

NetBurner PC Tools Reference Guide

Disclaimers and Copyrights

NetBurner, Inc. makes no representations or warranties with respect to the contents of our
manuals and specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Further, NetBurner, Inc. reserves the right to revise our manuals, make
changes, and/or discontinue them without notice. Every effort has been made to ensure that all
information is correct, but NetBurner, Inc. is not responsible for inadvertent errors.

NetBurner manuals contain links to third-party web sites that are not under the control of
NetBurner, and NetBurner is not responsible for the content on any linked site. If you access any
third-party sites listed in any of our manuals, then you do so at your own risk. NetBurner
provides these links only as a convenience, and the inclusion of the link does not imply that
NetBurner endorses or accepts any responsibility for the content on those third-party sites.

Under copyright laws, the documentation for the all NetBurner Manuals, PDFs, and Guides may
not be copied, photocopied, reproduced, translated or reduced to any electronic medium or
machine-readable form, in whole or in part, without prior written consent of NetBurner, Inc.
NetBurner and the NetBurner logo are trademarks of NetBurner, Inc.

Life Support Disclaimer

NetBurner’s products both hardware and software (including tools) are not authorized for use as
critical components in life support devices or systems, without the express written approval of
NetBurner, Inc. prior to use.

As used herein: (1) Life support devices or systems are devices or systems that (a) are intended
for surgical implant into the body or (b) support or sustain life, and whose failure to perform,
when properly used in accordance with instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury to the user. (2) A critical component is any
component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.

Table of Contents

1. Introduction... 4

1.1. File Locations.. 4
1.2. Distribution Rights.. 4

2. MTTTY Serial Terminal... 5
2.1. MTTTY FAQ.. 6
2.2. MTTTY Parameters .. 6
2.3. Enabling Software Flow Control .. 7

3. IPSetup Network Configuration Tool... 8
3.1. Using IPSetup ... 9
3.2. IPSetup Does Not Display Your NetBurner Device... 9
3.3. IPSetup FAQ... 9

4. Updating Your NetBurner Device Application .. 10
4.1. AutoUpdate ... 11

4.1.1. Running in Auto Mode without User Intervention ... 11
4.1.2. AutoUpdate Cannot Locate Your NetBurner Device ... 12
4.1.3. Using AutoUpdate .. 12
4.1.4. AutoUpdate FAQ.. 12

4.2. TcpUpdate... 13
4.2.1. TcpUpdate Cannot Reprogram Your NetBurner Device...................................... 13
4.2.2. Using TcpUpdate .. 14
4.2.3. TcpUpdate FAQ.. 14

5. TaskScan ... 15
5.1. TaskScan FAQ.. 15
5.2. Using TaskScan .. 16

6. WinAddr2Line .. 19
6.1. Using WinAddr2Line.. 19

7. SmartTraps.. 21
7.1. Example Program: .. 22
7.2. Running the SmartTraps Example .. 24

8. Advanced Utilities .. 26
8.1. CompCode .. 26
8.2. CompHtml... 27
8.3. GDB .. 28

8.3.1. Overview... 28
8.3.2. GDB Setup .. 29
8.3.3. Build a Debug Application Image in NBEclipse.. 29
8.3.4. Download the Debug Application Using AutoUpdate ... 29
8.3.5. Starting a Network GDB Session ... 30
8.3.6. GDB Commands... 31
8.3.7. GDB Using a Serial Port... 32

9. Revision History ... 33

1. Introduction

Thank you for purchasing your NetBurner Development Kit, and welcome to the NetBurner
family. This reference guide describes the PC Applications and Tools that may be used with your
NetBurner Network Development Kit. For questions regarding any of these applications, please
register your development kit at http://support.netburner.com.

1.1. File Locations

Executable Versions: The NetBurner Network Development Kit includes the binary executable
versions of each utility, located in c:\nburn\pcbin.

Source Code: The source code for each utility is located in c:\nburn\pctools.

1.2. Distribution Rights

You may distribute the existing executables, modify the source code, or include the source code
in your own custom application, provided the utilities are only run on hardware manufactured by
NetBurner.

http://support.netburner.com/

2. MTTTY Serial Terminal

Multi-Threaded TTY (MTTTY) is a serial terminal utility that you can use to communicate with
the RS-232 serial ports on your NetBurner device or development kit. It is multi-threaded in that
you can run multiple instances of MTTTY for each serial port.

