
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NetBurner Security Libraries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE OF CONTENTS 

1. INTRODUCTION..............................................................................................................................................4 

2. NETBURNER LICENSE INFORMATION....................................................................................................5 

2.1. THE NETBURNER TOOLS SOFTWARE LICENSE....................................................................................................5 
2.2. THE NETBURNER EMBEDDED SOFTWARE LICENSE ............................................................................................5 
2.3. LIFE SUPPORT DISCLAIMER ................................................................................................................................6 
2.4. ANTI-PIRACY POLICY .........................................................................................................................................6 

3. AES LIBRARY  (ADVANCED ENCRYPTION STANDARD) ....................................................................7 

3.1. INTRODUCTION ...................................................................................................................................................7 
3.2. FUNCTION CALL SUMMARY................................................................................................................................7 
3.3. EXAMPLES ..........................................................................................................................................................7 
3.4. AES_SET_KEY .....................................................................................................................................................8 
3.5. AES_ENCRYPT .....................................................................................................................................................9 
3.6. AES_DECRYPT ...................................................................................................................................................10 
3.7. AES_CBC_ENCRYPT...........................................................................................................................................11 
3.8. AES_CBC_DECRYPT...........................................................................................................................................12 

4. SSL LIBRARY .................................................................................................................................................13 

4.1. INTRODUCTION .................................................................................................................................................13 
4.2. SSL OVERVIEW ................................................................................................................................................16 
4.3. CREATING A CODE MODULE FOR SSL SERVER CERTIFICATES .........................................................................21 
4.4. CREATING A CODE MODULE - SSL SERVER KEY & CERTIFICATE - DIAGRAM..................................................25 
4.5. CREATING A CODE MODULE FOR SSL CLIENT CERTIFICATES ..........................................................................26 
4.6. STARTHTTPS ...................................................................................................................................................28 
4.7. SSL_ACCEPT ....................................................................................................................................................29 
4.8. ISSSLFD ...........................................................................................................................................................30 
4.9. SSL_GETSOCKETREMOTEADDR......................................................................................................................31 
4.10. SSL_GETSOCKETREMOTEPORT .....................................................................................................................32 
4.11. SSL_GETSOCKETLOCALADDR ......................................................................................................................33 
4.12. SSL_GETSOCKETLOCALPORT .......................................................................................................................34 
4.13. SSL_SETSOCKOPTION.....................................................................................................................................35 
4.14. SSL_CLRSOCKOPTION ....................................................................................................................................36 
4.15. SSL_GETSOCKOPTION ....................................................................................................................................37 
4.16. SSL_CONNECT................................................................................................................................................38 
4.17. SSL_SENDMAIL .............................................................................................................................................39 

5. SSH LIBRARY (SECURE SHELL)...............................................................................................................40 

5.1. FEATURES .........................................................................................................................................................40 
5.2. PERFORMANCE..................................................................................................................................................40 
5.3. SYSTEM LIBRARY REQUIREMENTS ...................................................................................................................41 
5.4. PROTECTION .....................................................................................................................................................42 
5.5. SSH KEYS ........................................................................................................................................................42 

5.5.1. NetBurner Default Keys ...........................................................................................................................42 
5.5.2. Using a Custom Key.................................................................................................................................43 

5.6. CREATING A SSH SERVER ................................................................................................................................43 
5.7. IMPLEMENTING A LOGIN USER NAME AND PASSWORD ....................................................................................43 
5.8. EXAMPLE APPLICATIONS ..................................................................................................................................43 
5.9. RECOMMENDED READING ................................................................................................................................43 
5.10. SSH_ACCEPT ..................................................................................................................................................44 
5.11. SSHSETUSERAUTHENTICATE..........................................................................................................................45 
SSHSETUSERGETKEY .............................................................................................................................................46 
5.12. SSHVALIDATEKEY .........................................................................................................................................48 
5.13. SSHPRINTSTATISTICS .....................................................................................................................................49 
5.14. SSHNEGOTIATESESSION .................................................................................................................................50 

NetBurner Security Library  Page 2 



 

 

 

Revision History 
 

Date Revision Description 
6/2/2010 1.00 Initial release. AES and SSL sections moved from 

NetBurner Runtime Library and are unchanged. Initial 
release of SSH section. 

