. Implementing your Custom MIB Functions

This auto generated file only has the outline for what you want to do, you will need to go everyplace there is
a #warning in the file and add your custom code for implementing the actual SNMP variables. In this case
there are six functions to fill in:

/* Read function prototypes */

 snmp_typeString ReadFuncREADCOMMUNITY();

 snmp_typeString ReadFuncWRITECOMMUNITY();

 snmp_typeIpAddr ReadFuncTRAPDESTINATION();

/* Write function prototypes */

 int WriteFuncREADCOMMUNITY(snmp_typeString var, int bTest);

 int WriteFuncWRITECOMMUNITY(snmp_typeString var, int bTest);

 int WriteFuncTRAPDESTINATION(snmp_typeIpAddr var, int bTest);

We want these functions to report and set the variables we have defined. The bodies of these functions can
be found in C:\Nburn\examples\snmp\Nburn_Cname_Mib.cpp

Special Note: We normally allow you to read SNMP variables with the read community name, and set them
with the write community name. (Think passwords.) However, it would be a bit stupid if we could read the
value of the write community name using only a READCOMMUNITY name; so one additional modification is
made to the auto generated cpp file. We must change the read permissions of the WRITECOMMUNITY
variable from READ_COMMUNITY_MASK to WRITE_COMMUNITY_MASK

4. Add your Custom MIB file to your Project

Now edit your makefile to add the mib cpp file (adding Nburn_Cname_Mib.cpp in the example case.).

5. Add your Custom MIB File to the MIB Tools

The MIB text file you created must be located where the MIB tools can find it. Copy the MIB text file you just
created to your C:\Nburn\mibs directory, and delete the .index file (so a new index will automatically be
created by the MIB tools). Your new MIB is now ready to be used.

The NetBurner Runtime Libraries Reference

243

20.6. Note 1 --- Custom Tables

Implementing Tables

The general process for implementing your own custom MIB closely follows the steps outlined in the Level 2.
One area that is somewhat different is tables. If you do not already know what an SNMP table is, you need to
research the topic before reading this section. When the SNMP translate utility parses a MIB definition for a
table, it generates a different set of functions. This will be illustrated with the udpEntry table from MIB-II.

/* Function definitions for udpEntry */

void AddTableElementudpEntry(void * data_el, snmp_typeIpAddr

udpLclAddress, snmp_typeINTEGER, udpLocalPort);

void RemoveTableElementudpEntry(void * data_el);

void PutTableElementsudpEntry(SNMP_Request & req, void * data_el, int subid);

These three functions allow you to do three things:

 Add a table entry/element

 Remove a table entry/element

 Provide the values for a table entry/element

The first two functions are completely written by the snmptranslate utility. The final function needs to be filled
in by the programmer. The programmer has three responsibilities:

 Call AddTableElementudpEntry when a new UDP table element is created. This must include a
(void *) data_el that encapsulates whatever data is needed to access this element.

 Call RemoveTableElementudpEntry when ever a UDP table element is to be destroyed. Important:
This must include the same (void *) data_el passed in when the table was created.

 Fill in the code to convert the (void *) data_el into the specific MIB variables that make up the table
element.

This function as generated by SNMPTRANSLATE is shown below:

void PutTableElementsudpEntry(SNMP_Request & req, void * data_el, int

subid)

{

switch(subid)

{

case 1: req.put_asn.PutIPAddr (/* You must provide a conversion

from the data_el for udpLocalAddress */);

break;

case 2: req.put_asn.PutInt (/* You must provide a conversion from

the data_el for udpLocalPort */);

break;

default: req.put_asn.PutNullObject();

}

}

The NetBurner Runtime Libraries Reference

244

The example on the previous page is implemented in the C:\Nburn\system\bcls.cpp and
C:\Nburn\system\udp.cpp code set.

Important: At this time, the NetBurner SNMP system does not implement writing to dynamically created
table elements. However, table elements can be created using the standard SNMP write variable definitions.
If you have a specific need for dynamic writable tables, please contact NetBurner Support and we will assist
you.

http://support.netburner.com/

The NetBurner Runtime Libraries Reference

245

20.7. Note 2 --- Custom Community Name Parsing and Protection

The default NetBurner implementation provides two community names: read and write. It is often desirable to
have multiple community names providing multiple levels of access and object visibility.

The NetBurner SNMP implementation can support 32 different access classes. All visibility and access
decisions are based on a 32 bit mask. Each SNMP element includes a mask parameter. This is the last
element in the variable definitions:

SNMPREADFUNC(sysDescr, "1.3.6.1.2.1.1.1.0", ASN_typeString,

ReadFuncsysDescr, READ_COMMUNITY_MASK);

The present code defines:

 #define READ_COMMUNITY_MASK (0x0001)

 #define WRITE_COMMUNITY_MASK (0x0002)

You could easily define an additional mask:

 #define CUSTOM_COMMUNITY_MASK (0x0004)

To connect these mask values to the community name you would have to write a function to convert
community names to mask values, and to place a pointer to that function in the function pointer:

 DWORD (*SnmpCommunityDecodeFunc) (const unsigned char * name);

Example Code

DWORD MyCustomCommunityDecode(const unsigned char cname)

{

if (strcmp (cname,”MySecretW0rd”)==0) return

CUSTOM_COMMUNITY_MASK;

/* Otherwise return the default community name mask stuff */

return DefaultCommunityDecode(cname);

}

Then someplace in your system initialization you will need to setup the function pointer:

 SnmpCommunityDecodeFunc=MyCustomCommunityDecode;

The NetBurner Runtime Libraries Reference

246

20.8. Note 3 --- Traps and Custom Traps

The NetBurner SNMP system provides for three types of traps

 Auto generated traps within the SNMP system - The Authentication fail trap and warm start traps are
auto generated within the SNMP system at the appropriate times. These traps are sent to the destination
defined in the trap_destination variable in the SysInfo structure (the same structure that maintains
community names).

 Basic predefined traps without additional variables as generated by the application code - If you pass in
a destination of 0; it uses the value stored in the SysInfo structure for trap_destination. This is done with
the following function:

SnmpBasicTrap(IPADDR dest, const char * community_name,

 int generic_trap, int specific_trap);

 Custom traps with additional OID values attached - This feature uses the function:

void SnmpTrapWithData /* As defined in snmp.h */

Important: This requires that you write a call-back function that will actually put the variables into the trap.

Example Code

/* The callback function that fills in extra varbind defined in

your custom trap variables */

void TrapVarFunction(ASN * put_asn)

{

 put_asn->PutHeader(0x30); /* Var Bind */

 put_asn->PutOidFromString("1.3.6.1.4.1.8174.1");

 put_asn->PutOctetString("This is test message number 1");

 put_asn->FixUpHeader(); /* Var Bind */

 put_asn->PutHeader(0x30); /* Var Bind */

 put_asn->PutOidFromString("1.3.6.1.4.1.8174.2");

 put_asn->PutOctetString("This is test message number 2");

 put_asn->FixUpHeader(); /* Var Bind */

}

/* The function that actually sends the trap */

void SendTestTrap()

{

 SnmpTrapWithData(0, "public", SNMP_ENTERPRISE_TRAP, 1, TrapVarFunction);

}

The NetBurner Runtime Libraries Reference

247

20.9. Snmpget

Usage:

Snmpget device_address community_name object_name

Description:

This function gets a single SNMP variable.

Parameters:

Name Description

device_address The device IP Address (e.g. 10.1.1.77) or DNS name.

community_name The community name used to access the device. (The
rough equivalent of a password.)

object_name The textual or OID name of the object to be retrieved.

Examples:

Snmpget 10.1.1.77 public sysDescr.0

Snmpget 10.1.1.77 public .1.3.1.2.1.1.1.0

The NetBurner Runtime Libraries Reference

248

20.10. Snmpgetnext

Usage:

Snmpgetnext device_address community_name object_name

Description:

This function gets the next variable following the specified variable. The entire MIB of a device could be
obtained by executing a getnext on .1.3.1 followed by a getnext on each returned variable. Essentially, this
would walk down the entire MIB tree the same way as Snmpwalk.

Parameters:

Name Description

device_address The device IP Address (e.g. 10.1.1.77) or DNS name.

community_name The community name used to access the device. (The
rough equivalent of a password.)

object_name The textual or OID name of the object preceding the
object to be retrieved.

Examples:

Snmpgetnext 10.1.1.77 public sysDescr

Snmpgetnext 10.1.1.77 public .1.3.1.2.1.1.1

The NetBurner Runtime Libraries Reference

249

20.11. Snmpset

Usage:

Snmpset device_address community_name object_name object_type

Description:

This function sets a single SNMP variable.

Parameters:

Name Description

device_address The device IP Address (e.g. 10.1.1.77) or DNS name.

community_name The community name used to access the device. (The
rough equivalent of a password.)

object_name The textual or OID name of the object to be set.

object_type The type of the object. (See the “Types” description
below.)

Types:

One of: i, u, t, a, o, s, x, d, n

i --- INTEGER
u --- unsigned INTEGER
t --- TIMETICKS
a --- IPADDRESS
o --- OBJID
s --- STRING
x --- HEX STRING
d --- DECIMAL STRING
U --- unsigned int64
I --- signed int64
F --- float
D --- double

Example:

Snmpset 10.1.1.77 public sysLocation.0 s “At NetBurner HQ”

The NetBurner Runtime Libraries Reference

250

20.12. Snmpwalk

Usage:

Snmpwalk device_address community_name

Description:

This function walks the SNMP tree. Essentially it does a repetitive getnext until it runs out of SNMP variables
to retrieve.

Parameters:

Name Description

device_address The device IP Address (e.g. 10.1.1.77) or DNS name.

community_name The community name used to access the device. (The
rough equivalent of a password.)

Example:

Snmpwalk 10.1.1.77 public

The NetBurner Runtime Libraries Reference

251

21. Stream Update Library

21.1. Introduction

The functions supplied in this module are intended to be used in conjunction with FTP Server and FTP Client
implementations. Functions are provided to access the user parameter storage area of the flash memory,
and to update the application code in flash memory.

Header File

#include <StreamUpdate.h> // Found in C:\Nburn\include

User Parameter Flash Data Functions

 SendUserFlashToStreamAsBinary --- Send User Parameter Flash data as a binary output stream

 SendUserFlashToStreamAsS19 --- Send User Parameter Flash data as a S19 ASCII record to an
output stream

 ReadS19UserFlashFromStream --- Read User Parameter Flash data from a S19 ASCII input stream

 ReadBinaryUserFlashFromStream --- Read User Parameter Flash data from a binary input stream

Application Code Function

 ReadS19ApplicationCodeFromStream --- Read a new application in _APP.S19 format from an ASCII
input stream

Example Application

 ftpd_code_update (found in C:\Nburn\examples)

The NetBurner Runtime Libraries Reference

252

21.2. SendUserFlashToStreamAsBinary

Synopsis:

int SendUserFlashToStreamAsBinary(int fd);

Description:

This function sends User Parameter Flash data as a binary output stream. This function sends the User
Parameter Flash data to the specified fd output stream as a binary record.

Parameters:

Type Name Description

int fd The socket file descriptor (fd) to send the data to.

Return Values:

STREAM_UP_OK --- The system was able to send the data
STREAM_UP_FAIL --- The system failed to send the data

The NetBurner Runtime Libraries Reference

253

21.3. SendUserFlashToStreamAsS19

Synopsis:

int SendUserFlashToStreamAsS19(int fd);

Description:

This function sends User Parameter Flash data as a S19 ASCII record to an output stream. This function
sends the User Parameter Flash data to the specified fd output stream as a S19 text record.

Parameters:

Type Name Description

int fd The socket file descriptor (fd) to send the data to.

Return Values:

STREAM_UP_OK --- The system was able to send the data
STREAM_UP_FAIL --- The system failed to send the data

The NetBurner Runtime Libraries Reference

254

21.4. ReadS19UserFlashFromStream

Synopsis:

int ReadS19UserFlashFromStream(int fd);

Description:

This function reads User Parameter Flash data from a S19 ASCII input stream. This function reads ASCII
S19 records from the specified fd input stream and programs the data in the User Parameter Flash area.

Parameters:

Type Name Description

int fd The socket file descriptor (fd) to read data from.

Return Values:

STREAM_UP_OK --- The system was able to read the data and update flash
STREAM_UP_FAIL ---The system failed to read or update

The NetBurner Runtime Libraries Reference

255

21.5. ReadBinaryUserFlashFromStream

Synopsis:

int ReadBinaryUserFlashFromStream(int fd);

Description:

This function reads User Parameter Flash data from a binary input stream. This function reads binary data
from the specified input stream and programs the data into the User Parameter Flash area.

Parameters:

Type Name Description

int fd The socket file descriptor (fd) to read data from.

Return Values:

STREAM_UP_OK --- The system was able to read the data and update flash
STREAM_UP_FAIL --- The system failed to read or update

The NetBurner Runtime Libraries Reference

256

21.6. ReadS19ApplicationCodeFromStream

Synopsis:

int ReadS19ApplicationCodeFromStream(int fd);

Description:

This function reads a new application in _APP.S19 format from an ASCII input stream. This function reads
ASCII S19 records from a _APP.s19 format application file and reprograms the Flash memory with the new
application. Note: The Flash memory will not be modified unless the entire application is received without
error.

Since applications are run from RAM, your NetBurner device must be rebooted before the new application
code becomes active. One way to accomplish a reboot is to use the ForceReboot function (located in the
NetBurner System Library section of this manual).

Note: The items that you will need to clean up and/or close before a reboot are dependant on your particular
application. At a minimum, you should clean up and/or close any FTP Client or Server sessions before
calling this function.

Parameters:

Type Name Description

int fd The socket file descriptor (fd) to read data from.

Return Values:

STREAM_UP_OK --- The system was able to read the data and update the Flash
STREAM_UP_FAIL --- The system failed to read or update Flash

Example Application:

 ftpd_code_update --- Located (by default) in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

257

22. System Library

Header Files

#include <system.h> // Found in C:\Nburn\include

#include <utils.h> // Found in C:\Nburn\include

System Constants

#include <constants.h> // Found in C:\Nburn\include

ConfigRecord --- The configuration storage structure

Global Variables

 gConfigRec --- The global configuration record

 Secs --- Seconds since the board booted

 TimeTick --- Time ticks since the board booted

Code Update Functions/Capabilities

 Code Update Overview

 EnableAutoUpdate

 UpdateShutdown Hook

 UpdatePassword Hook

Configuration Functions

 UpdateConfigRecord --- Change the configuration record stored in Flash

 SetupDialog --- Change system configuration by prompting the user over stdio

User Flash Parameter Functions

 SaveUserParameters --- Save a blob of data to Flash

 GetUserParameters --- Get a read only pointer to the user defined data blob stored in Flash

LED and Switch Functions

 putleds --- Set the system board LEDs

 getdipsw --- Read the DIP switches on the board

The NetBurner Runtime Libraries Reference

258

Utility I/O Functions

 ShowData --- Show a data block in ASCII and hex

 ShowMac --- Show a MAC address on stdio

 outbyte --- Output a byte on stdio

 print --- Output a zero terminated string

 putnum --- Output a hexadecimal number to stdio

 AsciiToIp --- Convert a dotted decimal IP string to an IP address

 ShowIP --- Show an IP address as dotted decimal on stdio

 itoa --- An integer to ASCII function

Diagnostic Function

 ShowCounters --- Show all system counters on stdio

Counter Function

 GetPreciseTime --- Gets time ticks at a smaller resolution since the board booted

Reboot Function

Header File

#include <bsp.h> // Found in C:\Nburn\include

 ForceReboot --- Reboot your NetBurner device

Ethernet Functions

#include <ethernet.h> // Found in C:\Nburn\include

 EtherLink --- Reports the status of the Ethernet link

 EtherSpeed100 --- Reports if the Ethernet link is operating at 100 MB

 EtherDuplex --- Reports if the Ethernet link is in Full Duplex mode

 ManualEthernetConfig --- Controls the speed and duplex of the Ethernet connection

 EtherLinkCallback – Callback function pointer for Ethernet link status changes

The NetBurner Runtime Libraries Reference

259

22.1. Constants

Synopsis:

These constants control the system configuration.

