etBurner

2

Mod5270 Programmable Interrupt Timer

Application Note

Revision 2.0
March 10, 2006
Document Status: Second Release

Table of Contents

Introduction

PIT Registers
PIT Control and Status Register (PCSR)
PIT Modulus Register (PMR)
PIT Count Register (PCNTR)

Program Example

Introduction

The Mod5270 has four programmable interrupt timer modules, PITO-PIT3 (PITO is
reserved for the uCOS timer). Each PIT is a 16-bit timer that provides precise interrupts
at regular intervals with minimal processor intervention. The timer can either count
down from the value written in the modulus register, or it can be a free-running down-
counter.

This application note will describe the use of the timers, as well as provide an example
program that uses one of the timers to create interrupts at a regular interval. The example
is useful both for learning how to use interrupts as well as the PIT functions. Additional
information concerning the PITs are available in the MCF5271 Reference Manual,
Chapter 21 (Revision 1.1).

PIT Registers

The PIT modules involve the use of three types of 16-bit registers: the PIT Control and
Status Register (PCSR), PIT Modulus Register (PMR), and the PIT Count Register
(PCNTR). Each PIT module has its own set of registers. The PCSR and PMR registers
have read and write access while the PCNTR register only has read access. The
following subsections describe these registers.

PIT Control and Status Register (PCSR)

The PCSR registers configure the corresponding timer’s operation. You can
enable/disable interrupts and the PITs, set the starting value for down-counting,
determine when to reload a new starting value, and more with this register. Additional
information about the use of this register can be found in section 21.2.1.1 of the reference
manual.

An important note that requires attention is the configuration of the prescalar on bits 11-8
of the PSCR register. Configuring and generating the PIT clock requires knowing the
system clock, PIT modulus value, and prescalar value for the desired timeout period. The
following equation is used to calculate the timeout period for the PIT clock:

PIT Timeout Period [Seconds (s)]
PIT Prescalar

PIT Modulus Value

PIT Frequency [Hertz (Hz)]
System Clock [Hertz (Hz)]

n e ™-A
[| | R

To determine desired timeout period:
T=(Px (M+1)x2) /S

To determine PIT modulus value using desired PIT frequency
M=1[s/ (2xPxF)] -1

For example, lets say that a timeout period of about 0.001 second (1000 Hz) is needed.
The system clock of the Mod5270 is 147.456 Mhz, so we have a value of 147,456,000 Hz
for s. Using a system clock divisor value (prescalar value) of 16 is sufficient for 0.001
second. Knowing what prescalar value is needed depends on the desired timeout period.
The PIT Modulus Register is only 16 bits, so the highest starting value it will count down
from is OxFFFF, or 65,535. If a larger time interval is used, such as 1 second, then a
system clock divisor of 16 is not enough. The divisor would need to be larger, such as
32,768 (a bit configuration value of “1111” for the PCSR register from table 21-3) in
order to keep the value of the modulus register under the maximum value. All that’s left
now is determining the modulus value, which comes out to be about 4607. With the
prescalar bit configuration set to “0100” (from the prescalar table for system clock
divisor of 16 of table 21-3), PIT Modulus Register written with the value 4607, and
PCSR[1:0] written with “11” (reloads the down-counter from PMR once it reaches zero
and enables the PIT), you get a PIT clock cycle 0of 0.001 second.

PIT Modulus Register (PMR)

The 16-bit read/write PMR contains the timer modulus value that is loaded into the PIT
counter when the count reaches 0x0000 and the PCSR[RLD] (reload) bit is set.
Additional information on how to calculate the modulus value can be found in the
previous section on the PIT Control and Status Register.

When the PSCR[OVW] (overwrite) bit is set, PMR is transparent, and the value written
to PMR is immediately loaded into the PIT counter. The prescalar counter is reset
(OxFFFF) anytime a new value is loaded into the PIT counter and also during reset.

Reading the PMR returns the value written in the modulus latch. Reset initializes the
PMR to OxFFFF.

PIT Count Register (PCNTR)

The 16-bit read-only PCNTR contains the counter value. Reading the 16-bit counter with
two 8-bit reads is not guaranteed to be coherent. Writing to PCNTR has no effect, and
write cycles are terminated normally.