7/21/2010 1.01 Added more detailed descriptions in SSH section. 
 
 

NetBurner Security Library  Page 3 



1. Introduction  
 
This document is a reference manual for the NetBurner software libraries, and is intended to be 
used in conjunction with the NetBurner Network Programming Guide for network platforms, or 
the Mod5213 Programmers Guide for non-network platforms. These guides provide background, 
details and examples on how the functions in this document can be used in practice. All 
NetBurner documents are located in the documents directory created during installation. The 
default location is c:\nburn\docs.  
 
This reference guide contains all the API function calls, some of which may not apply to your 
specific hardware platform. For example, the CAN functions are available on the Mod5213, but 
TCP/IP functions are not supported because it does not have a network interface. This reference 
manual also contains optional software APIs, such as SSL, that are purchased separately and are 
not part of the standard NetBurner development kit.  
 
Hardware-specific software functions and information are provided in the 
c:\nburn\docs<platform> directory, where <platform> is the hardware platform you are using, 
such as a Mod5282. The platform documents contain schematics, memory maps, and any 
software features that are specific to the hardware platform you are using.  
 
The software included in your NetBurner Development Kit is licensed to run only on processor 
hardware manufactured by NetBurner, such as the modules and serial to Ethernet devices. If your 
application involves manufacturing your own processor based hardware (ie you are not going to 
purchase NetBurner modules for production), please contact NetBurner Sales for details on a 
Royalty-Free Software License. 
 
 
Additional Documentation  
 
All NetBurner License Documentation is located by default in your C:\Nburn\docs directory.  
 

 NBEclipse Getting Started Guide 
 NetBurner Runtime Libraries 
 NetBurner Network Programming Guide 
 Mod5213 Programming Guide 
 NetBurner PC Tools Guide 
 Freescale microprocessor manuals 
 Embedded Flash File System (EFFS) Programmers Guide 
 Embedded Flash File System (EFFS) Reference Manual 
 Platform Documents – The hardware specific documents for your device (eg Mod5282) 

 
 

NetBurner Security Library  Page 4 



2. NetBurner License Information 
 
The software included in your NetBurner Development Kit is licensed to run on hardware 
manufactured by NetBurner. if you wish to design your own processor board please contact 
NetBurner Sales. 
 
All embedded software and source code provided in this Network Development Kit is subject to 
one of four possible licenses: the NetBurner Tools License (most restrictive), the NetBurner 
Embedded Software License, the GNU Public License and the Newlib License (least restrictive). 
The GNU development executables provided in the C:\Nburn\GCC-M68k directory branch are 
subject to the GNU Public License (GPL). 
 
The Runtime Libraries and include files provided in the C:\Nburn\GCC-M68k directory branch 
are subject to the Newlib License. 
 
The Compcode application provided in the C:\Nburn\pctools\compcode directory is subject to 
the GNU public license (GPL). 
 
All other programs are subject to the NetBurner Tools License provided below. 
 
All other provided Source Code and Libraries are subject to the NetBurner Embedded Software 
License provided below. 
 

2.1. The NetBurner Tools Software License 
Copyright 1998 - 2010 NetBurner, Inc., All Rights Reserved. 
 
Permission is hereby granted to purchasers of the NetBurner Network Development Kit to use 
these programs on one computer, and only to support the development of embedded applications 
that will run on NetBurner provided hardware. 
 
No other rights to use this program or its derivatives, in part or in whole, are granted. It may be 
possible to license this or other NetBurner software for use on non NetBurner hardware. 
NetBurner makes no representation or warranties with respect to the performance of this 
computer program, and specifically disclaims any responsibility for any damages, special or 
consequential, connected with the use of this program. 
 

2.2. The NetBurner Embedded Software License 
Copyright 1998 - 2010 NetBurner, Inc., All Rights Reserved. 
 
Permission is hereby granted to purchasers of NetBurner hardware to use or modify this 
computer program for any use as long as the resultant program is only executed on NetBurner 
provided hardware. No other rights to use this program or its derivatives, in part or in whole, are 
granted. It may be possible to license this or other NetBurner software for use on non NetBurner 
hardware. 