Warning: If you change these constants, then you must rebuild the system libraries.

Interrupt Priorities:

 #define TICK_IRQ_LEVEL (5)

 #define SERIAL_IRQ_LEVEL (4)

 #define SERIAL_VECTOR_BASE (64)

Time Related Functions:

 #define TICKS_PER_SECOND (20)

Ethernet Buffer Definitions:

 #define ETHER_BUFFER_SIZE 1548

 #define ETH_MAX_SIZE (1500)

 #define ETH_MIN_SIZE (64)

 #define MAX_UDPDATA (ETHER_BUFFER_SIZE-(20+8+14))

uCOS OS Setting:

 #define OS_MAX_TASKS 20 // Max number of system tasks

System Task Priorities:

 #define MAIN_PRIO (50)

 #define HTTP_PRIO (45)

Any User Tasks that call I/O should have a Priority Number higher than the
TCP_PRIO:

 #define TCP_PRIO (40)

 #define IP_PRIO (39)

 #define ETHER_SEND_PRIO (38)

The NetBurner Runtime Libraries Reference

260

Stack Size Definitions:

// If you add big structures in user functions you should

// increase the value of the USER_TASK_STK_SIZE

 #define USER_TASK_STK_SIZE (2048)

// If you add big structures in your dynamic HTML code

// you need to increase the value of HTTP_STK_SIZE

 #define HTTP_STK_SIZE (2048)

 #define IP_STK_SIZE (2048)

 #define TCP_STK_SIZE (2048)

 #define IDLE_STK_SIZE (2048)

 #define ETHER_SEND_STK_SIZE (2048)

TCP Constants:

 #define DEFAULT_TCP_MSS (512)

 // See RFC 1122 for a 50msec tick 60 ticks=3 sec 4*15=60

 #define DEFAULT_TCP_RTTVAR ((TICKS_PER_SECOND*3)/4)

 (Note: The 4 comes from Stevens Vol. 1 page 300)

 // 75 seconds Min

 #define TCP_CONN_TO (75 * TICKS_PER_SECOND)

 // 200 msec delayed ACK timer

 #define TCP_ACK_TICK_DLY (TICKS_PER_SECOND /5)

 #define DEFAULT_INITAL_RTO (TICKS_PER_SECOND*3)

 #define TCP_MAX_RTO (64 * TICKS_PER_SECOND)

 #define TCP_MIN_RTO (1 * TICKS_PER_SECOND)

 #define TCP_2MSL_WAIT (60 * TICKS_PER_SECOND)

 #define MAX_TCP_RETRY (12)

 #define TCP_WRITE_TIMEOUT (TICKS_PER_SECOND*10)

 // Store 3 segments max in tx and rx buffers

 #define TCP_BUFFER_SEGMENTS (3)

 // 10 idle Seconds and a partially received request is abandoned

 #define HTTP_TIMEOUT (TICKS_PER_SECOND*10)

FD Offset Values:

 #define SERIAL_SOCKET_OFFSET (3)

 #define TCP_SOCKET_OFFSET (5)

 #define MAX_IP_ERRS 3

 #define BUFFER_POOL_SIZE (64)

 #define UDP_DISPATCH_SIZE (10)

 #define ARP_ENTRY_SIZE (256)

 #define TCP_SOCKET_STRUCTS (32)

 #define UDP_NETBURNERID_PORT (0x4E42) /*NB*/

 #define TFTP_RX_PORT (1414)

The NetBurner Runtime Libraries Reference

261

22.2. ConfigRecord

Synopsis:

typedef struct

{

unsigned long recordsize; /* The stored size of the struct*/

unsigned long ip_Addr; /* The device IP Address */

unsigned long ip_Mask; /* The IP Address Mask */

unsigned long ip_GateWay; /* The address of the IP Gateway */

unsigned long ip_TftpServer;/* The address of the TFTP server to load

data from for debugging */

unsigned long baud_rate; /* The initial system baud rate */

unsigned char wait_seconds; /* The number of seconds to wait before

booting */

unsigned char bBoot_To_Application; /* True - if we boot to the

application, not the monitor */

unsigned char bException_Action; /* What should we do when we have an

exception? */

unsigned char m_FileName[80]; /* The file name of the TFTP file to

load */

unsigned char mac_address[6]; /* The Ethernet MAC address */

unsigned long ip_DNS_server; /* The DNS Server address */

unsigned long m_Unused[7];

unsigned short checksum; /* A Checksum for this structure */

} ConfigRecord;

Description:

This structure is stored in the system FLASH and records default values for the system operation. Note: This
structure can be manipulated with the IP Setup program and the Debug monitor.

The NetBurner Runtime Libraries Reference

262

22.3. gConfigRec

Synopsis:

extern ConfigRecord gConfigRec;

Description:

This is a read only copy of the system configuration record.

22.4. Secs

Synopsis:

extern VDWORD Secs;

Description:

The number of seconds since the device rebooted.

22.5. TimeTick

Synopsis:

extern VDWORD TimeTick;

Description:

The number of time ticks since the device booted. There are TICKS_PER_SECOND ticks in each second.
Note: At the time this document was written, this value is 20.

The NetBurner Runtime Libraries Reference

263

22.6. Code Updates with AutoUpdate Utility

Description:

The AutoUpdate utility provides the ability to update your application code in flash memory over a network
connection. The utility consists of the following parts:

1. The EnableAutoUpdate() function must be called in your application code. Calling this function will
tell the TCP/IP Stack to listen for AutoUpdate requests from the Windows AutoUpdate.exe utility.

2. The Windows AutoUpdate.exe utility. When executed a dialog box will appear that enables you to
search for NetBurner devcies, select a _APP.s19 application image to download, and specify if you
wish the device to reboot once the update is complete.

AutoUpdate FAQ

 The EnableAutoUpdate() function uses the UDP protocol. UDP can only be run on a local network,
as you cannot route UDP packets through a router/firewall from the Internet. If you need that
capability your can use the StartTcpUpdate() function in your application and the TcpUpdate.exe
Windows utility. Note that you will need to use port forwarding on your router.

 You can password protect the update feature by using the update_authenticate_func callback.

 You can do a controlled shutdown of your device before an update occurs by using the
update_shutdown_func callback.

Example Code:

#include <autoupdate.h> /* Required for AutoUpdate capability */

int MyPasswordTest(const char * user, const char * pass)

{

 /* Check password and user here */

 if (/*passwordok*/)

 return 1;

 else

 return 0;

}

int MyShutdownTest(void)

{

 if (/* It is OK to shutdown */)

 {

 /* Do your shutdown processing here */

 return 1;

 }

 else

 return 0;

 }

void UserMain(void * pd)

{

 update_authenticate_func = MyPasswordTest;

 update_shutdown_func = MyShutdownTest;

 EnableAutoUpdate(); /* Required for AutoUpdate capability */

}

The NetBurner Runtime Libraries Reference

264

22.6.1. EnableAutoUpdate

Synopsis:

void EnableAutoUpdate();

Description:

Enables application updates via the network using the Windows AutoUpdate utility.

Once EnableAutoupdate() is called it cannot be disabled. If you do need to enable/disable this feature
dynamcilly during your application execution, use the update_shutdown_func to abort a code update.

Parameters:

None

Returns:

Nothing

The NetBurner Runtime Libraries Reference

265

22.6.2. AutoUpdate Shutdown Hook

Synopsis:

extern int (*update_shutdown_func)(void);

Description:

When the update_shutdown_func is assigned to a function, that function will be called before AutoUpdate is
allowed to proceed with an application update. In other words, it is a callback function. If your shutdown
function returns 0 the update process is aborted. If your shutdown function returns 1 the update is allowed to
proceed.

Common uses for this featue are:

 To put your device in a safe state before an update/reboot is allowed to occur, such as if mechanical
devices are being controlled.

 To enable/disable the AutoUpdate feature dynamically.

Your function must be of the form:

int YourShutdownTest(void)

{

 if (/* It is OK to shutdown */)

 {

 /* Do your shutdown processing here */

 return 1;

 }

 else

 return 0; /* If you want to abort AutoUpdate */

}

You assign the function to the shutdown hook by:

update_shutdown_func = MyShutdownTest;

The NetBurner Runtime Libraries Reference

266

22.6.3. AutoUpdate Password Protection

Synopsis:

extern int (*update_authenticate_func)

 (const char *name, const char *passwd);

Description:

When the update_authenticate_func is assigned to a function, that function will be called before AutoUpdate
is allowed to proceed with an application update. In other words, it is a callback function. The user running
the AutoUpdate.exe utility will be presented with a dialog box requesting a user name and password, which
are then passed to your function for processing and authentication. You function can do the authentication in
any manor you wish. Returning 1 allows AutoUpdate to proceed, returning 0 aborts the process. There is a
similar function pointer named ipsetup_authenticate_func for password protection on the IPSetup utility.

Your password function must be of the form:

int MyPasswordTest(const char * user, const char * pass)

 {

 /* Check password and user here */

 if (/* password ok */)

 return 1;

 else

 return 0;

 }

You assign the function to the password hook by:

update_authenticate_func = MyPasswordTest;

The NetBurner Runtime Libraries Reference

267

22.7. UpdateConfigRecord

Synopsis:

void UpdateConfigRecord(ConfigRecord *pNewRec);

Description:

This updates the stored configuration record. It can be used to change system configuration settings from
witin an application, such as the IP address, mask, gateway, DNS server, etc. It is recommended you do not
call this function immediately upon power-up of your device to avoid a situation in which a user is cycling
power on/off rapidly, which could cause flash memory corruption if the application was in the process of a
flash write cycle.

Note: The mac_address and checksum values are ignored in the passed-in structure, and the proper system
values are used before storing the record.

Parameters:

Type Name Description

ConfigRecord* pNewRec

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

268

22.8. UpdateConfigRecord_Num

Synopsis:

void UpdateConfigRecord_Num(ConfigRecord *pNewRec, int num);

Description:

This function is similar to the "UpdateConfigRecord" function, with the added option to indicate the desired
record number to update.

Warning: Take care not to confuse interface number with record number. For example, the primary Ethernet
has an interface number of '1' and a record number of '0'. If an invalid or non-existent record is read and
written back into flash, you may risk rendering Ethernet and serial communication inoperable.

Parameters:

Type Name Description

ConfigRecord* pNewRec A pointer to a structure of type "ConfigRecord" whose
contents will be used to update the ConfigRecord structure
associated with a record number stored in flash.

int num The configuration record number to write to. Valid record
numbers are:
0 (CONFIG_IF_ID_ETHERNET),
1 (CONFIG_IF_ID_WIFI), and
2 (CONFIG_IF_ID_ETHERNET2).

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

269

22.9. RawGetConfig

Synopsis:

ConfigRecord * RawGetConfig(int num);

Description:

This function returns a pointer of type "ConfigRecord" to the location of the configuration record associated
with the desired record number provided in the input parameter.

Warning: Take care not to confuse interface number with record number. For example, the primary Ethernet
has an interface number of '1' and a record number of '0'. If an invalid or non-existent record is read and
written back into flash, you may risk rendering Ethernet and serial communication inoperable.

Parameters:

Type Name Description

int num The configuration record number to read. Valid record
numbers are:
0 (CONFIG_IF_ID_ETHERNET),
1 (CONFIG_IF_ID_WIFI), and
2 (CONFIG_IF_ID_ETHERNET2).

Returns:

A pointer to the "ConfigRecord" structure.

The NetBurner Runtime Libraries Reference

270

22.10. SetupDialog

Synopsis:

void SetupDialog();

Description:

This function will cause an interactive exchange on stdio. Note: This exchange will allow the user to change
both the IP Address and Baudrate values.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

271

22.11. SaveUserParameters

Synopsis:

int SaveUserParameters(void *pCopyFrom, int len);

Description:

This function stores up to 8kB of arbitrary data in the user configuration space. The type and format of the
stored data is entirely up to the individual developer. The system stores this as a blob, and provides no
protection from uninitialized data. Note: The developer needs to add some uninitialized data protection to
his stored structure.

Parameters:

Type Name Description

void *pCopyFrom A pointer to the data to store.

int len The length in bytes of the data to store. Note: This value
must be less than or equal to 8192.

Returns:

0 (zero) --- Failure
len --- Returns the length in bytes of the data stored on success.

The NetBurner Runtime Libraries Reference

272

22.12. GetUserParameters

Synopsis:

void * GetUserParameters();

Description:

This function returns a pointer to the user parameter area. This area is intended for storage of non-volatile
configuration parameters. The type and format of the stored data is entirely up to the individual developer.
The system stores this as a blob, and provides no protection from uninitialized data. Note: The developer
needs to add some uninitialized data protection to his stored structure.

Parameters:

None

Returns:

A read only pointer to the user parameter area

Example Application:

FlashForm --- Found in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

273

22.13. putleds

Synopsis:

void putleds(unsigned char b);

Description:

This function is specific to the NetBurner development boards and turns the LEDs on or off. The function is
located in the c:\nburn\<platform>\system\iobard.c file, where <platform> represents the NetBurner hardware
platform you are using (eg Mod5270). You may modify this function to support any external hardware you
design for your product. Depending on the development board, the hardware interface can be GPIO signals
or use a Xylinx FPGA.

Note: The Mod-Dev-70 that is part of the Mod5270LC development kit, requires that a function called BOOL
OnModDev70() be called before using the LEDs. This function is located in the ioboard.c platform system
file.

 0x00 = all OFF

 0xFF = all ON

 0x01 = LED 1

 0x02 = LED 2

 0x04 = LED 3

 0x08 = LED 4

 0x10 = LED 5

 0x20 = LED 6

 0x40 = LED 7

 0x80 = LED 8

Returns:

Nothing --- This is a void function

Example Application:

TicTacToe --- Found in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

274

22.14. getdipsw

Synopsis:

unsigned char getdipsw();

Description:

This function reads the dip switches.