MTTTY is commonly used for:

 Displaying status messages sent from the NetBurner device, such as when using iprintf().
 Reprogramming a new application image through the boot monitor.
 As a serial interface to any application.

MTTTY can be started from:

 Inside NBEclipse by clicking on the MTTTY icon.
 From the Windows NetBurner program group.
 From a command line. The path is: c:\nburn\pcbin\mttty.exe.

2.1. MTTTY FAQ

 The default serial port used for stdio for NetBurner devices is UART0 by default.
 The DB9 connector pinout on NetBurner development boards will have the

RS-232 rx and tx signals reversed, so that a null-modem adapter is not required and you
can use a straight-through serial cable.

 The DB9 connector pinout on NetBurner Serial-To-Ethernet devices, such as the
SB72EX and SB700EX, will be identical to a standard PC type pinout, so a null-modem
adapter will be required. The serial cable that comes with the NetBurner development kits
for these specific devices is a null-modem cable.

 If you are using a MOD5213 or SBL2e, you must enable software flow control.
 The boot monitor will display a sign-on message on reset or power-up, and provide an

opportunity to abort the normal boot sequence and enter the boot monitor program. This
is useful for downloading a new application if your custom application running on the
NetBurner device is crashing and network connectivity is not possible.

 The Quiet Boot option (item Q) will disable the boot message that is normally printed out
when the system is booting. However, it is still possible to press an A (uppercase A) to
access the nb> prompt during boot.

 On all platforms with SDRAM, MTTTY can be used to download your application into
your NetBurner device's SDRAM (using the DL command) or FLASH Memory (using
the FLA command) via the serial connection from your host computer to your NetBurner
device.

 While in the boot monitor, network communication is not possible, so utilities like
IPSetup will not locate your NetBurner device.

 MTTTY Error 5: CreateFile. Access is denied. This error means the currently selected
serial communication port (i.e. COM1) is in use by another program or device.

2.2. MTTTY Parameters

Port: The PC’s serial port you wish to use.

Baud Rate: The host computer and the attached serial (NetBurner) device must agree on a speed
or baud rate to use for the serial connection (the recommended setting for both is 115200).

Parity: Checks whether data has been lost or written over when transmitted between your host
PC and your NetBurner device (default = None)

Data Bits: The number of bits in a transmitted data package (default = 8)

Stop Bits: The stop bit follows the data and parity bits in serial communication. It indicates the
end of transmission (default = 1).

Connect: Pressing the Connect button will acquire the PC serial port for the MTTTY application.
No data can be sent or received unless the connection button has been selected.

2.3. Enabling Software Flow Control

Software flow control is required for downloading an application image to any device without
SDRAM, such as the Mod5213 or SBL2e.

3. IPSetup Network Configuration Tool

IPSetup is used to configure network settings on your NetBurner device such as IP Address,
Mask, Gateway, DNS Server, boot delay, serial boot monitor port, and serial boot monitor baud
rate. If enabled in your device, IPSetup uses a UDP broadcast on port 20034 to identify
NetBurner network devices. UDP broadcasts are not forwarded by routers, so IPSetup can only
be used on a local area network or direct connection.

IPSetup is commonly used for:

 Determining the DHCP assigned IP address of a NetBurner device.
 Configuring the network settings of a NetBurner device.

IPSetup can be started from:

 Inside NBEclipse by clicking on the IPSetup icon.
 From the Windows NetBurner program group.
 From a command line. The path is: c:\nburn\pcbin\ipsetup.exe.

3.1. Using IPSetup

To configure a device with IPSetup:
 The device must be on the same local area network or be a direct connection to your PC.
 Your PC’s firewall must allow network traffic on port number 20034. If you do not see

your NetBurner device, the first thing to try is temporarily disabling your firewall to see
if that is the cause.

 Click on a device in the “Select a Unit” window.
 Enter your configuration settings in the “NDK Settings” group. In all NetBurner example

programs an IP address of 0.0.0.0 instructs the NetBurner device to use DHCP.
 Once you have specified all your configuration settings, click on the “Set” button to

transmit them to the NetBurner device.
 The DHCP assigned address, or static IP address, will appear in the description next to

each NetBurner device in the Select a Unit window.