NetBurner Security Library  Page 5 



 
NetBurner makes no representation or warranties with respect to the performance of this 
computer program, and specifically disclaims any responsibility for any damages, special or 
consequential, connected with the use of this program. 
 

2.3. Life Support Disclaimer 
 
NetBurner’s products both hardware and software (including tools) are not authorized for use as 
critical components in life support devices or systems, without the express written approval of 
NetBurner, Inc. prior to use. As used herein: 
 
Life support devices or systems are devices or systems that (a) are intended for surgical implant 
into the body or (b) support or sustain life, and whose failure to perform, when properly used in 
accordance with instructions for use provided in the labeling, can be reasonably expected to 
result in a significant injury to the user. 
 
A critical component is any component of a life support device or system whose failure to 
perform can be reasonably expected to cause the failure of the life support device or system, or to 
affect its safety or effectiveness. If you have any questions/concerns, please contact our Sales 
Department for more information. 
 

2.4. Anti-Piracy Policy 
 
NetBurner, Inc. vigorously protects its copyrights, trademarks, patents and other intellectual 
property rights. 
 
In the United States and many other countries, copyright law provides for severe civil and 
criminal penalties for the unauthorized reproduction or distribution of copyrighted material. 
Copyrighted material includes, but is not limited to computer programs and accompanying 
sounds, images and text. 
 
Under U.S. law, infringement may result in civil damages of up to $150,000, and/or criminal 
penalties of up to five years imprisonment, and/or a $250,000 fine. In addition, NetBurner, Inc. 
may seek to recover its attorneys' fees. 
 
 

NetBurner Security Library  Page 6 

mailto:sales@netburner.com


3. AES Library  (Advanced Encryption Standard) 
 

3.1. Introduction 
 
AES is a “block cipher” that has been adopted as an encryption standard, and is one of the most 
popular algorithms used in symmetric key cryptography today. It was invented by two Belgian 
cryptographers, Joan Daemen and Vincent Rijmen, and is also referred to as “Rijndael”. AES is 
the successor to the Data Encryption Standard (DES). 
 
A “block cipher” is a “symmetric key cipher” that operates on a fixed length group of bits. A 
typical block size is 64 or 128 bits.  Multiple blocks are used to process data larger than 128 bits, 
and padding is used to process data less than 128 bits.  
 

3.2. Function Call Summary 
 
Create encryption/decryption keys: 
void aes_set_key( aes_context *ctx, unsigned char *key, int keysize ) 
 
Encrypt a block of data: 
void aes_encrypt( aes_context *ctx, unsigned char input[16], unsigned char output[16] ) 
 
Decrypt a block of data: 
void aes_decrypt( aes_context *ctx, unsigned char input[16], unsigned char output[16] ) 
 
Encrypt a block of data using Cipher Block Chaining (CBC) 
void aes_cbc_encrypt( aes_context *ctx, unsigned char iv[16], unsigned char *input, 
                                      unsigned char *output, int len ) 
 
Decrypt a block of data using Cipher Block Chaining (CBC) 
void aes_cbc_decrypt( aes_context *ctx, unsigned char iv[16], unsigned char *input, 
                                      unsigned char *output, int len ) 
 

3.3. Examples 
 
See the AES example located in c:\nburn\examples. 
 
 

NetBurner Security Library  Page 7 



3.4. aes_set_key 
 
 
Header File: 
 
#include <aes.h>     
 
 
Synopsis:  
 
void aes_set_key( aes_context *ctx, unsigned char *key, int keysize ); 
 
 
Description: 
 
Create a set of encrypt/decrypt keys 
 
 
Parameters: 
 
*ctx  Pointer to a structure that will contain the encryption and decryption keys 
*key  Pointer to the secret key 
keysize Size of key, must be 128, 256 or 512 bits 
 
 
 
 
 
 
 
 
 
 
 

NetBurner Security Library  Page 8 



3.5. aes_encrypt 
 
 
Header File: 
 
#include <aes.h>     
 
 
Synopsis:  
 
void aes_encrypt( aes_context *ctx, 
                  unsigned char input[16], 
                  unsigned char output[16] ) 
 
Description: 
 
Encrypt a 16 byte block of data. 
 