Parameters:

None

Returns:

The bit of the DIP switches:

 SW1 = 1

 SW2 = 2

 SW3 = 4

 SW4 = 8

Example Application:

TicTacToe --- Found in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

275

22.15. ShowData

Synopsis:

void ShowData(PBYTE fromptr, WORD len);

Description:

This function dumps a block of memory to stdio. It displays this block as hexadecimal and ASCII where
appropriate.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

276

22.16. ShowMac

Synopsis:

void ShowMac(MACADR * ma);

Description:

This function displays the MAC Address on stdout, which is UART 0 by default.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

277

22.17. outbyte

Synopsis:

void outbyte(char c);

Description:

This function outputs a single character on stdout. Note: This is a very low overhead call.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

278

22.18. print

Synopsis:

void print(char *);

Description:

The output of print is a NULL terminated string to stdout. Note: This is a much lower overhead call than
printf.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

279

22.19. putnum

Synopsis:

void putnum(int i);

Description:

The output of putnum is a hexadecimal number of stdout. Note: This is a much lower overhead call than
printf.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

280

22.20. AsciiToIp

Synopsis:

IPADDR AsciiToIp(char * p);

Description:

This function converts an ASCII representation of an IP Address to type IPADDR.

Returns:

An IP address of type IPADDR.

Example:

IPADDR IpAddr = AsciiToIp("10.1.1.12");

The NetBurner Runtime Libraries Reference

281

22.21. ShowIP

Synopsis:

void ShowIP(IPADDR ia);

Description:

This function displays an IP address variable of type IPADDR in ASCII text (eg 10.1.1.1) and sends it to
stdout, which is the debug serial port 0 by default.

Parameters:

Type Name Description

IPADDR ia IPADDR variable to be displayed

Returns:

Nothing --- This is a void function

Examples:

IPADDR IpAddr = AsciiToIp("10.1.1.12");

ShowIP(IpAddr); // Sends ASCII "10.1.1.12" to stdio

The NetBurner Runtime Libraries Reference

282

22.22. itoa

Synopsis:

char * itoa(int value, char * buffer, int radix)

Description:

This function converts an integer value to a null-terminated string using the specified radix and stores the
result in the buffer specified by buffer. If the radix is 10 and the value is negative, the string is preceded by

a minus sign (‘-‘). With any other radix, the value is always considered unsigned.

Note: The buffer should be large enough to contain the largest possible value used in your application. For
example:

 For radix = 2: (sizeof(int) * 8 + 1) = 33 bytes

 For radix = 10:

o Unsigned integer = 11 bytes: Largest possible value is 4,294,967,296 (10 digits, each
represented by a byte character, plus one additional byte for null).

o Signed integer = 12 bytes: Lowest possible value is -2,147,483,648 and largest possible
value is 2,147,483,647 (10 digits, each represented by a byte character, plus one additional
byte for null, and another for the sign).

Parameters:

Type Name Description
int value The value to be represented as a string.
char * buffer The buffer where the resulting string will be stored.
int radix The numerical base by which the value will be represented as a string; valid

values are between 2 and 36, inclusive.

Return:

A pointer to the string

The NetBurner Runtime Libraries Reference

283

22.23. ShowCounters

Synopsis:

void ShowCounters();

Description:

This diagnostic function will dump all of the system counters to stdout.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

284

22.24. GetPreciseTime

Synopsis:

DWORD GetPreciseTime(void);

Description:

Gets the number of time ticks since the system booted at a smaller resolution in comparison to using the
global variable TimeTick (TimeTick has a resolution of about 50 milliseconds when TICKS_PER_SECOND =
20). This function is only accessible for the MOD5234, MOD5270, and MOD5282 platforms. The number of
ticks returned by this function has a resolution of about 0.868 microseconds for the MOD5234 and
MOD5270, and 1.929 microseconds for the MOD5282.

Note: This function is used to get a more precise time from the system clock; it is not intended to work as a
time delay function like OSTimeDly().

Parameters:

None.

Returns:

The number of higher precision time ticks since system start.

The NetBurner Runtime Libraries Reference

285

22.25. ForceReboot

Header File:

#include <bsp.h> // Found in C:\Nburn\include

Synopsis:

void ForceReboot();

Description:

This function will reboot your NetBurner device.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

286

22.25.1. Example

Mod5270, Mod5272, and/or Mod5282 only

The NetBurner Runtime Libraries Reference

287

22.26. EtherLink

Header File:

#include <ethernet.h> // Found in C:\Nburn\include

Synopsis:

BOOL EtherLink();

Description:

This function reports the status of the Ethernet link.

Parameters:

None

Returns:

True --- If the Ethernet link is valid
False --- If there is no Ethernet connection

The NetBurner Runtime Libraries Reference

288

22.27. EtherSpeed100

Header File:

#include <ethernet.h> // Found in C:\Nburn\include

Synopsis:

BOOL EtherSpeed100();

Description:

This function reports if the Ethernet link is operating at 100 MB.

Parameters:

None

Returns:

True --- If the Ethernet link is operating at 100 Mbps
Flase – 10Mbps mode.
Important: The EtherLink function must return true for this value to be valid.

The NetBurner Runtime Libraries Reference

289

22.28. EtherDuplex

Header File:

#include <ethernet.h> // Found in C:\Nburn\include

Synopsis:

BOOL EtherDuplex();

Description:

This function reports if the Ethernet link is in Full Duplex mode.

Parameters:

None

Returns:

True --- If the Ethernet link is in full duplex mode
False – Half duplex mode
Important: The EtherLink function must return true for this value to be valid.

The NetBurner Runtime Libraries Reference

290

22.29. ManualEthernetConfig

Header File:

#include <ethernet.h> // Found in C:\Nburn\include

Synopsis:

void ManualEthernetConfig(BOOL speed100Mbit, BOOL fullDuplex,

 BOOL autoNegotiate)

Description:

This function allows you to configure the speed and duplex mode of the device's Ethernet connection only if

auto-negotiation is disabled (autoNegotiate = FALSE). If an application is also calling the

InitializeStack() function, then ManualEthernetConfig() should be called after

InitializeStack(). Otherwise, InitializeStack() will always override the manual configuration

and use auto-negotiation by default.

If autoNegotiate = TRUE, then auto-negotiation will be used and the speed100Mbit and fullDuplex

settings will have no effect.

If autoNegotiate = FALSE, then the speed100Mbit and fullDuplex settings will take effect:

 speed100Mbit = TRUE: 100Base-T

 speed100Mbit = FALSE: 10Base-T

 fullDuplex = TRUE: Full-duplex mode

 fullDuplex = FALSE: Half-duplex mode

Note: Manually setting both speed and duplex modes are usually required for establishing a connection to a
device that does not support auto-negotation.

Parameters:

Type Name Description

BOOL speed100Mbit 100 or 10 megabit connection speed – valid setting only if auto-
negotiation is disabled.

BOOL fullDuplex Full or half-duplex mode – valid setting only if auto-negotiation is
disabled.

BOOL autoNegotiate Enable or disable auto-negotiation.

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

291

22.30. EtherLinkCallback

Header File:

#include <ethernet.h> // Found in C:\Nburn\include

Synopsis:

void (*EtherLinkCallback)(BOOL linkStatus)

Description:

This function pointer is used to assign callback functions for Ethernet link status changes. When the pointer

is non NULL, it will be called whenever bEthLink changes. It should be noted that whatever callback is

assigned will be run as the Ethernet Task, in the Ethernet task’s priority and stack. Therefore care must be
taken to make such callbacks small in both time and space. The functions must take a single BOOL

argument and return void.

NOTE: This callback is not active in the debug Ethernet driver.

Parameters:

Type Name Description

BOOL linkStatus The new linkStatus for the Ethernet interface (TRUE = up, FALSE =
down)

Returns:

Nothing --- This is a void function.

The NetBurner Runtime Libraries Reference

292

23. High Resolution Timer

Processor Note: MCF5272 devices are not compatible with this library

23.1. Itroduction
The High Resolution Timer class is designed to facilitate delays and triggers in the submillisecond range.
The class is based on the hardware DMA timers and operates using interrupts to achieve such levels of
accuracy. All timers use a level 6 interrupt.

The class is designed as an object wrapper around the hardware DMA timers, and as such has no public
facing methods for creating objects. There is a direct mapping between instances of the class and DMA
Timers on the module.

The classes functions can be broken into the categories: Setup, Stopwatch functions, Delays, and Other.

Header Files

#include <HiResTimer.h> // Found in <platform>\include

Setup Functions

 getHiResTimer --- Obtain a pointer to one of the timers

 releaseTimer --- Releases the current timer back into the pool

 init --- Initializes the timer

 setInterruptFunction --- Sets the function to trigger when the timer’s delay/period expires

 clearInterruptFunction --- Removes the trigger function

Stopwatch Functions

 start --- Start the timer

 stop --- Stop the timer

 stopClear --- Stop and reset the timer

 readTime --- Gives the runtime since the timer started

 readLow --- Returns the current value of the hardware timer register.

 readHigh --- Returns the current cycle count

Delay Functions

 delay --- Switch tasks and delay the current task by the specified number of seconds

 pollingDelay --- (Busy wait) Delay the current task by the specified number of seconds

Other Functions

 getPrescaler --- Returns the active value for the hardware timer’s prescaler

 clockGenerator --- Sets the timer to fire the timer’s Interrupt Function at a given frequency

 toString --- Returns a pointer to a cstring of the timer object’s data

Macros
 DEFAULT_TIMER --- Sets the default timer to return, when no label is given

 TIMER_COUNT --- Sets the number of timer objects to create
 DO NOT EXCEED THE HARDWARE COUNT!

The NetBurner Runtime Libraries Reference

293

23.2. getHiResTimer

Synopsis:

HiResTimer* getHiResTimer(int timer);

Description:

This function returns a pointer to one of the HiResTimer objects. The object’s labels are 0 indexed.

 If the timer selected has not been used before, it will first be initialized and the initialization flag will
be set to TRUE. The pointer to the object will then be returned.

 If the timer selected DOES NOT EXIST, either because a negative value or value that exceeds the
maximal timer, then the function will return a NULL pointer.

Parameters:

Type Name Description

Int timer=0 The timer ID to select (0 based

Returns:

Pointer to the selected HiResTimer

See Also:

 TIMER_COUNT --- Sets the number of timer objects to create

Example Applications:

HiResTimerDemo --- Located by default in C:\Nburn\examples\utils

23.3. Init

Synopsis:

void init(double InterrputTime = 0);

Description:

This method initializes the timer it is called upon. If an argument is supplied, it will set the timer to trigger the
interruptFunction periodically, with the period given by the argument, in seconds.

The NetBurner Runtime Libraries Reference

294

Parameters:

Type Name Description

double InterruptTime=0 The delay period between triggers

Returns:

Nothing. This method is void.

23.4. setInterruptFunction

Synopsis:

void setInterruptFunction(void (*interruptFunction)());

Description:

This method sets the timer’s interruptFunction. The interruptFunction is called when a timer triggers.

Parameters:

Type Name Description

void (*f)() interruptFunction The function to call when the timer triggers

Returns:

Nothing. This method is void.

23.5. clearInterruptFunction

Synopsis:

void clearInterruptFunction();

Description:

This method clears (sets to NULL) the timer’s interruptFunction.

Parameters:
None.

Returns:

The NetBurner Runtime Libraries Reference

295

Nothing. This method is void.

23.6. start

Synopsis:

void start();

Description:

Starts the timer.

Parameters:

None

Returns:

Nothing. This method is void.

23.7. stop

Synopsis:

void stop();

Description:

Stops the timer. All data will remain stored.

Parameters:

None

Returns:

Nothing. This method is void.

23.8. stopClear

Synopsis:

void stopClear();

The NetBurner Runtime Libraries Reference

296

Description:

Stops the timer and clears the timer data.

Parameters:

None

Returns:

Nothing. This method is void.

23.9. readTimer

Synopsis:

double readTimer();

Description:

Reads the amount of time in seconds that has passed since the timer was started.

Parameters:

None

Returns:

double --- the total number of seconds that the timer has been running.

23.10. readLow

Synopsis:

DWORD readLow();

Description:

Reads the actual timer register and returns its count.

Parameters:

The NetBurner Runtime Libraries Reference

297

None

Returns:

DWORD --- the hardware timer’s count at the time of the call.

23.11. readHigh

Synopsis:

DWORD readHigh();

Description:

Reads the number of hardware timer overflows.

Parameters:

None

Returns:

DWORD --- the number of hardware timer overflows

23.12. delay

Synopsis:

void delay(double delayTime);

Description:

Starts a precise task delay that will have the OS switch tasks while waiting.
NOTE: This method is not recommended for delays less than ~150 microseconds. For this, use

pollingDelay.

Parameters:

Type Name Description

double delayTime Number of seconds to delay

Returns:

The NetBurner Runtime Libraries Reference

298

Nothing. This method is void.

23.13. pollingDelay

Synopsis:

void pollingDelay(double delayTime);

Description:

Starts a precise task delay that will busy wait while waiting.
NOTE: This method is not recommended for long delays as it consumes system resources. For longer

delays, use delay.

Parameters:

Type Name Description

double delayTime Number of seconds to delay

Returns:

Nothing. This method is void.

23.14. getPrescaler

Synopsis:

DWORD getPrescaler();

Description:

Returns the value of the hardware timer prescaler. This is primarily to be used in concert with readLow.

Parameters:

None

Returns:

DWORD --- the value of the hardware time prescaler

The NetBurner Runtime Libraries Reference

299

23.15. clockGenerator

Synopsis:

void clockGenerator(double frequency);

Description:

Configures DMA Timer peripheral to toggle DMA Timer Output signal at given frequency. User is
responsible for configuring GPIO multiplexor for DMA Timer Output Function.

Parameters:

Type Name Description

double frequency Frequency to set the clock to

Returns:

Nothing. This method is void.

23.16. toString

Synopsis:

char* toString();

Description:

Returns a char buffer that contains a string representation of the timer object.

Parameters:

None

Returns:

char* --- char buffer that contains a string representation of the timer object.

24. TCP/IP Library

24.1. Introduction
The TCP/IP Stack is a high performance TCP/IP Stack for embedded applications. The TCP/IP Stack is
integrated with the RTOS, Web Server, and I/O System providing easy development of network applications.

The NetBurner Runtime Libraries Reference

300

The NetBurner Web Server is integrated with the TCP/IP Stack and RTOS, enabling you to quickly develop
dynamic web pages and content.

This section covers the TCP/IP specific functions (i.e. the creation and setup of sockets) in the NetBurner
system. Important: This section does not cover the read/write operations on these sockets. The read/write
operations are covered in the I/O System Library. For UDP specific functions please refer to the UDP Library.