3.2. IPSetup Does Not Display Your NetBurner Device

If IPSetup does not display your device it is for one of the following reasons:
1. A firewall on your PC is blocking network port number 20034. Try temporarily disabling

your firewall to see if this is the cause.
2. The application in your device is not running. This can happen during development if you

download an application that is crashing. Network communication is only possible if you
have a running application. To recover from this situation use MTTTY and download a
working application through the serial port using the “FLA” command.

3. You are trying to talk to a device on the other side of a router. The PC and NetBurner
device must be on the same LAN.

3.3. IPSetup FAQ

 In all NetBurner example applications an IP address of 0.0.0.0 will invoke DHCP.
 The application name in the Select a Unit window is specified by the assignment of :

const char *AppName variable. For example,
const char *AppName = "MOD5270 Factory Demo";

 We recommend you do not set the boot delay to 0 seconds, otherwise you may not be
able to enter the boot monitor program if you download a bad application that is crashing.
We recommend a boot delay no less than 2 seconds.

 By default, your NetBurner device boots to the application. If you uncheck Boot to
application, your program will boot to the monitor.

 If you select Boot Quietly, the boot message prompt that is normally displayed when the
system is reset will be disabled. However, you can still type an ‘A’ to abort the
application boot and enter the boot monitor.

 The default boot monitor port is UART0.

4. Updating Your NetBurner Device Application

There are four methods you can use to update the application running on your NetBurner device.
Only two of these methods involve PC utilities, but we will cover all four methods for
completeness.

1. Serial Port using the Boot Monitor. This method is used if you have downloaded a
bad application to your device that is crashing and preventing network
communications.

2. The AutoUpdate Utility. Used when the Windows PC and your NetBurner device are
located on the same local area network (LAN). AutoUpdate uses the UDP protocol
This is also the method invoked by the NBEclipse development tools.

3. The TCP Update Utility. Similar to AutoUpdate, but uses TCP instead of UDP. This
method is useful when the Windows PC and NetBurner device are not located on the
same LAN, but instead are connected through the Internet, firewalls or NAT routers.
Note that if the NetBurner device is behind a firewall or NAT router, port forwarding
must be configured correctly in those devices/software to allow the incoming TCP
connection from the Windows PC to the NetBurner device.

4. FTP Update. This is not a Windows PC utility, but is included as an alternative to
TcpUpdate. FTP uses TCP as well, but the originating connection originates from the
NetBurner device. If your FTP server is on the Internet, no firewall or NAT router
port forwarding should be necessary. There is an example of this method in your
c:\nburn\examples\FTP directory.

The Windows PC utilities are described in the following sections.

4.1. AutoUpdate

AutoUpdate is used to download a new application image to your NetBurner device flash
memory over a network connection using UDP. In order for AutoUpdate to work the PC and
NetBurner device must be on the same local area network, and the NetBurner device must have a
valid IP address and mask so that it can communicate with the PC.

AutoUpdate is commonly used for:

 Updating the application over a LAN network.

AutoUpdate can be started from:

 Inside NBEclipse by clicking on the AutoUpdate icon.
 From the Windows NetBurner program group.
 From a command line. The path is: c:\nburn\pcbin\AutoUpdate.exe.

4.1.1. Running in Auto Mode without User Intervention

When run with command line options you can specify a number of options, including the –A
option to run in “automatic” mode in which it will not ask for user input. This is useful for batch
programming of devices in a production environment.

Command line options:

AutoUpdate -I<ipaddr> -F<filename> -R -A

 Example: AutoUpdate –I10.1.1.2 –FMyProgram_App.s19 –R –A

This example will program the device at 10.1.1.2 with the MyProgram_APP.s19 image,
Reboot the device when done, and run in Auto mode in which it does not display the
dialog box and ask for user input.

Parameters

-I<ipaddr> IP address of device to update.
-F<filename> The _APP.s19 file containing the application image to use.
-R Tells the device to reboot after programming.
-A Execute without displaying dialog box or user intervention.

4.1.2. AutoUpdate Cannot Locate Your NetBurner Device

If AutoUpdate does not display your device it is for one of the following reasons:
1. A firewall on your PC is blocking network port number 20034. Try temporarily disabling

your firewall to see if this is the cause.
2. The application in your device is not running. This can happen during development if you

download an application that is crashing. Network communication is only possible if you
have a running application. To recover from this situation use MTTTY and download a
working application through the serial port using the “FLA” command.