 
Parameters: 
 
*ctx  Pointer to a structure containing the encryption and decryption keys 
input[16] Array of 16 bytes of data to be encrypted 
output[16] Array of 16 bytes to contain the encrypted data 
 
 

NetBurner Security Library  Page 9 



3.6. aes_decrypt 
 
 
Header File: 
 
#include <aes.h>     
 
 
Synopsis:  
 
void aes_decrypt( aes_context *ctx, 
                  unsigned char input[16], 
                  unsigned char output[16] ); 
 
Description: 
 
Decrypt a 16 byte block of data. 
 
 
Parameters: 
 
*ctx  Pointer to a structure containing the encryption and decryption keys 
input[16] Array of 16 bytes of data to be decrypted 
output[16] Array of 16 bytes to contain the decrypted data 
 
 
 
 
 
 

NetBurner Security Library  Page 10 



3.7. aes_cbc_encrypt 
 
 
Header File: 
 
#include <aes.h>     
 
 
Synopsis:  
 
void aes_cbc_encrypt( aes_context *ctx, 
                      unsigned char iv[16], 
                      unsigned char *input, 
                      unsigned char *output, 
                      int len ); 
 
Description: 
 
Encrypt a 16 byte block of data using Cipher Block Chaining (CBC) 
 
 
Parameters: 
 
*ctx  Pointer to a structure containing the encryption and decryption keys 
iv[16]  Initialization vector (modified after use) 
input[16] Pointer to buffer holding the data to encrypt 
output[16] Pointer to buffer to hold the encrypted data 
len  Length of data to be encrypted 
 
 
 
 

NetBurner Security Library  Page 11 



3.8. aes_cbc_decrypt 
 
 
Header File: 
 
#include <aes.h>     
 
 
Synopsis:  
 
void aes_cbc_decrypt( aes_context *ctx, 
                      unsigned char iv[16], 
                      unsigned char *input, 
                      unsigned char *output, 
                      int len ); 
 
Description: 
 
Encrypt a 16 byte block of data using Cipher Block Chaining (CBC) 
 
 
Parameters: 
 
*ctx  Pointer to a structure containing the encryption and decryption keys 
iv[16]  Initialization vector (modified after use) 
input[16] Pointer to buffer holding the encrypted data 
output[16] Pointer to buffer to hold the unencrypted data 
len  Length of data to be decrypted 
 
 
 
 
 
 
 
 
 

NetBurner Security Library  Page 12 



4. SSL Library 

4.1. Introduction 
The NetBurner SSL package is sold as a licensed option only, and is not part of the standard 
development kit package. Please contact our Sales Department to purchase the SSL package. 
 
Implementing SSL in an embedded system will require some knowledge of SSL certificates. 
Please read the following four SSL sections: 

 SSL overview 
 Creating SSL server certificates 
 Diagram: Creating a code module - SSL Server Key and Certificates 
 Creating the list of acceptable client certificates 

 
Before you can use the SSL accept function, you will need to add a Server certificate to your 
project. Before you can use the SSL connect function, you will need to add a list of Client 
certificates to your project.  
 
Important: Before you compile any programs, open predef.h (located in C:\Nburn\include) with 
any text editor, and uncomment “#define NB_SSL_SUPPORTED and “#define 
NB_SSH_SUPPORTED” to get your applications to compile when using the NetBurner SSL 
Module. After editing predef.h (i.e. uncomment the mentioned lines), you must execute the make 
clean command (at the command line) in your C:\Nburn\system directory. 
 