Header Files

#include <ip.h> // Found in C:\Nburn\include

#include <tcp.h> // Found in C:\Nburn\include

#include <udp.h> // Found in C:\Nburn\include

#include <multihome.h> // Found in C:\Nburn\include

IP Stack Start, Stop, and Add Functions

 InitializeStack --- Start the IP and TCP stack

 AddInterface --- (MULTIHOME) Add an additional IP interface to the system

Socket Creation Functions

 listen --- Start listening to accept connections

 accept --- Accept a connection on a listening socket

 connect --- Connect initiate a connection to another host

 connectvia --- Connect initiate a connection to another host via a specific interface

Socket Option Functions

 setsockoption --- Set a socket option

 clrsockoption --- Clear a socket option

 getsockoption --- Get a socket option

Get Socket Information Functions

 GetSocketRemoteAddr --- Get the IP address of the remote host associated with a socket

 GetSocketLocalAddr --- Get the IP address of local interface associated with a socket (Warning: This
only works with MULTIHOME)

 GetSocketRemotePort --- Get the remote port associated with a socket

 GetSocketLocalPort --- Get the local port associated with a socket

The NetBurner Runtime Libraries Reference

301

Get Host by Name Function

 GetHostByName --- Look up an IP address using DNS

Ping Functions

 Ping --- Sends an ICMP echo to an address and waits for a response

 PingViaInterface --- Sends an ICMP echo through a specified interface and waits for a response

TFTP Functions

 GetTFTP --- Read a file from a TFTP server

 SendTFTP --- Send a file to a TFTP server

Diagnostic Functions

 ShowArp --- Dump the ARP cache to stdio

 DumpTcpDebug --- Dump the TCP debugging log to stdio

 EnableTcpDebug --- Enable the TCP debug log

 ShowIPBuffer --- Dump a pool pointer to stdio, interpreting it as a packet

 GetFreeCount --- Get number of free buffer available

 ShowBuffer --- Show the raw data in a poolptr

TCP Error Codes

#define TCP_ERR_NORMAL (0)

#define TCP_ERR_TIMEOUT (-1)

#define TCP_ERR_NOCON (-2)

#define TCP_ERR_CLOSING (-3)

#define TCP_ERR_NOSUCH_SOCKET (-4)

#define TCP_ERR_NONE_AVAIL (-5)

#define TCP_ERR_CON_RESET (-6)

#define TCP_ERR_CON_ABORT (-7)

Byte Order Translation (not needed on ColdFire) Functions

 HTONS --- Translate a WORD from host order to network order

 HTONL --- Translate a DWORD from host order to network order

 NTOHS --- Translate a WORD from network order to host order

 NTOHL --- Translate a DWORD from network order to host order

The NetBurner Runtime Libraries Reference

302

24.2. InitializeStack

Synopsis:

void InitializeStack(IPADDR ipaddr=0, IPADDR ipMask=0, IPADDR ipGate=0);

Description:

This function initializes the IP stack.

 If no values are passed in for the addresses, the default values are copied from the system
configuration record.

 This function can only be called once on startup. It should never be called a second time in your
application. If you want to change IP address, mask, gateway or DNS settings at runtime, you must
first close all active and listening sockets, modify the EthernetIPxxx runtime variables, save to flash if
you wish them to active at the next boot/reset, then reopen your listening sockets. The ChangeIP
example in the Network Programmers Guide, and the associated example source code in the
\nburn\examples directory describe how to update settings at runtime. These steps are not
necessary if you change the settings using the IPSetup utility.

Parameters:

Type Name Description

IPADDR ipaddr=0 The IP Address

IPADDR ipMask=0 The IP (Network) Mask

IPADDR ipGate=0 The IP Gateway

Returns:

Nothing --- This is a void function

See Also:

ConfigRecord --- The configuration storage structure

Example Applications:

Simple Html --- Located by default in C:\Nburn\examples
tcp2Serial --- Located by default in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

303

24.3. AddInterface (Multihome)

Header File:

#include<multihome.h> // Found in C:\Nburn\include

Synopsis:

int AddInterface(IPADDR addr, IPADDR mask, IPADDR gateway);

Description:

This function creates/initializes a new IP interface. This call adds a new interface to the system.

Warning: This call only works if you have defined the variable MULTIHOME in
C:\Nburn\include\predef.h and rebuilt all of the system libraries.

Parameters:

Type Name Description

IPADDR addr The IP Address of the new interface.

IPADDR mask The IP (Network) Mask of the new interface

IPADDR gateway The IP Gateway of the new interface.

Returns:

Any value greater than 0 --- Equals the interface number
-1 --- Failed too many interfaces

The NetBurner Runtime Libraries Reference

304

24.4. listen

Synopsis:

int listen(IPADDR addr, WORD port, BYTE maxpend=5);

Description:

This function starts listening for connections on a TCP port. You must accept connections from this socket
before you can use them. Note: You may use select to wait for connections on multiple listening sockets, by
putting a listening socket in the readfds.

Parameters:

Type Name Description

IPADDR addr The address from which to accept connections.
Note: If you want to accept connections from
anywhere pass in the value INADDR_ANY.

WORD port The port to listen to.

BYTE maxpend The maximum number of pending connections to
store on this listening socket.

Returns:

A file descriptor for the listening socket

A negative number if there was an error:

 TCP_ERR_NOCON (-2) --- Indicates that you have attempted to read/write from a socket that does
not have a connection established yet.

 TCP_ERR_NONE_AVAIL (-5) --- Indicates that you have attempted to allocate a socket, but no
socket it currently available.

See Also:

accept --- Accept a connection on a listening socket
close --- Close open file descriptors (In the I/O section of this manual)

Example Application:

tcp2serial --- Located by default in C:\Nburn\examples

The NetBurner Runtime Libraries Reference

305

24.5. accept

Synopsis:

int accept(int listening_socket, IPADDR * address, WORD * port,

 WORD timeout);

Description:

This function accepts a connection from a listening socket.

Parameters:

Type Name Description

int listening_socket The listening socket to accept from.

IPADDR *address A pointer to the IPADDR that will receive
the IPADDR of the connection.
Note: This parameter can be NULL.

WORD *port A pointer to the WORD that will receive the
port number of the connection.
Note: This parameter can be NULL

WORD timeout The number of time ticks to wait for a
connecting socket. Note: 0 waits forever.

Returns:

The file descriptor of the connected socket

A negative number if there was an error:

 TCP_ERR_TIMEOUT (-1) --- Indicates that the connection has timed out.

 TCP_ERR_NOCON (-2) --- Indicates that you have attempted to read/write from a socket that does
not have a connection established yet.

 TCP_ERR_CLOSING (-3) --- Indicates that you have attempted to read/write from a socket that has
already been closed.

 TCP_ERR_NOSUCH_SOCKET (-4) --- Indicates that you have attempted to allocate a socket that
does not exist.

 TCP_ERR_NONE_AVAIL (-5) --- Indicates that you have attempted to allocate a socket, but no
socket it currently available.

 TCP_ERR_CON_RESET (-6) --- Indicates that you have attempted to read/write from a connection
that has been reset by the other side.

 TCP_ERR_CON_ABORT (-7) --- This is an internal error that the client won't usually see.

See Also:

listen ---Start listening to accept connections.
close ---Close open file descriptors (In the I/O section of this manual)

The NetBurner Runtime Libraries Reference

306

24.6. connect

Synopsis:

int connect(IPADDR addr, WORD localport, WORD remoteport,

 DWORD timeout);

Description:

This function connects to another host.

Parameters:

Type Name Description

IPADDR addr The address to connect to.

WORD localport The local port to use for the connection.
Note: A value of 0 causes the stack to select an
unused port.

WORD remoteport The remote port to connect to.

DWORD timeout The number of time ticks to wait for a connecting
socket. Note: A value of 0 waits forever.

Returns:

The file descriptor of the connected socket

A negative number if there was an error:

 TCP_ERR_TIMEOUT (-1) --- Indicates that the connection has timed out.

 TCP_ERR_NOCON (-2) --- Indicates that you have attempted to read/write from socket that does not
have a connection established yet.

 TCP_ERR_CLOSING (-3) --- Indicates that you have attempted to read/write from a socket that has
already been closed.

 TCP_ERR_NONE_AVAIL (-5) --- Indicates that you have attempted to allocate a socket, but no
socket it currently available.

 TCP_ERR_CON_RESET (-6) --- Indicates that you have attempted to read/write from a connection
that has been reset by the other side.

 TCP_ERR_CON_ABORT (-7) --- This is an internal error that the client won't usually see.

See Also:

connectvia --- Initiate a connection to another host via a specific MULTIHOME interface
accept --- Accept a connection on a listening socket
listen --- Start listening to accept connections
close --- Close open file descriptors (In the I/O section of this manual)

The NetBurner Runtime Libraries Reference

307

24.7. connectvia

Synopsis:

int connectvia(IPADDR addr, WORD localport, WORD remoteport,

 DWORD timeout, IPADDR ipa);

Description:

This function connects to another host via a specific IP interface.

Parameters:

Type Name Description

IPADDR addr The address to connect to.

WORD localport The local port to use for the connection. Note: A value
of 0 causes the stack to select an unused port.

WORD remoteport The remote port to connect to.

DWORD timeout The number of time ticks to wait for a connecting
socket. Note: A value of 0 waits forever.

IPADDR ipa The IP address of the interface to use for making this
connection.

Returns:

The file descriptor of the connected socket

A negative number if there was an error:

 TCP_ERR_TIMEOUT (-1) --- Indicates that the connection has timed out.

 TCP_ERR_NOCON (-2) --- Indicates that you have attempted to read/write from socket that does not
have a connection established yet.

 TCP_ERR_CLOSING (-3) --- Indicates that you have attempted to read/write from a socket that has
already been closed.

 TCP_ERR_NONE_AVAIL (-5) --- Indicates that you have attempted to allocate a socket, but no
socket it currently available.

 TCP_ERR_CON_RESET (-6) --- Indicates that you have attempted to read/write from a connection
that has been reset by the other side.

 TCP_ERR_CON_ABORT (-7) --- This is an internal error that the client will not (usually) see.

See Also:

connect --- Initiate a connection to another host via default interface
accept --- Accept a connection on a listening socket
listen --- Start listening to accept connections
close --- Close open file descriptors (In the I/O section of this manual)

The NetBurner Runtime Libraries Reference

308

24.8. setsockoption

Synopsis:

int setsockoption(int fd, int option);

Description:

This function sets a socket option.

Parameters:

Type Name Description

int fd The socket file descriptor.

int option The option to set.

Options:

SO_NONAGLE --- Disables the NAGLE algorithm for this socket.
SO_NOPUSH --- Does not send packets with every write. It holds the data for larger packets.

Returns:

The bitmask of all the options for this socket

See Also:

clrsockoption --- Clears a specific socket option
getsockoption --- Get a socket option

The NetBurner Runtime Libraries Reference

309

24.9. clrsockoption

Synopsis:

int clrsockoption(int fd, int option);

Description:

This function clears a specific socket option.

Parameters:

Type Name Description

int fd The socket file descriptor.

int option The option to clear.

Options:

SO_NONAGLE --- Disables the NAGLE algorithm for this socket
SO_NOPUSH --- Does not send packets with every write. It holds the data for larger packets

Returns:

The bit of all enabled options

See Also:

setsockoption --- Set a socket option
getsockoption --- Get a socket option

The NetBurner Runtime Libraries Reference

310

24.10. getsockoption

Synopsis:

int getsockoption(int fd);

Description:

This function gets the current options for this socket.

Parameters:

Type Name Description

int fd The socket file descriptor.

Options:

SO_NONAGLE --- Disables the NAGLE algorithm for this socket.
SO_NOPUSH --- Does not send packets with every write. It holds the data for larger packets.

Returns:

The bit of all enabled options for the selected socket

See Also:

setsockoption --- Set a socket option
clrsockoption --- Clear a socket option

The NetBurner Runtime Libraries Reference

311

24.11. GetSocketRemoteAddr

Synopsis:

IPADDR GetSocketRemoteAddr(int fd);

Description:

This function gets the IP address of the remote host associated with this socket.

Parameters:

Type Name Description

int fd The socket file descriptor.

Returns:

The IP Address of the remote host

See Also:

GetSocketLocalAddr --- Get the IP address of local interface associated with a socket
GetSocketRemotePort --- Get the remote port associated with a socket
GetSocketLocalPort --- Get the local port associated with a socket

The NetBurner Runtime Libraries Reference

312

24.12. GetSocketLocalAddr

Synopsis:

IPADDR GetSocketLocalAddr(int fd);

Description:

This function gets the IP address of the interface associated with this socket.

Warning: This call only works if you have defined the variable MULTIHOME in
C:\Nburn\include\predef.h and rebuilt all of the system libraries

Parameters:

Type Name Description

int fd The socket file descriptor.

Returns:

The IP Address of the associated interface

See Also:

GetSocketRemoteAddr --- Get the IP address of the remote host associated with a socket
GetSocketRemotePort --- Get the remote port associated with a socket
GetSocketLocalPort --- Get the local port associated with a socket

The NetBurner Runtime Libraries Reference

313

24.13. GetSocketRemotePort

Synopsis:

WORD GetSocketRemotePort(int fd)

Description:

This function gets the remote port associated with this socket.

Parameters:

Type Name Description

int fd The socket file descriptor.

Returns:

This function returns the (WORD) remote port of the remote host.

See Also:

GetSocketRemoteAddr --- Get the IP address of the remote host associated with a socket
GetSocketLocalAddr --- Get the IP address of local interface associated with a socket
GetSocketLocalPort --- Get the local port associated with a socket

The NetBurner Runtime Libraries Reference

314

24.14. GetSocketLocalPort

Synopsis:

WORD GetSocketLocalPort(int fd);

Description:

This function gets the local port associated with this socket.

Parameters:

Type Name Description

int fd The socket file descriptor.

Returns:

This function returns the (WORD) local port of the remote host.

See Also:

GetSocketRemoteAddr --- Get the IP address of the remote host associated with a socket
GetSocketLocalAddr --- Get the IP address of local interface associated with a socket
GetSocketRemotePort --- Get the remote port associated with a socket

The NetBurner Runtime Libraries Reference

315

24.15. GetHostByName

Header File:

#include <dns.h> // Found in C:\Nburn\include

Synopsis:

int GetHostByName(const char * name, IPADDR * pIpaddr,

 IPADDR dns_server, DWORD timeout);

Description:

This function looks up the IP address of the named host. Note that you will need to configure the NetBurner
device to have a valid DNS IP address and Gateway IP address.

Parameters:

Type Name Description

const char *name The name to resolve (e.g. www.netburner.com).

IPADDR *pIpaddr A pointer to the IPADDR variable. (Used to
store the retrieved address.)

IPADDR dns_server The IPADDR of the DNS server to query.
Note: 0 uses the stored system default.

WORD timeout The number of time ticks to wait for a response.
Note: A value of 0 waits forever.