3. You are trying to talk to a device on the other side of a router. The PC and NetBurner
device must be on the same LAN.

4.1.3. Using AutoUpdate

1. Start AutoUpdate.
2. Click on the “Find” button and select your NetBurner device.
3. Click on the “Browse” button and select the application image, which must end in

“_APP.s19”.
4. Verify the “Reboot when complete” checkbox is checked.
5. Click on the “Update” button to execute the update.

4.1.4. AutoUpdate FAQ

 For AutoUpdate to function your application must include #include <AutoUpdate.h>, and
must call the function EnableAutoUpdate().

 AutoUpdate uses the UDP protocol on port 20034.
 Before reprogramming flash memory, AutoUpdate will malloc a block of SDRAM large

enough to hold the new application image. If there is not enough free SDRAM the update
will be aborted and AutoUpdate will display an insufficient memory error message.

 AutoUpdate is invoked by NBEclipse for its normal update procedure.

4.2. TcpUpdate

TcpUpdate is a utility similar to AutoUpdate, but uses TCP instead of UDP to download a new
application image to your NetBurner device. The most common reason to use TcpUpdate is if
you need to update a NetBurner device behind a firewall or NAT router.

TcpUpdate is commonly used for:

 Updating the application over the Internet, or when your NetBurner device is behind a
firewall or NAT router. Requires access to port 20034.

TcpUpdate can be started from:

 From the Windows NetBurner program group.
 From a command line. The path is: c:\nburn\pcbin\TcpUpdate.exe.

4.2.1. TcpUpdate Cannot Reprogram Your NetBurner Device

If TcpUpdate cannot reprogram or connect to your device:
 A firewall on your PC may blocking network port number 20034. Try temporarily disabling

your firewall to see if this is the cause.
 The NetBurner device is behind a firewall or NAT router and is blocking network port

number 20034. You may need to add a rule to the firewall, port forwarding to the NAT
router, or both.

 The application in your device is not running. This can happen during development if you
download an application that is crashing. Network communication is only possible if you
have a running application. To recover from this situation use MTTTY and download a
working application through the serial port using the “FLA” command.

4.2.2. Using TcpUpdate

1. Start TcpUpdate.
2. Enter the IP address of your NetBurner device. Note that the “Find” feature will only

work for devices on the same LAN.
3. Click on the “Browse” button and select the application image, which must end in

“_APP.s19”.
4. Verify the “Reboot when complete” checkbox is checked.
5. Click on the “Update” button to execute the update.

4.2.3. TcpUpdate FAQ

 For TcpUpdate to function your application must include #include <AutoUpdate.h>, and
must call the function: StartTcpUpdate(int priority). The priority should be the highest
priority user task you create, but not a higher priority than any system task because it
needs those tasks to run in order to perform the update.

 You can enable both AutoUpdate and TcpUpdate at the same time.
 Before reprogramming flash memory, TcpUpdate will malloc a block of SDRAM large

enough to hold the new application image. If there is not enough free SDRAM the update
will be aborted.

5. TaskScan

TaskScan is an optional network-debugging tool that can be used during software development
to view the RTOS tasks and status of your running NetBurner application. This tool is unique in
that it is active in the release build of your code, rather than the debug build which is compiled
without optimization. It is very useful to determine such things as why a specific task is not
running the way you had anticipated, if it is waiting on other tasks, and its call stack. TaskScan
is only active when the PC program generates a request, so it will not impact your release code
execution speed otherwise.

To use TaskScan in your application you must include taskmon.h and call the
EnableTaskMonitor() function. TaskScan is enabled in most NetBurner example
applications.

TaskScan requires that you have the Executable and Linking Format (ELF) file for the
specific application that is running on your NetBurner device. The .elf file is created by the
compiler each time you build your application. It contains information TaskScan needs to link
the application executable to the source code and task information.

TaskScan is commonly used for:

 Determining which tasks are running, their state and call stack.
 Looking for blocked tasks.

TaskScan can be started from:

 From the Windows NetBurner program group.
 From a command line. The path is: c:\nburn\pcbin\taskscan.exe.

5.1. TaskScan FAQ

 You must have a valid IP address and mask that can communicate with your PC that is
running TaskScan.

 TaskScan essentially takes a snapshot picture of what your application is doing at the
time your press the “Scan” button. It does not otherwise impact the application.

 You must have the exact .elf file used to create the application that is running on your
NetBurner device.