 
 
Warning: If you do not edit predef.h, your applications will not compile (GATHER_RANDOM 
error) 

NetBurner Security Library  Page 13 



Header File 
 
   #include <ssl.h>        // Found in C:\Nburn\include\crypto 

 
SSL Server Functions 

 StartHTTPs --- Starts the secure Web Server 
 SSL_accept --- SSL mirror of the TCP accept function 

 
 
File Descriptor (fd) Information Functions 

 IsSSLfd --- Is the file descriptor an SSL file descriptor or some other kind 
 SSL_GetSocketRemoteAddr --- Returns the remote address of this connected 

socket 
 SSL_GetSocketRemotePort --- Returns the remote port of this connected socket 
 SSL_GetSocketLocalAddr --- Returns the local address of this connected socket 
 SSL_GetSocketLocalPort --- Returns the local port of this connected socket 

 
 
Socket Option Functions 

 SSL_setsockoption --- Set the socket option 
 SSL_clrsockoption --- Clear the socket option 
 SSL_getsockoption --- Get the socket option 

 
 
SSL Client Function 

 SSL_connect --- SSL mirror of the TCP connect call 
 
 
SSL Error Codes 
In addition to the TCP error codes, SSL functions can return the following error codes: 
 
#define SSL_ERROR_FAILED_NEGOTIATION         (-256) 
#define SSL_ERROR_HASH_FAILED                (-257) 
#define SSL_ERROR_CERTIFICATE_UNKNOWN        (-258) 
#define SSL_ERROR_WRITE_FAIL                 (-259) 
#define SSL_ERROR_CERTIFICATE_NAME_FAILED    (-260) 
#define SSL_ERROR_CERTIFICATE_VERIFY_FAILED  (-261) 
 
 

NetBurner Security Library  Page 14 



SSL Email Function 
 SSL_SendMail --- Send an email message using SSL 

 
SSL Email Error Reporting Variables 

 NB_Mail_Error_Code              ---  Returns 0 or error code 
 NB_Mail_Error_String[]     ---  Last error string reported by email functions,  

           displayed on the debug serial port. 
 Server_Mail_Log_String[] --- Last error string received from SMTP server 

 
 
SSL Email Error Codes (located in c:\nburn\include\crypto\ssl_mailto.h) 
#define STATUS_OK                      (0) 
#define CONNECT_TO_SMTP_SERVER_FAILED  (-1) 
#define INITIAL_SERVER_REPLY_FAILED    (-2) 
#define HELO_SERVER_REPLY_FAILED       (-3) 
#define MAIL_FROM_SERVER_REPLY_FAILED  (-4) 
#define RCPT_TO_SERVER_REPLY_FAILED    (-5) 
#define DATA_SERVER_REPLY_FAILED       (-6) 
#define DATA_END_SERVER_REPLY_FAILED   (-7) 
#define AUTH_LOGIN_SERVER_REPLY_FAILED (-8) 
#define USER_ID_SERVER_REPLY_FAILED    (-9) 
#define PASSWORD_SERVER_REPLY_FAILED   (-10) 
#define CONNECT931_SMTP_SERVER_FAILED  (-11) 
 
 

NetBurner Security Library  Page 15 



4.2. SSL Overview 
 
The NetBurner SSL library makes SSL as easy as it can be, but SSL requires a system of trusted 
certificates. The NetBurner SSL package is sold as a licensed option only, and is not part of the 
standard development kit package. Please contact our Sales Department if you want to purchase 
the SSL package. 
 
When you use SSL to connect to http://www.amazon.com (for example) with a normal web 
browser, you will not need to know anything about certificates. This is because Amazon 
purchased a certificate from Verisign and your browser vendor preinstalled Verisign, as an entity 
that can sign trusted certificates. 
 
 

 
 
Above, is a picture of a perfectly normal TCP or SSL connection; the client (most often a 
browser) has connected through the network to a server. If we do not have any entities doing bad 
things on our network then there is no need for SSL. However, if the data we are sending is 
worth stealing, we might have a very different network picture (below). 
 

 
 
If our connection is routed through a third party (a normal TCP connection), we have no 
guarantee that this third party is not a "bad guy" trying to steal or modify our data. The SSL 
protocol was designed to eliminate this man in the middle attack. SSL is designed not only to 
make sure that the data we send over the network is hidden from snooping eyes, but it is also 
designed to make sure we are connected to the proper server without any "bad guys" in the 
middle. This verification is done with Public Key (PK) Cryptography and a hierarchy of trust. 
 
Why do we trust a doctor when we go to the emergency room? We trust the doctor we have 
never met because we trust the hospital to employ qualified doctors. The hospital vouches for his 
skills and we trust the hospital. His medical school also vouches for him by giving him a diploma 
with his name and the schools seal or signature. We trust the school, we trust the hospital, and 
thus we trust the doctor. 
 