Returns:

DNS_OK --- On Success
DNS_TIMEOUT --- If the DNS Server does not respond
DNS_NOSUCHNAME --- If the DNS Server can not find the name
DNS_ERR --- If the received DNS response has errors

See Also:

AsciiToIp --- Convert a dotted decimal IP string to an IP address
ShowIP --- Show an IP address as dotted decimal on stdio

The NetBurner Runtime Libraries Reference

316

24.16. Ping

Synopsis:

int Ping(IPADDR to, WORD id, WORD seq, WORD maxwaitticks);

Description:

This function "pings" the selected address and waits for a response. Ping (i.e. Packet INternet Groper) is an
Internet utility used to determine whether a particular IP address is online by sending out a packet and
waiting for a response. Ping is also used to test and debug a network as well as see if a user is online. Ping
can also function like a DNS (Domain Name Server) because "pinging" a domain name will return its IP
address. The Ping function is used for the primary ethernet interface. Note: If you need to ping through
another specified interface, you must use the PingViaInterface function.

Returns:

The number of ticks the response took
-1 --- If it timed out

See Also:

PingViaInterface --- Sends an ICMP echo through a specified interface and waits for a response
SendPing --- Sends an ICMP echo to an address

Example:

/* This function pings the address given in buffer */

void ProcessPing(char * buffer)

{

 IPADDR addr_to_ping;

 char * cp = buffer; /* Trim leading white space */

 /* Get the address or use the default */

 while ((*cp) && (isspace(*cp))) cp++;

 if (cp[0])

 addr_to_ping = AsciiToIp(cp);

 else

 addr_to_ping = IpGate;

 iprintf("\nPinging :");

 ShowIP(addr_to_ping);

 iprintf("\n");

 int rv = Ping(addr_to_ping, 1/*Id */, 1 /*Seq */, 100/*Max Ticks*/);

 if (rv == -1)

 iprintf(" Failed! \n");

 else

 iprintf(" Response Took %d ticks\n", rv);

}

The NetBurner Runtime Libraries Reference

317

24.17. PingViaInterface

Synopsis:

int PingViaInterface(IPADDR to, WORD id, WORD seq, WORD maxwaitticks,

 int interface);

Description:

This function "pings" the selected address through a specified interface and waits for a response. Ping (i.e.
Packet INternet Groper) is an Internet utility used to determine whether a particular IP address is online by
sending out a packet and waiting for a response. Ping is also used to test and debug a network as well as
see if a user is online. Ping can also function like a DNS (Domain Name Server) because "pinging" a domain
name will return its IP address. Note: If pinging over WiFi (or if any other alternate IP interface is desired),
then this function is required in lieu of the Ping function.

Returns:

The number of ticks the response took
-1 --- If it timed out

See Also:

Ping --- Sends an ICMP echo to an address and waits for a response
SendPing --- Sends an ICMP echo to an address

The NetBurner Runtime Libraries Reference

318

24.18. SendPing

Synopsis:

void SendPing(IPADDR to, WORD id, WORD seq, int interface);

Description:

This function "pings" the selected address. Ping (i.e. Packet INternet Groper) is an Internet utility used to
determine whether a particular IP address is online by sending out a packet and waiting for a response. Ping
is also used to test and debug a network as well as see if a user is online. Ping can also function like a DNS
(Domain Name Server) because "pinging" a domain name will return its IP address. The Ping function is
used for the primary ethernet interface. Note: If you need to ping through another specified interface, you
must use the PingViaInterface function.

Returns:

Nothing --- This is a void function

See Also:

Ping --- Sends an ICMP echo to an address and waits for a response
PingViaInterface --- Sends an ICMP echo through a specified interface and waits for a response

The NetBurner Runtime Libraries Reference

319

24.19. GetTFTP

Synopsis:

int GetTFTP(PCSTR fname, PCSTR mode, PBYTE buffer, int & len,

 DWORD timeout, IPADDR server, WORD opening_port);

Description:

This function reads a file from a TFTP Server and put it in the passed in buffer. Important: TFTP (i.e. Trivial
File Transfer Protocol) is a version of the TCP/IP FTP protocol that has no directory or password capability.

Parameters:

Type Name Description

PCSTR fname The name of the file to retrieve.

PCSTR mode The opening mode: b (binary) or t (text).

PBYTE buffer A pointer to the memory area to hold the received file.

int &len A reference to the buffer length. It holds the maximum
length when the function is called and holds the number
of bytes actually copied on return.

DWORD timeout The number of ticks to wait for the operation to complete.

IPADDR server The IP Address to send the TFTP request to.

WORD opening_port The port to send the TFTP request to.

Returns:

TFTP_OK (0)
TFTP_TIMEOUT (1)
TFTP_ERROR (2)

See Also:

SendTFTP --- Send a file to a TFTP server
NBTFTP --- A TFTP Server for Win32

The NetBurner Runtime Libraries Reference

320

24.20. SendTFTP

Synopsis:

int SendTFTP(PCSTR fname, PCSTR mode, PBYTE buffer, int & len,

 DWORD timeout, DWORD pkttimeout, IPADDR server, WORD opening_port);

Description:

This function sends a file to a TFTP server. Important: TFTP (i.e. Trivial File Transfer Protocol) is a version of
the TCP/IP FTP protocol that has no directory or password capability.

Parameters:

Type Name Description

PCSTR fname The name of the file to put on the TFTP Server.

PCSTR mode The opening mode: b (binary) or t (text).

PBYTE buffer A pointer to the memory area that holds the file to be sent.

int &len A reference to the buffer length. It holds the maximum length
when the function is called, and holds the number of bytes
actually copied on return.

DWORD timeout The total number of ticks to wait for the operation to complete.

DWORD pkttimeout The number of ticks to wait for timeout on each packet sent.

IPADDR server The IP Address to send the TFTP request to.

WORD opening_port The port to send the TFTP request to.

Returns:

TFTP_OK (0)
TFTP_TIMEOUT (1)
TFTP_ERROR (2)

See Also:

NBTFTP --- A TFTP Server for Win32
GetTFTP --- Read a file from a TFTP server

The NetBurner Runtime Libraries Reference

321

24.21. ShowArp

Synopsis:

void ShowArp();

Description:

This function dumps the ARP cache to stdio. ARP (Address Resolution Protocol) is a protocol for mapping
an Internet Protocol address (IP address) to a physical machine address that is recognized in the local
network. The physical machine address is also known as a Media Access Control (MAC) address. A table,
usually called the ARP cache, is used to maintain a correlation between each MAC address and its
corresponding IP address. ARP provides the protocol rules for making this correlation and providing address
conversion in both directions.

When an incoming packet destined for a host machine on a particular local area network arrives at a
gateway, the gateway asks the ARP program to find a physical host or MAC address that matches the IP
address. The ARP program looks in the ARP cache and, if it finds the address, provides it so that the packet
can be converted to the right packet length and format and sent to the machine. If no entry is found for the IP
address, ARP broadcasts a request packet in a special format to all the machines on the LAN to see if one
machine knows that it has that IP address associated with it. A machine that recognizes the IP address as its
own returns a reply so indicating. ARP updates the ARP cache for future reference and then sends the
packet to the MAC address that replied.

Since protocol details differ for each type of local area network, there are separate ARP Requests for
Comments (RFC) for Ethernet, ATM, Fiber Distributed-Data Interface, High-Performance Parallel Interface
(HIPPI), and other protocols. There is also a Reverse ARP (RARP) for host machines that do not know their
IP address. RARP enables them to request their IP address from the gateway's ARP cache.

Parameters:

None

Returns:

Nothing --- This is a void function

See Also:

ShowIPBuffer --- Dump a pool pointer to stdio, interpreting it as a packet

The NetBurner Runtime Libraries Reference

322

24.22. DumpTcpDebug

Synopsis:

void DumpTcpDebug();

Description:

This function dumps the TCP debugging log to stdio.

Parameters:

None

Returns:

Nothing ---This is a void function

See Also:

EnableTcpDebug --- Enable the TCP debug log

The NetBurner Runtime Libraries Reference

323

24.23. EnableTcpDebug

Synopsis:

void EnableTcpDebug(WORD db);

Description:

This function enables the TCP debug log.

Returns:

Nothing --- This is a void function

See Also:

DumpTcpDebug --- Dump the TCP debugging log to stdio

The NetBurner Runtime Libraries Reference

324

24.24. ShowIPBuffer

Synopsis:

void ShowIPBuffer(PoolPtr rp);

Description:

This function dumps a pool pointer to stdio, interpreting it as a packet.

Returns:

Nothing --- This is a void function.

See Also:

ShowBuffer --- Show the raw data in a pool pointer
GetFreeCount --- Get number of free buffer available
ShowArp --- Dump the ARP cache to stdio

The NetBurner Runtime Libraries Reference

325

24.25. GetFreeCount

Synopsis:

#include <buffers.h>

WORD GetFreeCount();

Description:

This function returns the number of free pool buffers, which are used for network and serial communication.
The buffers.h include file is normally already included, so you do not usually need to add it yourself. The
maximum number of buffers is defined in \nburn\include\constants.h as:
#define BUFFER_POOL_SIZE (256).
The size of each buffer is defined as: #define ETHER_BUFFER_SIZE 1548.

A number of buffers must be allocated to the Ethernet driver for receiving packets. The number will vary by
platform, but is typically 10 buffers. If your number of free buffers reaches zero, then no further network
communication will be possible until some buffers are freed.

Serial port buffers are defined as a number of buffers allocated from this buffer pool for serial use only. In
constants.h the default definitions are:

#define SERIAL_TX_BUFFERS (2)
#define SERIAL_RX_BUFFERS (2)

Each serial port buffer is equal in size to an Ethernet buffer.

Parameters:

None

Returns:

Number of free buffers.

See Also:

ShowIPBuffer --- Dump a pool pointer to stdio, interpreting it as a packet
ShowBuffer --- Show the raw data in a pool pointer

The NetBurner Runtime Libraries Reference

326

24.26. ShowBuffer

Synopsis:

void ShowBuffer(PoolPtr p);

Description:

This function shows the raw data in a buffer referenced by a pool pointer.

Returns:

Nothing --- This is a void function

See Also:

ShowIPBuffer --- Dump a pool pointer to stdio, interpreting it as a packet
GetFreeCount --- Get number of free buffer available

The NetBurner Runtime Libraries Reference

327

24.27. TcpGetLastRxTime

Synopsis:

DWORD TcpGetLastRxTime(int fd);

Description:

Each TCP connection has a corresponding Socket_struct. One of the elements of this struct is a variable
called LastRxTime, which stores the current time tick every time a packet is received. This function allows
you to find out when the last packet was received by returning this variable.

 This function, along with TcpSendKeepAlive, is used to implement keepalive.

 If LastRxTime is the same before and after a keepalive packet is sent, the client has not responded

to the keepalive packet and it can be assumed that connection is lost.

 Make sure to allow time for the client to respond to the keep alive packet

 Do not call TcpGetLastRxTime more often than once every second.

Parameters:

Type Name Description

int fd The socket file descriptor.

Returns:

Time (in ticks) of last TCP packet received on the corresponding socket.

See Also:

TcpSendKeepAlive --- Send KeepAlive packet

The NetBurner Runtime Libraries Reference

328

24.28. TcpSendKeepAlive

Synopsis:

void TcpSendKeepAlive (int fd);

Description:

This function checks to see if the other end of a TCP connection is still responding by sending it an
empty packet with a decremented sequence number (the sequence number of the last packet it sent).
This causes the other end to send an ACK even though the packet was empty.

Parameters:

Type Name Description

int fd The socket file descriptor.

Returns:

Nothing

See Also:

TcpGetLastRxTime --- get time of last packet received

The NetBurner Runtime Libraries Reference

329

24.29. HTONS

Synopsis:

WORD HTONS(WORD x);

Description:

This function translates a WORD from host order to network order.

See Also:

HTONL --- Translate a DWORD from host order to network order
NTOHS --- Translate a WORD from network order to host order
NTOHL --- Translate a DWORD from network order to host order

The NetBurner Runtime Libraries Reference

330

24.30. HTONL

Synopsis:

DWORD HTONL(DWORD x);

Description:

This function translates a DWORD from host order to network order.

See Also:

HTONS --- Translate a WORD from host order to network order
NTOHS --- Translate a WORD from network order to host order
NTOHL --- Translate a DWORD from network order to host order

The NetBurner Runtime Libraries Reference

331

24.31. NTOHS

Synopsis:

WORD NTOHS(WORD x);

Description:

This function translates a WORD from network order to host order.

See Also:

HTONL --- Translate a DWORD from host order to network order
HTONS --- Translate a WORD from host order to network order
NTOHL --- Translate a DWORD from network order to host order

The NetBurner Runtime Libraries Reference

332

24.32. NTOHL

Synopsis:

DWORD NTOHL(DWORD x);

Description:

This function translates a DWORD from network order to host order.

See Also:

HTONL --- Translate a DWORD from host order to network order
HTONS --- Translate a WORD from host order to network order
NTOHS --- Translate a WORD from network order to host order

The NetBurner Runtime Libraries Reference

333

25. UDP Library

The UDP protocol is implemented as a C++ class. You can implement UDP functionality in your
application using the C++ class interface, or you can use wrapper functions that implement a UDP
sockets type interface. For background on UDP and example programs, please refer to the NetBurner
Network Programming Guide.

Header File

#include <udp.h> // Found in C:\Nburn\include

25.1. UPD C++ Class API

Constructors and Destructor

 UDPPacket --- Construct a UDP object by waiting on a FIFO

 UDPPacket --- Make a UDP packet from a pool buffer

 UDPPacket --- Make an empty UDP packet

 ~UDPPacket --- UDP packet destructor

Check Packet Validity

 Validate --- Returns true if the packet is valid

Packet Element Access

 SetSourcePort --- Set the source port for the packet

 GetSourcePort --- Read source port

 SetDestinationPort --- Set the destination port

 GetDestinationPort --- Get the destination port

Data Access Functions

 GetDataBuffer --- Get a pointer to the data buffer

 SetDataSize --- Set the size of the data section

 GetDataSize ---Get the size of the data section

 ResetData --- Zero the data buffer length

Append Data Functions

 AddData --- Add data on the end

 AddData --- Add a zero terminated string

 AddDataWord --- Add a WORD

 AddDataByte --- Add a Byte

The NetBurner Runtime Libraries Reference

334

Pool Pointer Access Functions

 ReleaseBuffer --- Release the UDP objects captive buffer

 GetPoolPtr --- Get a handle to the UDP objects captive buffer

Send Functions

 SendAndKeep --- Send a copy of the attached pool pointer

 SendAndKeepVia --- Send a copy of the attached pool ptr via a specific interface

 Send --- Send and free the attached pool buffer

 SendVia --- Send and free the attached pool buffer via a specific interface

Related Class Functions

 RegisterUDPFifo --- Register to listen to a specific UDP port

 UnregisterUDPFifo --- Unregister a listening UDP Fifo

The NetBurner Runtime Libraries Reference

335

25.1.1. UDP Class Example

The following example is taken from the NetBurner Network Programmers Guide, which provides
detailed information on UDP.

/**

 UDP Packet C++ Class Example

 This application will send/receive UDP packets with another host on a network,

 such as a PC. Use the MTTTY serial port program to access the menu and

 prompts to specify the destination IP address and port number.