5.2. Using TaskScan

1. Start TaskScan
2. Click on the “Find” button and select your NetBurner device.

3. Click on the “Browse” button, select the appropriate .elf file, and click the “Open”
button.

4. At this point both the Project .elf file and the IP Address text boxes will be populated
with your information. Now you can click the “Scan” button to request the task data
from the NetBurner device.

In this screen shot you can see the tasks and their status, such as running, ready to run or waiting
to run. Clicking on the “+” sign tree control next to each task will display the call stack and C
source code line number.

Icon Description

 Green OK Task is ready to run

 Green Running Man Task is currently running

 Red Hour Glass Task is waiting for the specified number of time ticks

 Red Hand Task is waiting/blocked without a timeout parameter

6. WinAddr2Line

Utility to determine the source code location for a specified memory address and .elf file of a
given application. This application is typically used in conjunction with the SmartTraps utility
when debugging an application that is crashing. If the cause of a crash is severe memory
corruption due to bad pointers it is possible for the Faulted Program Counter to be pointing to an
address in which not code exists. In this case WinAddr2Line will not be able to provide a source
code reference because no source code exists at that location.

WinAddr2Line is commonly used for:

 Determining the source code address using a faulted program counter memory address
from SmartTraps.

WinAddr2Line can be started from:

 NBEclipse main tool bar
 The Windows NetBurner program group.
 The command line. The path is: c:\nburn\pcbin\winaddr2line.exe.

6.1. Using WinAddr2Line

1. Use the “Browse” button to select the .elf file for your application and type in the

hexadecimal memory address, usually obtained by SmartTraps as the Faulted PC.

2. Click on the “Decode” button.

The function and line number will be displayed as in the screen shots below. In this example the
memory address corresponds to a function called “func2()” that takes an integer as a parameter.
The source code line number is 45 and is located in the file main.cpp .

7. SmartTraps

During software development it is possible for a software developer to download an application
with a coding error severe enough to cause an application to crash. Common causes of a system
crash are: task stack overflow, indexing an array out of bounds and bad pointer assignments.
When a system crash occurs a device will usually recover by a reboot of the system. The purpose
of the SmartTrap utility is to provide more information about the system when the crash occurred
to assist with debugging the problem. If SmartTraps is enabled and an application crash occurs,
the

To enable the SmartTrap feature your application must include smarttrap.h and call the
EnableSmartTraps() function.

SmartTraps is commonly used for:

 Debugging an application crash

SmartTraps can be started from:

 SmartTraps is used in conjunction with the MTTTY serial terminal program. The
SmartTraps information will be displayed on the debug serial port, which is UART0 by
default.

Warning: The SmartTrap utility cannot be run at the same time as the network debugger. A
simple way to automatically handle this situation is to use the _DEBUG definition used by the
compiler as shown below.

In the #include section of the application:

// Disable SmartTraps when in debug mode
#ifdef _DEBUG
 #include <NetworkDebug.h>
#else
 #include <smarttrap.h>
#endif

In UserMain():

#ifndef _DEBUG
 EnableSmartTraps();
#endif

7.1. Example Program:

/*---
 * Example program to demonstrate the SmartTraps utility. The code
 * will call 4 different functions in order to illustrate the
 * display of the call stack for each task. The functions are
 * declared as "volatile" because in this simple example the
 * compiler optimization would optimize out functions 1, 2, and 3.
 --/
#include "predef.h"
#include <constants.h>
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <smarttrap.h> /* You must include <smarttrap.h> */

const char * AppName = "SmartTrap Example";

extern " C" {
 void UserMain(void * pd);
}

/* The function that causes the crash. The invalid pointer access
 * will occur at the first line, int rv=...., but winaddr2line will
 * likely report the error as one or two lines later due to
 * caching in the processor. */
volatile int func4(int i)
{
 int rv = *(int *) i; // Read from the address of 'i', 0 in this case
 return rv;
}

volatile int func3(int i) // func3 calls func4
{
 iprintf("Executing func3\r\n");
 int rv = func4(i);
 return rv;
}

volatile int func2(int i) // func2 calls func3
{
 iprintf("Executing func2\r\n");
 int = func3(i); rv
 return rv;
}

volatile int func1(int i) // func1 calls func2
{
 iprintf("Executing func1\r\n");
 int rv = func2(i);
 return rv;
}

void UserMain(void * pd)
{
 InitializeStack();

 if (EthernetIP == 0)
 GetDHCPAddress();

 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();
 EnableSmartTraps();

 iprintf("Hit any key to crash\r\n");
 getchar();

 while (1)
 {
 iprintf("Before crash\r\n");
 int i = 0;
 int q = func1(i);
 iprintf("func1 = %d\r\n", q);
 OSTimeDly(TICKS_PER_SECOND);
 }
}

7.2. Running the SmartTraps Example

The example in the previous section was compiled and downloaded into a NetBurner device, and
MTTTY is connected to UART0. The MTTTY screen shot below was generated once a key was
pressed and the trap occurred.