NetBurner Security Library  Page 16 



SSL works in a very similar way. When a client connects to the server the server sends the client 
a certificate. This certificate has three major elements: 
 

A name (i.e. who is this server) 
A public key (e.g. think of an open padlock) 
A signature (by a trusted third party that vouches for the name and the public key) 

 
A doctor's diploma is very similar; it also has three major elements: The doctor's name, the type 
of degree and the medical school (that vouches for the doctor). For example, Bob and George 
both graduate from Harvard Medical School. They both have Harvard diplomas. However, the 
diplomas are unique to each doctor. The diplomas are not interchangeable. Bob’s diploma would 
be of no use to George and vice versa. This illustrates the first key point about SSL. 
 
Key Point # 1: Each and every SSL server must have a unique certificate. Note: You cannot 
reuse an SSL server certificate. The certificates are distinguished by the "common name" or 
"CN" on the certificate. 
 
If you went into a new doctor's office and saw a diploma from Harvard medical school, you 
would feel comfortable with the doctor's skills. You trust Harvard and Harvard will vouch for 
this doctor. If instead, the diploma were from the Medical School of Zaire, you would probably 
be more skeptical. We do not have the same inherent trust of this school as we did with Harvard. 
 
In SSL as a client, we have to decide who we will trust to sign our certificates. This list of trusted 
certificate authorities must be explicitly configured into the client. When the web browser or OS 
was installed on your PC, it probably installed a list of trusted certificate authorities. With the 
NetBurner SSL library, we have to explicitly decide whom we are going to trust to sign server 
certificates. This leads to key point #2. 
 
Key Point # 2: An SSL client must be pre-configured with a list of Certificate Authorities (CAs) 
that it will trust to sign server certificates. This list can be common across all the clients and does 
not have to be unique. 
 
 
What do I need to do to make SSL work? 
 

 You must create or choose a certificate authority. Note: If you create a certificate 
authority, you will also have to create a set of public/private keys for this authority. 

 You must create public/private keys and a certificate for each SSL server and have the 
certificate signed by the certificate authority you have chosen. 

 You must configure the clients with the list of certificate authorities it should trust. 
 
 

NetBurner Security Library  Page 17 



How do I find or create a certificate authority? 
 
Using the medical school example, you can go to Harvard pay lots of $$$ and get a diploma that 
is trusted by everyone. You can also choose to start your own medical school and issue diplomas. 
Almost everyone in the world would trust a Harvard diploma. Almost no one will trust a "Bob's 
Medical School" diploma, unless you spend the time convincing them that it is a quality medical 
school. In the end, you will likely only be able to convince your family, and then only for non-
life threatening needs. 
 
SSL certificates are a lot like medical schools; you can go and purchase server certificates. To 
see what a certificate looks like, open your web browser (e.g. Internet Explorer), and connect to 
https://www.NetBurner.com (notice the s on the end of https). On Internet Explorer’s menu, 
choose File then Properties. Now, click the Certificates button, and look at all the tabs shown in 
this section. 
 
 
How do I know whom my browser trusts? 
 
On your (Internet Explorer) browser's menu - choose Tools then Internet Options. Open the 
Content tab, click the Certificates button, and open the Trusted Root Certificate Authorities tab. 
Add Verisign or Thawte and every browser in the world will trust your certificate and your 
server. 
 
If you want to save some money and create your own certificate authority then you can do so. 
However, none of the clients will accept your certificate until you convince them to add "Bob’s 
Certificate Authority" to their list of trusted certificate authorities. If, the users using the 
embedded SSL system you are deploying are all in one business entity, then it is relatively 
simple to add your own certificate authority to the list of trusted authorities. If you are 
responsible for both the client and server end of the connection, it is even easier; you can 
configure the clients to accept a single server authority - yours. 
 