 NetBurner supplies an API for handling UDP as a C++ Class using UDPPacket, or

 you can use a UDP sockets API (see UDP socket example).

 For an external UDP host you can use the NetBurner java example, or the

 NetBurner UDP terminal program.

***/

#include "predef.h"

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <startnet.h>

#include <ucos.h>

#include <udp.h>

#include <autoupdate.h>

#include <string.h>

#include <taskmon.h>

#include <dhcpclient.h>

#include <networkdebug.h>

const char *AppName = "UDP C++ Packet Class Example";

extern "C"

{

 void UserMain(void *pd);

}

// Declare a task stack for the UDP Reader task

DWORD UdpReaderStack[USER_TASK_STK_SIZE];

/*---

 * This task will wait for incoming UDP packets and process them.

 ---*/

void UdpReaderTask(void *pd)

{

 int port = (int) pd;

 iprintf("UdpReaderTask monitoring port %d\r\n", port);

 // Create FIFO to store incoming packets and initialize it

 OS_FIFO fifo;

 OSFifoInit(&fifo);

 // Register to listen for UDP packets on port number 'port'

 RegisterUDPFifo(port, &fifo);

 while (1)

 {

 // We construct a UDP packet object using the FIFO.

 // This constructor will only return when we have received a packet

The NetBurner Runtime Libraries Reference

336

 UDPPacket upkt(&fifo,

 0 /* Replace this 0 with a tick count to have a time out

delat */);

 // Did we get a valid packet or just time out?

 if (upkt.Validate())

 {

 WORD len = upkt.GetDataSize();

 iprintf("\r\nReceived a UDP packet with %d bytes from :", (int) len);

 ShowIP(upkt.GetSourceAddress());

 iprintf("\r\n");

 ShowData(upkt.GetDataBuffer(), len);

 iprintf("\r\n");

 }

 }

}

/**

 * UserMain Task

 * This is the first task to be executed and will create the UDP

 * Reader Task.

 ***/

void UserMain(void *pd)

{

 int portnum;

 IPADDR ipaddr;

 char buffer[80];

 InitializeStack();

 EnableAutoUpdate();

 EnableTaskMonitor();

 if (EthernetIP == 0)

 {

 iprintf("Trying DHCP\r\n");

 GetDHCPAddress();

 iprintf("DHCP assigned the IP address of :");

 ShowIP(EthernetIP);

 iprintf("\r\n");

 }

 OSChangePrio(MAIN_PRIO);

 #ifdef _DEBUG

 InitializeNetworkGDB();

 #endif

 iprintf("Starting UDP Packet C++ Class Example\r\n");

 // Get desination IP address

 iprintf("Enter the destination IP address: ");

 buffer[0] = '\0';

 while (buffer[0] == '\0') // Keep looping until something is entered

 {

 gets(buffer);

 }

 ipaddr = AsciiToIp(buffer);

 iprintf("\r\n");

 /* Get the port number. This application uses the same

 * port number for send and receive.

 */

The NetBurner Runtime Libraries Reference

337

 iprintf("Enter the source/destination port number: ");

 gets(buffer);

 portnum = atoi(buffer);

 iprintf("\r\n");

 // Display informational message

 iprintf("Sending/Recieving with host ");

 ShowIP(ipaddr);

 iprintf(": %d\r\n", portnum);

 /* Create task to recieve UDP packets. We will pass the destination

 * port number in the optional second parameter field, and set the

 * priority to 1 less than the UserMain priority so packets get

 * processed as they are received.

 */

 OSTaskCreate(UdpReaderTask,

 (void *) portnum,

 &UdpReaderStack[USER_TASK_STK_SIZE],

 UdpReaderStack,

 MAIN_PRIO - 1);

 // Loop forever displaying UDP data

 while (1)

 {

 iprintf("Enter a string to send: ");

 gets(buffer);

 iprintf("\r\n");

 iprintf("Sending \"%s\" using UDP to ", buffer);

 ShowIP(ipaddr);

 iprintf(" : %d\r\n", portnum);

 // Note that the UDPPacket instance below is enclosed by '{'

 // braces to handle the scope of the data buffers used by

 // the C++ class instance.

 {

 UDPPacket pkt;

 pkt.SetSourcePort(portnum);

 pkt.SetDestinationPort(portnum);

 pkt.AddData(buffer);

 pkt.AddDataByte(0);

 pkt.Send(ipaddr);

 }

 iprintf("\r\n");

 };

}

The NetBurner Runtime Libraries Reference

338

25.1.2. UDPPacket

Synopsis:

UDPPacket();

Description:

This function creates a UDP packet with no data. Member functions are then used to configure the
packet and send it.

Parameters:

None

Returns:

No value returned

The NetBurner Runtime Libraries Reference

339

25.1.3. UDPPacket (FIFO)

Synopsis:

UDPPacket(OS_FIFO * fifo, DWORD wait);

Description:

UDP packets are received in a OS_FIFO. Once received, this function can be used to create a UDP
packet from the FIFO entry, which removes the entry from the FIFO. This function will block until a
FIFO entry is available, or the specified timeout occurs. If the FIFO times out, then an invalid UDP
packet will be created. The UDP Validate() function must always be called after this function to verify
a valid UDP packet has been received.

Returns:

A UDP Packet, which then must be verified Validate() function

The NetBurner Runtime Libraries Reference

340

25.1.4. UDPPacket (Pool Buffer)

Synopsis:

UDPPacket(PoolPtr p);

Description:

This creates a UDP packet from a pool buffer. This is a reserved function for internal use.

Returns:

A UDP Packet, which then must be verified Validate() function

The NetBurner Runtime Libraries Reference

341

25.1.5. ~UDPPacket

Synopsis:

~UDPPacket();

Description:

This function is the UDPPacket destructor, which will be called automatically when an instance of
UDPPacket goes out of scope.

Parameters:

None

Returns:

No value returned

The NetBurner Runtime Libraries Reference

342

25.1.6. Validate

Synopsis:

BOOL Validate();

Description:

Verifies a received UDP packet has data and validates the checksum. This function should only be
called when receiving a UDP packet.

Parameters:

None

Returns:

True --- If the packet is valid
False --- If you try to validate a packet before it has been sent

The NetBurner Runtime Libraries Reference

343

25.1.7. SetSourcePort

Synopsis:

void SetSourcePort(WORD);

Description:

Sets the UDP Packet source port number.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

344

25.1.8. GetSourcePort

Synopsis:

WORD GetSourcePort();

Description:

Returns a received UDP packet's source port number.

Parameters:

None

Returns:

The 16-bit source port number

The NetBurner Runtime Libraries Reference

345

25.1.9. SetDestinationPort

Synopsis:

void SetDestinationPort(WORD);

Description:

Sets the UDP Packet destination port number.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

346

25.1.10. GetDestinationPort

Synopsis:

WORD GetDestinationPort();

Description:

Returns a UDP packet's destination port number.

Parameters:

None

Returns:

The 16-Bit destination port number

The NetBurner Runtime Libraries Reference

347

25.1.11. GetDataBuffer

Synopsis:

PBYTE GetDataBuffer();

Description:

This function gets a pointer to the UDP packet’s data buffer.

Parameters:

None

The NetBurner Runtime Libraries Reference

348

25.1.12. SetDataSize

Synopsis:

void SetDataSize(WORD);

Description:

Specifies the UDP Packet’s data size as a number of bytes.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

349

25.1.13. GetDataSize

Synopsis:

WORD GetDataSize();

Description:

Returns the number of data bytes in a UDP packet.

Returns:

Number of data bytes.

The NetBurner Runtime Libraries Reference

350

25.1.14. ResetData

Synopsis:

void ResetData();

Description:

This function zero's the data buffer length.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

351

25.1.15. AddData

Synopsis:

void AddData(PBYTE pData, WORD len);

Description:

This function appends data to an existing UDP packet.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

352

25.1.16. AddData (Add a Zero Terminated String)

Synopsis:

void AddData(PCSTR pData);

Description:

Appends data to an existing UDP packet. The length is determined by the null character at the end of
the parameter string.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

353

25.1.17. AddDataWord

Synopsis:

void AddDataWord(WORD w);

Description:

Appends a 16-bit unsigned value to an existing UDP packet.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

354

25.1.18. AddDataByte

Synopsis:

void AddDataByte(BYTE b);

Description:

Appends a byte of data to an existing UDP packet.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

355

25.1.19. ReleaseBuffer

Synopsis:

void ReleaseBuffer();

Description:

Releases UDP objects captive buffer (a pool pointer). This function is for internal use only.

Parameters:

None

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

356

25.1.20. GetPoolPtr

Synopsis:

PoolPtr GetPoolPtr();

Description:

This function gets a handle to the UDP objects captive buffer. This function is for internal use only.

Parameters:

None

The NetBurner Runtime Libraries Reference

357

25.1.21. SendAndKeep

Synopsis:

void SendAndKeep(IPADDR to, BYTE ttl);

Description:

This function sends a copy of the attached pool pointer.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

358

25.1.22. SendAndKeepVia

Synopsis:

void SendAndKeepVia(IPADDR to, IPADDR from_ip, BYTE ttl);

Description:

This function sends a copy of the attached pool pointer via a specified interface.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

359

25.1.23. Send

Synopsis:

void Send(IPADDR to, BYTE ttl=0);

Description:

This function sends the UDP packet and frees the attached pool buffer.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

360

25.1.24. SendVia

Synopsis:

void SendVia(IPADDR to, IPADDR from_ip, BYTE ttl);

Description:

This function sends and frees the attached pool buffer via the specified interface.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

361

25.1.25. RegisterUDPFifo

Synopsis:

void RegisterUDPFifo(WORD dest_port, OS_FIFO *pfifo);

Description:

A OS_FIFO is used to receive incoming UDP Packets. This function registers a OS_FIFO to listen to a
specific UDP port.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

362

25.1.26. UnregisterUDPFifo

Synopsis:

void UnregisterUDPFifo(WORD destination_port);

Description:

This function will unregister a listening UDP FIFO.

Returns:

Nothing --- This is a void function

The NetBurner Runtime Libraries Reference

363

25.2. UDP Socket Interface

Definitions

#define UDP_ERR_NOSUCH_SOCKET (-1)

#define UDP_ERR_NOTOPEN_TO_WRITE (-2)

#define UDP_ERR_NOTOPEN_TO_READ (-3)

Open a UDP Socket

int CreateRxUdpSocket(WORD listening_port)

Open a UDP socket that can be used by the select() function to receive UDP datagrams.

int CreateTxUdpSocket(IPADDR send_to_addr, WORD remote_port,

 WORD local_port)

Open a UDP socket that can use write functions such as: write(), writestring(), etc. to send data.

int CreateRxTxUdpSocket(IPADDR send_to_addr, WORD send_to_remote_port,

 WORD local_port)

Open a UDP socket that can send and receive.

These functions return a standard file descriptor, or a negative number if a socket cannot be created.

Send a UDP Packet

int sendto(int sock, PBYTE what_to_send, int len_to_send,IPADDR to_addr,

 WORD remote_port)

Returns the number of bytes sent or error as defined above

int sendtovia(int sock, PBYTE what_to_send, int len_to_send,IPADDR to_addr,

 WORD remote_port, int intfnum)

This is the same function as above, but specifies the interface as the last parameter. It returns the
number of bytes sent, or an error as defined above.

Receive a UDP Packet

int recvfrom(int sock, PBYTE buffer, int len, IPADDR * pAddr,

 WORD * pLocal_port, WORD * pRemote_port)

Returns the number of bytes read, or UDP_ERR_NOSUCH_SOCKET (-1)

The NetBurner Runtime Libraries Reference

364

25.2.1. UDP Sockets Example

The following example is taken from the NetBurner Network Programmers Guide, which provides
detailed information on UDP.

/**

 UDP Sockets Example

 This application will send/receive UDP packets with another host on a network,

 such as a PC. Use the MTTTY serial port program to access the menu and

 prompts to specify the destination IP address and port number.

 NetBurner supplies an API for handling UDP as a C++ Class using UDPPacket, or

 you can use a UDP sockets API (see UDP socket example).

 For an external UDP host you can use the NetBurner java example, or the

 NetBurner UDP terminal program.

***/

#include "predef.h"

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <startnet.h>

#include <ucos.h>

#include <udp.h>

#include <autoupdate.h>

#include <string.h>

#include <taskmon.h>

#include <dhcpclient.h>

#include <networkdebug.h>

const char *AppName = "UDP Sockets Example";

extern "C"

{

 void UserMain(void *pd);

}

// Declare a task stack for the UDP Reader task

DWORD UdpReaderStack[USER_TASK_STK_SIZE];

/*---

 * This task will wait for incoming UDP packets and process them.

 --*/

void UdpReaderTask(void *pd)

{

 int port = (int) pd;

 iprintf("UdpReaderTask monitoring port %d\r\n", port);

 // Create a UDP socket for receiving

 int UdpFd = CreateRxUdpSocket(port);

 if (UdpFd <= 0)

 {

 iprintf("Error Creating UDP Listen Socket: %d\r\n", UdpFd);

 while (1)

 OSTimeDly(TICKS_PER_SECOND);

 }

 else

 {

 iprintf("Listening for UDP packets on port %d\r\n", port);

The NetBurner Runtime Libraries Reference

365

 }

 while (1)

 {

 IPADDR SrcIpAddr; // UDP packet source IP address

 WORD LocalPort; // Port number UDP packet was sent to

 WORD SrcPort; // UDP packet source port number

 char buffer[80];

 int len = recvfrom(UdpFd, (BYTE *)buffer, 80, &SrcIpAddr, &LocalPort,

&SrcPort);

 buffer[len] = '\0';

 iprintf("\r\nReceived a UDP packet with %d bytes from :", len);

 ShowIP(SrcIpAddr);

 iprintf("\r\n%s\r\n", buffer);

 }

}

/*---

 * UserMain Task

 * This is the first task to be executed and will create the UDP

 * Reader Task.

 ---*/

void UserMain(void *pd)

{

 int portnum;

 IPADDR ipaddr;

 char buffer[80];

 InitializeStack();

 EnableAutoUpdate();

 EnableTaskMonitor();

 if (EthernetIP == 0)

 {

 iprintf("Trying DHCP\r\n");

 GetDHCPAddress();

 iprintf("DHCP assigned the IP address of :");

 ShowIP(EthernetIP);

 iprintf("\r\n");

 }

 OSChangePrio(MAIN_PRIO);

 #ifdef _DEBUG

 InitializeNetworkGDB();

 #endif

 iprintf("Starting UDP Sockets Example\r\n");

 // Get desination IP address

 iprintf("Enter the UDP Server destination IP address: ");

 buffer[0] = '\0';

 while (buffer[0] == '\0') // Keep looping until something is entered

 {

 gets(buffer);

 }

 ipaddr = AsciiToIp(buffer);

The NetBurner Runtime Libraries Reference

366

 iprintf("\r\n");

 // Get the port number. This application uses the same

 // port number for send and receive.

 iprintf("Enter the source/destination port number: ");

 gets(buffer);

 portnum = atoi(buffer);

 iprintf("\r\n");

 // Create a UDP socket for sending/receiving

 int UdpFd = CreateTxUdpSocket(ipaddr, portnum, portnum);

 if (UdpFd <= 0)

 {

 iprintf("Error Creating UDP Socket: %d\r\n", UdpFd);

 while (1)

 OSTimeDly(TICKS_PER_SECOND);

 }

 else

 {

 iprintf("Sending/Recieving with host ");

 ShowIP(ipaddr);

 iprintf(": %d\r\n", portnum);

 }

 // Create task to receive UDP packets. We will pass the destination

 // port number in the optional second parameter field, and set the

 // priority to 1 less than the UserMain priority so packets get

 // processed as they are received.