The SmartTraps information has four sections. It is beyond the scope of this document to go into
detail on each of the processor registers; please see the Freescale Users Manual for your
particular processor for more information. They are located in the \nburn\docs directory of your
development tools installation.

Trap Information
This section displays the processor status and error registers. The most significant is the “Faulted
PC”, with is the Program Counter register indicating the area where the fault occurred. In this
example the program counter value at the time a trap was detected is 0x02000152.

Register Information
This section displays the processor’s Address and Data registers.

RTOS Information
Identifies the RTOS Task Control Block and the current running task. The priority number is in
hexadecimal. Traps caused by stack overflows may corrupt this section of the report.

Task Information
This is a very useful section of the report. It identifies each task, as well as its current state, wait
time, and call stack. If you look at the Main task, you can see 6 entries with 0x02000152 (the
faulted pc) at the left, and 0 at the right. The value of 0 is the start of the call stack. Each
hexadecimal address between those two numbers represents each function that was called.

Each address can be related to the corresponding line number in the source code by using the
WinAddr2Line utility. By selecting the .elf file location and each address in the call stack you
can determine the calling sequence starting from 0 on the right and moving to the left:

 iprintf("func1 = %d\r\n", q)
 func1()
 func2()
 func3()
 func4()

 The last line signifies the end of the SmartTrap output. Since the boot monitor is configured to
“boot to application”, the device reboots after the trap occurs.

8. Advanced Utilities

8.1. CompCode

CompCode is only used on NetBurner devices with external Flash memory. It is usually
automatically invoked by either NBEclipse or command line makefiles during the application
build process, and is not a utility you should need to call individually.

The utility takes an uncompressed S-Record file as an input, creates a compressed binary image,
adds NetBurner-specific device information, then outputs the binary image in S-Record format.
The resultant S-Record is the application image programmed into your NetBurner device.

This utility can only be run from a command prompt, and is located in the c:\nburn\pcbin
directory.

Synopsis:

CompCode <infile> <outfile> <offset>

Parameters :

infile: Uncompressed S-Record input file.
outfile: Name to use for the S-Record output file.
offset: Optional parameter for offset memory address for the output image.

The default is 0xFF00000.

Examples:

compcode myapp.s19 myapp_APP.s19 0xff00000

compcode -h for command line help.

8.2. CompHtml

The CompHtml utility is used during the application build to process the web server files located
in a project’s html directory. It is usually automatically invoked by either NBEclipse or
command line makefiles during the application build process, and is not a utility you should need
to call individually.

Primary functions of CompHtml:

 Encode the entire \html directory structure into a *.cpp file.
 Add function tables and encoding for dynamic HTML.
 Determines the encoding type for each stored file.

This utility can only be run from a command prompt, and is located in the c:\nburn\pcbin
directory. All names are case sensitive.

Synopsis

comphtml <directory> <options>

Parameters

directory The path to the HTML directory to encode.
-o<outputfilename> Output file name (default = htmldata.cpp)
-d<defaultpage> Default HTML page for the NetBurner web server to send when

no page is specified in the URL (default = INDEX.HTM).

Examples:

 Process html files and data in c:\myproject\html, create an output file named myhtml.cpp,
 and make the default page name index.html.

comphtml c:\myproject\html –omyhtml.cpp –dindex.html

For command line help

comphtml –h

8.3. GDB

The GNU Project Debugger (GDB) is an open source command-line debugger. The NetBurner
network devices are compatible with GDB and the executable file m68k-elf-gdb.exe is located in
the c:\nburn\gcc-m68k\bin directory.