SSL is based on Public Key Cryptography (PK) and a little bit of background on PK is necessary 
in order to deploy a secure SSL solution. Public Key Cryptography is different from Symmetric 
Key Cryptography. In PK, the keys used for encryption are broken into two parts, much like a 
padlock (the public part) and a key (the private part). If you give someone an open padlock and a 
steel box, they can put things into the box, close the lid, and lock the lock. Unless they have the 
key to the lock, they cannot open the box. They can be confident that if they mail you the box, 
none of the mailmen along the way can look inside. Only the person who holds the (private) key 
to the padlock can open the box. For additional information on Public Key Cryptography, please 
read the Cryptography FAQ (http://isc.faqs.org/faqs/cryptography-faq)  
 
When the SSL client connects to a server, the server sends back a certificate with a public key 
(open padlock). This certificate also includes the name of the server and a signature vouching for 
both the public key and the name. If any part of the certificate is changed, the signature will 
compute to be invalid. 
 
So, if we have a "bad guy" in the middle, he can watch the padlock going from the server to the 
client. But, when the client puts his secret information into the box and locks it, the "bad guy" 

NetBurner Security Library  Page 18 



cannot see inside. He only knows that the client sent something in the box to the server. The 
secrets in the box are safe from the prying eyes of the "bad guy". This safety only exists if the 
server has done a good job of protecting the private key. If the "bad guy" sneaks into the server 
room, logs on the server console, and makes a copy of the private key, he can intercept all of the 
traffic. He can also change the content at will. This leads to key point #3. 
 
Key Point # 3: When using Public Key Cryptography (as SSL does), the system is only as secure 
as the security of the private key. Since a server needs access to the private key to unlock the 
data from the client, the private key must exist on the server. 
 
Key Point # 3 Corollary: If the private key exists on the server, then the system is only as secure 
as the physical security of the server. If the server is not physically secure, then someone (i.e. the 
“bad guy”) can attach an emulator or other hardware to the server and read out the private key. 
 
For example, suppose the "bad guy" wants to intercept your credit card number when you send it 
to Amazon to order a book. We have already shown that he cannot read the data unless he has 
Amazon's private key. However, he has one other option - he can pretend to be Amazon and 
offer his own certificate to you, the client. If this certificate is properly signed by a Certificate 
Authority the client trusts, then client will accept the connection. If any "Certificate Authority" in 
the list of trusted authorities is compromised, then the system is insecure. If the "bad guy" has 
the ability to add a new "Certificate Authority" to the client, then he can completely compromise 
the system. This leads to key point #4. 
 
Key Point # 4: If the ability to add a "Certificate Authority" to the client’s list of trusted 
authorities is not secure, then system is not secure. 
 
Key Point # 4 Corollary: If the list of trusted "Certificate Authorities" exists on the client, then 
the system is only as secure as the physical security of the client. If the client is not physically 
secure, then someone (i.e. the “bad guy”) can attach an emulator or other hardware to the client 
and add a "trusted" authority. 
 
These last two key points imply that it is not possible to build a system that is more secure than 
the physical security of the device being secured. Important: All the cryptography in the world 
will not help if someone can gain access to your computer and hide a bug inside the keyboard; or 
even easier, add or modify a system file to record your keystrokes and periodically send them 
over the internet to some nefarious foe. Note: If your data is valuable enough to be attractive to a 
skilled adversary, then you must learn to be truly paranoid. 
 
 

NetBurner Security Library  Page 19 



Recommended Reading 
 
For an excellent overview of computer security 

 Secrets and Lies by Bruce Schneier (ISBN 0-471-25311-1) 
 
For a detailed review of cryptography  

 Applied Cryptography by Bruce Schneier (ISBN 0-471-11709-9) 
 
For a detailed description of the SSL protocol 

 SSL and TLS by Eric Rescorla (ISBN 0-201-61598-3) 
 
For a reference on the math and methods in cryptography (this is a heavy duty book): 

 Handbook of Applied Cryptography by Menezes, Oorschot and Vanstone  
(ISBN 0-8493-8523-7) 

 
 
 
 
 

NetBurner Security Library  Page 20 



4.3. Creating a Code Module for SSL Server Certificates 
 
Introduction 
The NetBurner SSL library provides some open source tools for the generation and maintenance 
of SSL keys and certificates. These key and certificate management tools are based on the fine 
openssl package available from http://www.openssl.org. These tools are subject to the openssl 
License. The embedded SSL library code is derived from other sources and is subject to the 
standard NetBurner License (located by default in C:\Nburn\docs) 
 
 
Setting up the Environment 
Important: Before you can perform any of these steps, you must set up the environment. 
 