Program Example

The general procedure for setting up a PIT typically involves three steps: 1) Define an
interrupt service routine, 2) Configure the PIT, and 3) Start the PIT. The following
example program will configure IRQ2 to interrupt one PIT request event approximately
every 1/1000"™ second (1000 Hz) via the PIT1 module.

/***

* This example program exercises the programmable interrupt timer *
* the MCF5270 CPU. *

***/

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <smarttrap.h>
#include <taskmon.h>
#include <..\MOD5270\system\sim5270.h>
#include <cfinter.h>
#include <utils.h>
#include <pins.h>

//

// Function prototypes - Instruct the C++ compiler not to mangle the
// function names

//

extern "C"

{

void UserMain(void *pd);

//

// This function sets up the 5270 interrupt controller

//

void SetIntc(long func, int vector, int level, int prio);

}

const char *AppName = "MOD5270 PIT Example"; // App name for IPSetup
volatile DWORD pitr count; // Global count variable

LSS S S S SSS S SS
// INTERRUPT - PIT interrupt service routine

//

INTERRUPT (my pitr func, 0x2600)

{

static WORD led count; // For incrementing carrier board LEDs

WORD tmp = sim.pit[1l].pcsr; // Get PIT1 Control & Status Register
// data

//

// Clear PIT1 - Refer to table 21-3 for more information on what
// bits are being cleared and set

/)

}

tmp &= OxFFOF; // Bits 4-7 cleared
tmp |= O0x0F; // Bits 0-3 set
sim.pit[1l] .pcsr = tmp;

//

// You can add you ISR code here

// = Do not call any RTOS function with pend or init in the function
// name

// = Do not call any functions that perform a system I/0 read,

// write, printf, iprintf, etc.

//

putleds(led count++); // Increment carrier board LEDs

pitr count++; // Increment when an interrupt occurs
//

// Toggle MOD5270 pin J2-48 to view the interrupts on an
// oscilloscope. One cycle will be twice the time period. This
// feature uses the NetBurner Pins Class, so you need to include

// pins.h.
//
if (J271481) {
J2[48] = 0;
}
else {
J2[48] = 1;

}

SIS LSS S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSS S
// SetUpPITR - PIT setup function. See chapter 21 of the 5271 reference
// manual for details

/7

void SetUpPITR(int pitr ch, WORD clock interval, BYTE pcsr pre /* See

{

table 21-3 in the reference manual for bits 8-11 */)
WORD tmp;

if ((pitr ch <1) || (pitr . ch > 3))

{
iprintf("*** ERROR - PIT channel out of range ***\r\n");
return;

}
//

// Populate the interrupt vector in the interrupt controller. The
// SetIntc() function is supplied by the NetBurner API to make the
// interrupt control register configuration easier

//

SetIntc((long) &my pitr func, 36 + pitr ch, 2 /* IRQZ2 */, 3);
//

// Configure the PIT for the specified time values

//

sim.pit[pitr ch].pmr = clock interval; // Set PIT modulus value
tmp = pcsr pre;

tmp = (tmp << 8) | 0x0F;

sim.pit[pitr ch].pcsr = tmp; // Set system clock divisor to 16 and

}

// set bits [3:0] in PCSR

SIS S S S S S S S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S S S S S
// UserMain

/)

void UserMain (wvoid *pd)

{

InitializeStack();

if (EthernetIP == 0) GetDHCPAddress();
OSChangePrio (MAIN PRIO) ;
EnableAutoUpdate () ;

EnableSmartTraps ()

EnableTaskMonitor () ;

//
// Let us make PIT happen at 1000 Hz. The base clock is
// 147,456,000 Hz, so the equation 1is:

//

// System Clock Frequency / 2
// PMR Value = ———————— - 1
// Prescalar * Desired Frequency
//

// 147456000 / 2

// PMR Value = ——=———————=—————- - 1

// 16 * 1000

//

// PMR Value = 4607

//

// Note that the PIT Count Register is a 16-bit counter, so the

// clock count maximum is 65,535

//

SetUpPITR(1 /* Use PITI */, 4607 /* Wait 4607 clocks */, 4 /*
Divide by 16 from table 21-3 (274) */);

iprintf("Application started\r\n");
pitr count = 0;

while (1)
{
0STimeDly (TICKS PER SECOND) ;
iprintf("PITR Count = $ld\r\n", pitr count);