GDB is for advanced users as it is a command line utility and not compatible with the NBEclipse
IDE. Please refer to the NBEclipse Getting Started Guide for information on debugging with
NBEclipse. The information included in this document will cover how to connect with your
NetBurner device and some simple examples. Descriptions of all the GDB commands are
beyond the scope of this document. For more information please refer to the GDB project pages
at sites such as: http://www.gnu.org/software/gdb/.

GDB is commonly used for:

 Advanced debugging techniques by those familiar with command line programs.

GDB can be started from:

 A command prompt by typing “m68k-elf-gdb”. The location of this file is: c:\nburn\gcc-
m68k\bin.

8.3.1. Overview

The NetBurner GDB implementation uses a small piece of debugging software, referred to as a
debugging stub, to connect a running NetBurner application to the GDB program running on the
PC. A network connection is used to send commands from GDB to the NetBurner device. The
various GDB commands enable you to start, stop, and set breakpoints. While the NetBurner
application execution is paused you can examine all of the local and global variables.

The GDB stub running on the NetBurner device uses a level 7 non-maskable interrupt to
communicate with the GDB program running on the PC and to execute GDB commands. This
enables debugging of the application code and interrupt routines other than the non-maskable
level 7. If you are using IRQ7 in your application you will need to modify your application to
use a different interrupt for debugging purposes.

Ethernet
NetBurner

Running
Application
With GDB

Stub

PC
Running

GDB
Application

To enable the GDB Stub in the NetBurner device the application must call one of the two
InitializeNetwork functions, the same ones as are used by the NBEclipse debugger:

 #ifdef _DEBUG
 InitializeNetworkGDB();
 //InitializeNetworkGDB_and_Wait();
 #endif /* _DEBUG */

8.3.2. GDB Setup

A summary of the GDB connection process is below :
 Add one of the InitializeNetwork function calls to your application, such as:

InitializenetworkGDB_and_Wait();

 Build the application in debug mode using NBEclipse or command line mode. If using
NBEclipse be sure not to attempt to update the NetBurner device or it will invoke the
NBEclipse debugger. Note the location of the project’s .elf and DBxxxx_APP.s19 files.

 Download the DBxxxx_APP.s19 debug application image to the NetBurner device
using the AutoUpdate utility.

 Start the GDB Program. Open a command prompt on the PC and connect to the
NetBurner device by running m68k-elf-gdb.exe and sending the appropriate commands.

8.3.3. Build a Debug Application Image in NBEclipse

 Open the project in NBEclipse.
 Change to the Debug build configuration by right-clicking on your project and selecting:

Build Configurations -> Set Active -> Debug.
 Rebuild your project. You will now have both “Release” and “Debug” directories under

your project folder.

8.3.4. Download the Debug Application Using AutoUpdate

The Debug build of your application will be in the “Debug” folder under your project directory
and will be named in the format: “DBxxxx_APP.s19”, where the “xxxx” is your project name
(e.g. DBMyProject_APP.s19).

Although you will be editing and compiling your application in NBEclipse, the download of the
application to the NetBurner device must be done with the AutoUpdate utility. Downloading the
image from within NBEclipse will automatically start the NBEclipse debugger.

You can start AutoUpdate from NBEclipse, but it is easier for repetitive downloads to invoke it
from the command line with the appropriate command line parameters. For example:
“autoupdate -I10.1.1.202 –FDBMyproject_APP.s19 –R –A”

8.3.5. Starting a Network GDB Session

To start a GDB session:
 Open a command prompt
 Change to the project’s debug directory. For example,

C:\nburn\NBEclipse\workspace\Mod5282FactoryDemo\Debug.
 Start GDB by typing: “m68k-elf-gdb”.
 Load the application’s symbol table into GDB with the command: “sym”. For example:

“sym MyProject.elf”.
 Make a network connection from GDB to the NetBurner device on port 2159 with the

“target remote” command. For example, if you device was at IP Address 10.1.1.202:
“target remote 10.1.1.202:2159”.

A screen shot using the Application Wizard project is shown below. Once the session started
GDB stopped execution in the Idle task at line 271. Since the App Wizard project doesn’t do
much, it spends most of its time in the Idle task.

8.3.6. GDB Commands

The NetBurner GDB stub supports the following common commands, please refer to the GDB
open source documentation for additional commands. Commands can only be executed if the
NetBurner device is stopped at a breakpoint.