 OSTaskCreate(UdpReaderTask,

 (void *) portnum,

 &UdpReaderStack[USER_TASK_STK_SIZE],

 UdpReaderStack,

 MAIN_PRIO - 1);

 // Loop forever displaying UDP data

 while (1)

 {

 iprintf("Enter a string to send: ");

 gets(buffer);

 iprintf("\r\n");

 iprintf("Sending \"%s\" using UDP to ", buffer);

 ShowIP(ipaddr);

 iprintf(" : %d\r\n", portnum);

 sendto(UdpFd, (BYTE *)buffer, strlen(buffer), ipaddr, portnum);

 iprintf("\r\n");

 };

}

The NetBurner Runtime Libraries Reference

367

25.2.2. CreateRxUdpSocket

Synopsis:

int CreateRxUdpSocket(WORD listening_port)

Description:

Open a UDP socket that can be used by the select() function to receive UDP datagrams.

Parameters:

listening_port 16-bit unsigned value of UDP port to listen to for incoming packets

Returns:

A file descriptor, or negative number on error.

The NetBurner Runtime Libraries Reference

368

25.2.3. CreateTxUdpSocket

Synopsis:

int CreateTxUdpSocket(IPADDR send_to_addr, WORD remote_port,
 WORD local_port).

Description:

Open a UDP socket that can use write functions such as: write(), writestring, etc. to send data.

Parameters:

send_to_addr Destination IP address
remote_port: Destination port number
local_port : Local port number to use. A value of 0 will automatically select a random port number.

Returns:

A file descriptor, or negative number on error.

The NetBurner Runtime Libraries Reference

369

25.2.4. CreateRxTxUdpSocket

Synopsis:

int CreateRxTxUdpSocket(IPADDR send_to_addr, WORD send_to_remote_port,
 WORD local_port)

Description:

Open a UDP socket that can send and receive.

Parameters:

send_to_addr Destination IP address
send_to_remote_port: Destination port number
local_port : Local port number to use. A value of 0 will automatically select a random port number.

Returns:

A file descriptor, or negative number on error.

The NetBurner Runtime Libraries Reference

370

25.2.5. sendto

Synopsis:

int sendto(int sock, PBYTE what_to_send, int len_to_send,IPADDR to_addr, WORD remote_port)

Description:

Send a UDP packet

Parameters:

sock File descriptor from a previous call to CreateTxUdpSocket() or CreateRxTxSocket()
what_to_send BYTE array pointer to data to send in packet
len_to_send : Number of bytes of data to send
to_addr: Destination IP address
remote_port: Destination port number

Returns:

Number of bytes sent negative number on error.

The NetBurner Runtime Libraries Reference

371

25.2.6. sendtovia

Synopsis:

int sendtovia(int sock, PBYTE what_to_send, int len_to_send,IPADDR to_addr,
 WORD remote_port, int intfnum)

Description:

Send a UDP packet using the specified network interface.

Parameters:

sock File descriptor from a previous call to CreateTxUdpSocket() or CreateRxTxSocket()
what_to_send BYTE array pointer to data to send in packet
len_to_send : Number of bytes of data to send
to_addr: Destination IP address
remote_port: Destination port number
intfnum: Local network interface to use from previous call to RegisterInterface()

Returns:

Number of bytes sent or a negative number on error.

The NetBurner Runtime Libraries Reference

372

25.2.7. receivefrom

Synopsis:

int recvfrom(int sock, PBYTE buffer, int len, IPADDR *pAddr,
 WORD *pLocal_port, WORD *pRemote_port)

Description:

Receive a UDP packet.

Parameters:

sock File descriptor from a previous call to CreateRxUdpSocket() or CreateRxTxSocket()
buffer: Pointer to BYTE array buffer to store received UDP packet data
len: Maximum number of bytes to receive
pAddr: Pointer to an IPADDR variable to store the sender’s IP address of the packet
pLocal_port: Pointer to WORD variable to store the local port number of the packet
pRemote_port: Pointer to WORD variable to store the sender’s port number of the packet

Returns:

Number of bytes received or a negative number on error.

The NetBurner Runtime Libraries Reference

373

26. PPP Library
Like Ethernet, Point to Point Protocol (PPP) is a data link layer which transfers data between nodes on
a network. The main difference is that PPP is used between only two network nodes. PPP can be
used over many types of physical networks, including: fiber, phone line, serial cable and cellular
telephone. Once you have created a PPP connection to or from your NetBurner device you can use it
with all the standard network applications such as the web server, tcp, udp, ftp, email, etc.

Internet Service Providers (ISP) can implement PPP with many different options that vary from ISP to
ISP. The PPP example program included in the development kit examples directory specifies the
most common ISP options and can be used as a code example to specify any specific options you
may need in your application.

Header File

#include <ppp.h> // Found in C:\Nburn\include

26.1. PPP Structure and Definitions

pppoptions PPP options structure
enum_PPPState PPP state definitions

26.2. PPP Functions

StartPPPDameon Starts the PPP daemon and initialized a modem
StartPPPDirect Starts the PPP daemon for a direct connection on a Serial port

DialPPP Dials out (via a modem) to create a PPP connection.
DirectConnectPPP Initiates a client PPP direct connection on a Serial port.

GetPPPState Reports the connection state of the PPP system.

StopPPPDameon Stops listening for a PPP connection.
ClosePPPSesion Stops any current PPP connection.

GetThatPPP_IP Get the IP address of the other device on the PPP connection.
GetThisPPP_IP Get the IP address of the NetBurner device on the PPP connection.

SendCHAPChallenge Send CHAP challenge packet to PPP host

The NetBurner Runtime Libraries Reference

374

26.3. PPP Options Structure

The PPP options structure is used to configure the PPP link, specify whether or not authentication is
required, and supply an optional user name and password. The code below is an example of the
options in tools release 2.3 rc7. Please refer to c:\nburn\include\ppp.h for the latest option structure.

struct pppoptions {

BYTE Restart_Interval; // The restart interval for PPP negotiations in seconds

BYTE Max_Terminate; // The Maximum number of times to send terminate

BYTE Max_Configure; // The Maximum number of times to send config requests

BYTE Max_Failure; // The Maximum number of config failures (for retries)

BOOL CHAPenable; // If TRUE then CHAP will be required for connection

BOOL Chat_Login_disable; //If TRUE, PPP will not allow Chat_Login mode

// Callback function used for incoming connections. If you require authentication

// from the peer, crate your own authentication function that takes a user name and

// password, and set the authenticate_func pointer to it. A non-zero return value

// means the authentication was successful.

int (*authenticate_func)(const char *name, const char *passwd);

// Username and password used for outgoing connections during PAP or CHAP

// authentication.

const char *pUserName;

const char *pPassword;

// Set to zero to request that the other side to provide our IP address

IPADDR SetThisInterfaceAddress;

// Set to non-zero to request an IP address for the peer

IPADDR SetThatInterfaceAddress;

// The actual values after negotiation

IPADDR ActualThisInterfaceAddress;

IPADDR ActualThatInterfaceAddress;

DWORD dwflags; // Reserved for system use

// The negotiated Maximum Receive Unit (MRU). Read only. Usually 1500 bytes.

WORD MRU;

/* Asynchronous Control Character Map (ACCM) is used to specify escape sequences

for control characters in the data stream. */

DWORD TX_DESIRED_ACCM; /* Set to any additional ACCM vaues you want to use */

DWORD RX_DESIRED_ACCM; /* Set to any additional ACCM vaues you want to use */

// The agreed-upon values after negotiation

DWORD TX_ACCM;

DWORD RX_ACCM;

};

The NetBurner Runtime Libraries Reference

375

26.4. StartPPPDameon

Synopsis:

int StartPPPDameon(int serial_port, pppoptions * popt);

Description:

When this function is called, the PPP system initializes the modem and prepares it to receive calls.

Parameters:

serial_port The serial port to use for communication, 0, 1 or 2.
popt *pppoptions Structure containing the PPP options.

Returns:

ERR_PPP_SUCESS
ERR_PPP_ALREADY_OPEN
ERR_PPP_NO_DIALTONE
ERR_PPP_NO_ANSWER
ERR_PPP_BUSY
ERR_PPP_FAIL
ERR_PPP_PASSFAIL
ERR_PPP_LOSTCARRIER

The NetBurner Runtime Libraries Reference

376

26.5. StartPPPDirect

Synopsis:

 int StartPPPDirect(int serial_port, pppoptions *popt);

Description:

This function will initiate a host PPP direct connection on a serial port. StartPPPDirect is similar to
StartPPPDameon, but it does not require a modem.

Parameters:

serial_port The serial port to use for communication, 0, 1 or 2.
popt *pppoptions Structure containing the PPP options.

Returns:

ERR_PPP_SUCCESS
ERR_PPP_ALREADY_OPEN
ERR_PPP_NO_DIALTONE
ERR_PPP_NO_ANSWER
ERR_PPP_BUSY
ERR_PPP_FAIL
ERR_PPP_PASSFAIL
ERR_PPP_LOSTCARRIER
ERR_PPP_NO_MODEM
ERR_PPP_LCP_FAILED

The NetBurner Runtime Libraries Reference

377

26.6. DialPPP

Synopsis:

int DialPPP(int serial_port, pppoptions * popt, const char * dial_string);

Description:

This function dials the provided number and attempts to establish a PPP session.

Parameters:

serial_port The serial port to use for communication, 0, 1 or 2.
popt *pppoptions Structure containing the PPP options.
dial_string const char * The dial string to send to the modem. For example "ATD555-1212".

Returns:

ERR_PPP_SUCESS (0)
ERR_PPP_ALREADY_OPEN
ERR_PPP_NO_DIALTONE
ERR_PPP_NO_ANSWER
ERR_PPP_BUSY
ERR_PPP_FAIL
ERR_PPP_PASSFAIL
ERR_PPP_LOSTCARRIER

The NetBurner Runtime Libraries Reference

378

26.7. DirectConnectPPP

Synopsis:

int DirectConnectPPP(int serial_port, pppoptions *popt, const char *dial_string);

Description:

This function will initiate a client PPP direct connection on a serial port. DirectConnectPPP similar to
DialPPP, but it does not require a modem.

Parameters:

serial_port The serial port to use for communication, 0, 1 or 2.
popt *pppoptions Structure containing the PPP options.
dial_string const char * The dial string to send to the modem. For example "ATD555-1212".

Returns:

ERR_PPP_SUCCESS
ERR_PPP_ALREADY_OPEN
ERR_PPP_NO_DIALTONE
ERR_PPP_NO_ANSWER
ERR_PPP_BUSY
ERR_PPP_FAIL
ERR_PPP_PASSFAIL
ERR_PPP_LOSTCARRIER
ERR_PPP_NO_MODEM
ERR_PPP_LCP_FAILED

The NetBurner Runtime Libraries Reference

379

26.8. GetPPPState

Synopsis:

enum_PPPState GetPPPState();

Description:

This function returns the current state of the PPP system as defined by the PPPState structure in
ppp.h:

typedef enum {

 eClosed,

 eInitializingModem,

 eDialing,

 eWait4Ring,

 eAnswering,

 eWaitForTrain,

 eLCPNegotiate,

 ePAPAuthenticate,

 eCHAPAuthenticate,

 eNCPNegotiate,

 eOpen,

 eClosing

}enum_PPPState;

Parameters:

None

Returns:

The current state of the PPP system.

The NetBurner Runtime Libraries Reference

380

26.9. StopPPPDameon

Synopsis:

void StopPPPDameon();

Description:

This function stops the PPP receive daemon started with the StartPPPDameon.

Parameters:

None

Returns:

Nothing.

The NetBurner Runtime Libraries Reference

381

26.10. ClosePPPSesion

Synopsis:

void ClosePPPSesion();

Description:

This function closes any active PPP sessions.

Parameters:

None

Returns:

Nothing. This is a void function.

The NetBurner Runtime Libraries Reference

382

26.11. GetThatPPP_IP

Synopsis:

IPADDR GetThatPPP_IP();

Description:

Returns the IP address of the other end of the PPP connection.

Parameters:

None

Returns:

An IP address of type IPADDR.

The NetBurner Runtime Libraries Reference

383

26.12. GetThisPPP_IP

Synopsis:

IPADDR GetThisPPP_IP();

Description:

Returns the IP address of the NetBurner device used in the PPP connection.

Parameters:

None

Returns:

An IP address of type IPADDR.

The NetBurner Runtime Libraries Reference

384

26.13. SendCHAPChallenge

Synopsis:

void SendCHAPChallenge();

Description:

Sends a CHAP packet to the PPP connected device. Note that the #define GATHER_RANDOM must
be enabled in \nburn\include\predef.h.

Parameters:

None

Returns:

Nothing.

The NetBurner Runtime Libraries Reference

385

27. IPSetup Password Protection

Synopsis:

extern int (*ipsetup_authenticate_func)

 (const char *name, const char *passwd);

Description:

When the ipsetup_authenticate_func is assigned to a function, that function will be called before the
IPSetup.exe Windows utility is allowed to change any system settings. In other words, it is a callback
function. The user running the IPSetup.exe utility will be presented with a dialog box requesting a user
name and password, which are then passed to your function for processing and authentication. You
function can do the authentication in any manor you wish. Returning 1 allows IPSetup to proceed,
returning 0 aborts the process. There is a similar function pointer named update_authenticate_func for
password protection on the AutoUpdate utility. You may use the same authentication function by
assigning both ipsetup_authenticate_func and update_authenticate_func to the same function.

Your password function must be of the form:

int MyPasswordTest(const char * user, const char * pass)

 {

 /* Check password and user here */

 if (/* password ok */)

 return 1;

 else

 return 0;

 }

You assign the function to the password hook by:

ipsetup_authenticate_func = MyPasswordTest;

Example Program

#include "predef.h"

#include <stdio.h>

#include <ctype.h>

#include <startnet.h>

#include <autoupdate.h>

#include <dhcpclient.h>

#include <taskmon.h>

#include <smarttrap.h>

#include <string.h>

extern "C"

{

 void UserMain(void * pd);

}

The NetBurner Runtime Libraries Reference

386

const char * AppName = "CallbackFeatures";

// Set TRUE for example. This would be the flag set/cleared by your

// application to enable an autoupdate.