Command Description
info break List breakpoints
info registers Display processor registers in use
info threads List RTOS threads in use
list <function> Display source code and line number of a function

Break and Watch
break <line number> Set a break point. Use the “list <function>” command to determine

the break point line number of the function
break <function name> Break on specified function
break <filename:function> Set breakpoint
break <filename:line number> Set breakpoint
break line-number if condition Break if “condition”, a Boolean expression, is true. For example,

break if x > 10.
break <address> Break at specified address
tbreak Create a temporary breakpoint that breaks only one time

clear Clear all breakpoints
delete Delete all breakpoints
delete <breakpoint number> Delete specified breakpoint
disable <breakpoint or range> Disable, but not delete, one ore more breakpoints. For example,

“delete 1”, delete 2-5”.

Execution
continue or ‘c’ Continue to next breakpoint
until <line number>
until <function>

Continue processing until the specified function or line number is
reached.

finish Continue to end of current function
step or ‘s’ Step to next line of code in “step into” mode, which steps into

functions.
next or ‘n’ Step to next line of code in “step over” mode, which does not enter

functions.
where Displays current line number and function

Stack
backtrace or “bt” Display trace of current function
backtrace full Display all threads and local variables
up <number>
down <number>

Move up or down the specified number of frames

info frame List address, language, address of arguments/local variables and
which registers were saved in frame.

info args Display arguments of current frame
info locals Display local variables of current frame
info catch Display exception handlers of current frame

Source Code Description
list or ‘l’
list <line number>
list <function>
list <file name:function>

List source code. Hit the <enter> key to continue listings.

Examine/Set Variables
print or ‘p’ <variable name>
p <file name:variable name>

Print variable value

p/x <variable name> Print in hex
p/o <variable name> Print in octal
p/t <variable name> Print in binary
p/c <variable name> Print as a character
p/f <variable name> Print as floating point
p/a <variable name> Print as hex address
set <variable name> Set variable to specified value

GDB Execution
quit or ‘q’ Quit GDB
kill or ‘k’ Kill the program being debugged

8.3.7. GDB Using a Serial Port

You can also run GDB using a NetBurner serial port by changing the GDB stub function call in
your applicaton:

In your application code use the functions:

void InitGDBStub(int port, int baudrate);
or

void InitGDBStubNoBreak(int port, int baudrate);

where “port” is the serial port number: 0 or 1.

After starting GDB on the PC, instead of the “target remote” command you would use the
commands below. The baud rate must match the one you specified in InitGDBStub().

set remotebaud <baudrate>
 target remote < PC comm. port>

For example:
 set remotebaud 57600

 target remote /dev/com2

9. Revision History

Revision Date Description
1.0 1/21/2005 Initial release
1.1 5/2/2010 Revised format, improved text descriptions, removed boot monitor

section to separate document.
1.2 5/18/2010 Added GDB Stub section

	1. Introduction
	1.1. File Locations
	1.2. Distribution Rights

	2. MTTTY Serial Terminal
	2.1. MTTTY FAQ
	2.2. MTTTY Parameters
	2.3. Enabling Software Flow Control

	3. IPSetup Network Configuration Tool
	3.1. Using IPSetup
	3.2. IPSetup Does Not Display Your NetBurner Device
	3.3. IPSetup FAQ

	4. Updating Your NetBurner Device Application
	4.1. AutoUpdate
	4.1.1. Running in Auto Mode without User Intervention
	4.1.2. AutoUpdate Cannot Locate Your NetBurner Device
	4.1.3. Using AutoUpdate
	4.1.4. AutoUpdate FAQ

	4.2. TcpUpdate
	4.2.1. TcpUpdate Cannot Reprogram Your NetBurner Device
	4.2.2. Using TcpUpdate
	4.2.3. TcpUpdate FAQ

	5. TaskScan
	5.1. TaskScan FAQ
	5.2. Using TaskScan

	6. WinAddr2Line
	6.1. Using WinAddr2Line

	7. SmartTraps
	7.1. Example Program:
	7.2. Running the SmartTraps Example

	8. Advanced Utilities
	8.1. CompCode
	8.2. CompHtml
	8.3. GDB
	8.3.1. Overview
	8.3.2. GDB Setup
	8.3.3. Build a Debug Application Image in NBEclipse
	8.3.4. Download the Debug Application Using AutoUpdate
	8.3.5. Starting a Network GDB Session
	8.3.6. GDB Commands
	8.3.7. GDB Using a Serial Port

	9. Revision History