BOOL SafeToAutoUpdate = TRUE;

/*---

 * Authentication

 --/

const char* UserName = "NetBurner"; // hardcode for example

const char* Password = "password"; // hardcode for example

int Authentication(const char *name, const char *passwd)

{

 if(strcmp(UserName, name) != 0)

 return 0; // Invalid user name

 if(strcmp(Password, passwd) != 0)

 return 0; // Invalid password

 return 1; // Allow IPSetup to change params

}

/*---

 * Shutdown

 ---/

int Shutdown(void)

{

 if(SafeToAutoUpdate)

 return 1; // proceed with update

 else

 return 0; // abort update

}

/*---

 * UserMain

 ---/

void UserMain(void * pd)

{

 InitializeStack();

 if (EthernetIP==0)

 GetDHCPAddress();

 OSChangePrio(MAIN_PRIO);

 EnableAutoUpdate();

 update_authenticate_func = Authentication;

 ipsetup_authenticate_func = Authentication;

 update_shutdown_func = Shutdown;

 while (1)

 {

 OSTimeDly(TICKS_PER_SECOND);

 }

}

	1. Introduction
	2. NetBurner License Information
	2.1. The NetBurner Tools Software License
	2.2. The NetBurner Embedded Software License
	2.3. Life Support Disclaimer
	2.4. Anti-Piracy Policy

	3. CAN Library
	3.1. Introduction
	3.2. CanRxMessage Class
	3.3. Constructors and Destructor
	3.3.1. CanRxMessage - FIFO
	3.3.2. CanRxMessage - ID
	3.3.3. ~CanRxMessage

	3.4. Member Functions
	3.4.1. GetLength
	3.4.2. GetData
	3.4.3. GetId
	3.4.4. GetTimeStamp
	3.4.5. IsValid

	3.5. Functions
	3.5.1. CanInit
	3.5.2. CanShutDown
	3.5.3. ChangeGlobalMask
	3.5.4. FreeCanChannels
	3.5.5. IsChannelFree
	3.5.6. RegisterCanRxFifo
	3.5.7. RegisterCanSpecialRxFifo
	3.5.8. UnRegisterCanFifo
	3.5.9. SendMessage

	3.6. MACROS
	3.6.1. CAN_EXTENDED_ID_BIT
	3.6.2. ExtToNbId
	3.6.3. NormToNbId
	3.6.4. IsNBIdExt
	3.6.5. NbToExtId
	3.6.6. NbToNormId

	4. Command Processor Library
	4.1. Introduction
	4.2. CmdStartCommandProcessor
	4.3. CmdAddCommandFd
	4.4. CmdRemoveCommandFd
	4.5. CmdListenOnTcpPort
	4.6. CmdStopListeningOnTcpPort
	4.7. *CmdAuthenticateFunc
	4.8. *CmdCmd_func
	4.9. *CmdConnect_func
	4.10. *CmdPrompt_func
	4.11. *CmdDisConnect_func
	4.12. SendToAll
	4.13. Globals
	4.13.1. CmdIdleTimeout
	4.13.2. *Cmdlogin_prompt

	5. DHCP Library
	5.1. Introduction
	5.2. Global Variables
	5.3. DHCP Example
	5.4. GetDHCPAddress
	5.5. GetDHCPAddressIfNecessary
	5.6. GetRemainingDhcpLeaseTime
	5.7. ValidDhcpLease
	5.8. StartDHCP
	5.9. StopDHCP
	5.10. RebindDHCP
	5.11. RenewDHCP
	5.12. GetDHCPState
	5.13. GetDhcpRenewTime
	5.14. GetDhcpRebindTime
	5.15. GetDhcpExpirationTime

	6. AutoIP Library
	6.1. Introduction
	6.2. AutoIPClient
	6.3. start
	6.4. stop
	6.5. restart

	7. FTP Client Library
	7.1. Introduction
	7.2. FTP_InitializeSession
	7.3. FTP_CloseSession
	7.4. FTPGetDir
	7.5. FTPSetDir
	7.6. FTPDeleteDir
	7.7. FTPMakeDir
	7.8. FTPUpDir
	7.9. FTPDeleteFile
	7.10. FTPRenameFile
	7.11. FTPSendFile
	7.12. FTPGetFile
	7.13. FTPGetList
	7.14. FTPGetFileNames
	7.15. FTPRawCommand
	7.16. FTPGetCommandResult
	7.17. FTPRawStreamCommand

	8. FTP Server Library
	8.1. Introduction
	8.2. FTPDStart
	8.3. FTPDStopReq
	8.4. (FTPDCallBackReportFunct)
	8.5. FTPDSessionStart
	8.6. FTPDSessionEnd
	8.7. FTPD_DirectoryExists (User Defined)
	8.8. FTPD_CreateSubDirectory (User Defined)
	8.9. FTPD_DeleteSubDirectory (User Defined)
	8.10. FTPD_ListSubDirectories (User Defined)
	8.11. FTPD_FileExists (User Defined)
	8.12. FTPD_SendFileToClient (User Defined)
	8.13. FTPD_AbleToCreateFile (User Defined)
	8.14. FTPD_GetFileFromClient (User Defined)
	8.15. FTPD_DeleteFile
	8.16. FTPD_DeleteFile (User Defined)
	8.17. FTPD_ListFile
	8.18. FTPD_ListFile (User Defined)
	8.19. FTPD_Rename (User Defined)

	9. HTTP and HTML Libraries
	9.1. StartHTTP
	9.2. StopHTTP
	9.3. SetNewPostHandler
	9.4. SetNewGetHandler
	9.5. SetNewHeadHandler
	9.6. CheckAuthentication
	9.7. RequestAuthentication
	9.8. SendHTMLHeader
	9.9. SendHTMLHeaderWCookie
	9.10. SendTextHeader
	9.11. SendGifHeader
	9.12. RedirectResponse
	9.13. NotFoundResponse
	9.14. ExtractPostData
	9.15. ExtractPostFile
	9.16. EnableMultiPartForms
	9.17. DisableMultiPartForms
	9.18. writesafestring
	9.19. httpstricmp
	9.20. SendFullResponse
	9.21. SendFileFragment

	10. Interrupts
	10.1. INTERRUPT MACRO
	10.2. SetIntc (MCF5234 and MCF5282 Only)
	10.3. SetIntc (MCF5270 Only)
	10.4. Pseudo-Example for MCF5234 and MCF5282 Only
	10.5. SetPinIrq
	10.6. EnableIrq
	10.7. DisableIrq
	10.8. Example of SetPinIrq Usage

	11. I/O System Library
	11.1. close
	11.2. read
	11.3. ReadWithTimeout
	11.4. dataavail
	11.5. charavail
	11.6. write
	11.7. Writestring
	11.8. writeall
	11.9. FD_ZERO
	11.10. FD_CLR
	11.11. FD_SET
	11.12. FD_ISSET
	11.13. select
	11.14. ZeroWaitSelect
	11.15. ioctl
	11.16. ReplaceStdio
	11.17. SysLog

	12. I²C Library
	12.1. Introduction
	12.2. The NetBurner I²C API
	12.3. Simple I²C Functions
	12.3.1. I2CInit
	12.3.2. I2CSendBuf
	12.3.3. I2CReadBuf
	12.3.4. I2CRestart

	12.4. Slave I²C Functions
	12.4.1. I2CRXAvail
	12.4.2. I2CTXAvail
	12.4.3. I2CGetByte
	12.4.4. I2CFillSlaveTXBuf

	12.5. Advanced I²C Functions
	12.5.1. I2CRead
	12.5.2. I2CSend
	12.5.3. I2CStart
	12.5.4. I2CStop

	13. Multicast Library
	13.1. Introduction
	13.2. RegisterMulticastFifo
	13.3. UnregisterMulticastFifo

	14. NBTime Library
	14.1. Introduction
	14.2. time
	14.3. set_time
	14.4. GetNTPTime
	14.5. SetNTPTime
	14.6. tzsetchar

	15. The POP3 Client Library
	15.1. Introduction
	15.2. POP3_InitializeSession
	15.3. POP3_CloseSession
	15.4. POP3_StatCmd
	15.5. POP3_ListCmd
	15.6. POP3_DeleteCmd
	15.7. POP3_RetrieveMessage
	15.8. GetPOPErrorString

	16. QSPI Library
	16.1. Introduction
	16.2. QSPI Configuration and Initialization
	16.3. Example Program
	16.4. Additional Information
	16.5. QSPIInit
	16.6. QSPIStart
	16.7. QSPIdone

	17. The SendMail SMTP Library
	17.1. Introduction
	17.2. SendMail
	17.3. SendMailEx
	17.4. SendMailAuth
	17.5. Sending MIME Attachments
	17.5.1. SendMailAuthStartMIME
	17.5.2. SendMailAuthAddMIME
	17.5.3. SendMailAuthEndMIME

	18. RTC Library
	18.1. Introduction
	18.2. RTCGetTime
	18.3. RTCSetTime
	18.4. RTCSetSystemFromRTCTime
	18.5. RTCSetRTCfromSystemTime

	19. Serial Library
	19.1. Introduction
	19.2. OpenSerial
	19.3. SimpleOpenSerial
	19.4. SerialClose
	19.5. SerialEnableTxFlow
	19.6. SerialEnableRxFlow
	19.7. SerialEnableHwTxFlow
	19.8. SerialEnableHwRxFlow
	19.9. Serial485HalfDupMode
	19.10. SendBreak
	19.11. serwriteaddress
	19.12. GetUartErrorReg
	19.13. GetCD
	19.14. GetRI
	19.15. GetDSR
	19.16. SetDTR

	20. SNMP Library
	20.1. Introduction
	20.2. SNMP Implementation Requirements
	20.3. Level 0 --- Basic Instructions Using the SNMP Tools
	20.4. Level 1 --- Enable SNMP at the Absolute Minimum Level without Custom MIBs
	20.5. Level 2 --- A Simple Custom MIB to Set/Clear Community Names
	20.6. Note 1 --- Custom Tables
	20.7. Note 2 --- Custom Community Name Parsing and Protection
	20.8. Note 3 --- Traps and Custom Traps
	20.9. Snmpget
	20.10. Snmpgetnext
	20.11. Snmpset
	20.12. Snmpwalk

	21. Stream Update Library
	21.1. Introduction
	21.2. SendUserFlashToStreamAsBinary
	21.3. SendUserFlashToStreamAsS19
	21.4. ReadS19UserFlashFromStream
	21.5. ReadBinaryUserFlashFromStream
	21.6. ReadS19ApplicationCodeFromStream

	22. System Library
	22.1. Constants
	22.2. ConfigRecord
	22.3. gConfigRec
	22.4. Secs
	22.5. TimeTick
	22.6. Code Updates with AutoUpdate Utility
	22.6.1. EnableAutoUpdate
	22.6.2. AutoUpdate Shutdown Hook
	22.6.3. AutoUpdate Password Protection

	22.7. UpdateConfigRecord
	22.8. UpdateConfigRecord_Num
	22.9. RawGetConfig
	22.10. SetupDialog
	22.11. SaveUserParameters
	22.12. GetUserParameters
	22.13. putleds
	22.14. getdipsw
	22.15. ShowData
	22.16. ShowMac
	22.17. outbyte
	22.18. print
	22.19. putnum
	22.20. AsciiToIp
	22.21. ShowIP
	22.22. itoa
	22.23. ShowCounters
	22.24. GetPreciseTime
	22.25. ForceReboot
	22.25.1. Example

	22.26. EtherLink
	22.27. EtherSpeed100
	22.28. EtherDuplex
	22.29. ManualEthernetConfig
	22.30. EtherLinkCallback

	23. High Resolution Timer
	23.1. Itroduction
	23.2. getHiResTimer
	23.3. Init
	23.4. setInterruptFunction
	23.5. clearInterruptFunction
	23.6. start
	23.7. stop
	23.8. stopClear
	23.9. readTimer
	23.10. readLow
	23.11. readHigh
	23.12. delay
	23.13. pollingDelay
	23.14. getPrescaler
	23.15. clockGenerator
	23.16. toString

	24. TCP/IP Library
	24.1. Introduction
	24.2. InitializeStack
	24.3. AddInterface (Multihome)
	24.4. listen
	24.5. accept
	24.6. connect
	24.7. connectvia
	24.8. setsockoption
	24.9. clrsockoption
	24.10. getsockoption
	24.11. GetSocketRemoteAddr
	24.12. GetSocketLocalAddr
	24.13. GetSocketRemotePort
	24.14. GetSocketLocalPort
	24.15. GetHostByName
	24.16. Ping
	24.17. PingViaInterface
	24.18. SendPing
	24.19. GetTFTP
	24.20. SendTFTP
	24.21. ShowArp
	24.22. DumpTcpDebug
	24.23. EnableTcpDebug
	24.24. ShowIPBuffer
	24.25. GetFreeCount
	24.26. ShowBuffer
	24.27. TcpGetLastRxTime
	24.28. TcpSendKeepAlive
	24.29. HTONS
	24.30. HTONL
	24.31. NTOHS
	24.32. NTOHL

	25. UDP Library
	25.1. UPD C++ Class API
	25.1.1. UDP Class Example
	25.1.2. UDPPacket
	25.1.3. UDPPacket (FIFO)
	25.1.4. UDPPacket (Pool Buffer)
	25.1.5. ~UDPPacket
	25.1.6. Validate
	25.1.7. SetSourcePort
	25.1.8. GetSourcePort
	25.1.9. SetDestinationPort
	25.1.10. GetDestinationPort
	25.1.11. GetDataBuffer
	25.1.12. SetDataSize
	25.1.13. GetDataSize
	25.1.14. ResetData
	25.1.15. AddData
	25.1.16. AddData (Add a Zero Terminated String)
	25.1.17. AddDataWord
	25.1.18. AddDataByte
	25.1.19. ReleaseBuffer
	25.1.20. GetPoolPtr
	25.1.21. SendAndKeep
	25.1.22. SendAndKeepVia
	25.1.23. Send
	25.1.24. SendVia
	25.1.25. RegisterUDPFifo
	25.1.26. UnregisterUDPFifo

	25.2. UDP Socket Interface
	25.2.1. UDP Sockets Example
	25.2.2. CreateRxUdpSocket
	25.2.3. CreateTxUdpSocket
	25.2.4. CreateRxTxUdpSocket
	25.2.5. sendto
	25.2.6. sendtovia
	25.2.7. receivefrom

	26. PPP Library
	26.1. PPP Structure and Definitions
	26.2. PPP Functions
	26.3. PPP Options Structure
	26.4. StartPPPDameon
	26.5. StartPPPDirect
	26.6. DialPPP
	26.7. DirectConnectPPP
	26.8. GetPPPState
	26.9. StopPPPDameon
	26.10. ClosePPPSesion
	26.11. GetThatPPP_IP
	26.12. GetThisPPP_IP
	26.13. SendCHAPChallenge

	27. IPSetup Password Protection