 Make sure the openssl.exe provided with the NetBurner SSL Library is in your path (by 
default it installs in C:\Nburn\pcbin) 

 The default configuration file is named openssl.cnf, and is located C:\Nburn\ssl\config. 
You may edit the default values for your business if you wish.  

 Make sure that your system environment has the variable: 
OPENSSL_CONF= <your path >\openssl.cnf. For example, in a command prompt 
window you can type: “SET 
OPENSSL_CONF=C:\NBURN\SSL\CONFIG\OPENSSL.CNF if that is your path.  

 
 
Creating a Certificate Authority (CA) 
This step creates a CA you can use to sign SSL server certificates. Important: You should only 
have to do this step once. The key file created in this step should be protected as the security of 
all your SSL Certificates depends on it. You have two choices to protect this key file. 
 
You can use a pass phrase to encode it. You can leave it unencoded, but would need to secure the 
computer it is stored on. 
 
Note: If you want the key to not be protected by a pass phrase then leave the –des off the genrsa 
command. 
 

 Open a command prompt/DOS window 
 Navigate to the directory you want to house your CA files 
 To make a CA Key file, execute the command (and press the Enter key when finished): 

 
openssl genrsa –out CA.key –des 

 

 Create a CA Certificate, by executing the command (and press the Enter key when 
finished): 

 
openssl req -new -key CA.key -x509 -days 3650 -out CA.crt 

NetBurner Security Library  Page 21 



You will be prompted to answer some identification questions. How you answer them is up to 
you, but when creating a NetBurner CA we answered these questions as follows: 
 
          Country Name: US 
          State or Province: California 
          Locality: San Diego 
          Organization Name: NetBurner 
          Organizational Unit Name: Certificate Authority 
          Common Name: NetBurner CA 
 
If you are going to be accessing the embedded SSL device via a web browser you will need to 
add this Certificate to your web browser's list of trusted certificate authorities. To do this for 
Internet Explorer: 
 

 Open up your Internet Explorer web browser 
 From the Tools menu go into the Internet Options section 
 Select the Content tab 
 Press the Certificates button 
 Select the Trusted Root Certification Authorities tab 
 Press the Import button 
 Select the CA.crt file to import. (Note: It will not show up via the browse button unless 

you change the file type combo box at the bottom of the window to look for X509 
certificate files.) 

 
 
Creating a Server Key 
 
You will need to create a server key for each SSL Server you intend to deploy. If you are 
deploying many SSL servers, the bookkeeping associated with this will not be trivial. 
 

 Open a command prompt/DOS window 
 Navigate to the directory you want to house your device files 
 To make a Device Key file, execute the command (and press the Enter key when 

finished): 
                           

openssl genrsa –out devicename.key 
 
You will need to keep track of this key file while you make a server certificate, as the two have 
to be matched. If you are creating your own certificates, you can create a big batch file that does 
all of the steps in a single execution. See the batch file in Appendix I. 
 
 

NetBurner Security Library  Page 22 



Creating a Server Certificate with your CA 
 
You will need to create a server certificate for each SSL Server you intend to deploy. If you are 
deploying many SSL Servers, the bookkeeping associated with this will not be trivial. The 
common name you enter in this step must match the deployed DNS name or the IP Address of 
the Server it will be used on. 
 

 Open a command prompt/DOS window 
 Navigate to the directory that you want to house your device files 
 To make a Device Certificate Request file, execute the command (and press the Enter key 

when finished): 
 

openssl req -new -key devicename.key -out devicename.csr 
 

 To make a Device Certificate, execute the command (all on one line) and press the 
"Enter" key when finished: 

 
openssl x509 -req -days 365 -in devicename.csr –CA CA.crt  
             -CAkey CA.key -CAcreateserial -out devicename.crt 

 
You can combine the creation of server keys, certificates, and code by running the batch file 
shown in Appendix I (at the end of this section). 
 
 
Converting a Certificate and Key to Code 
 
This step takes both the private Server Key and the Server Certificate and converts them into a 
CPP source code module that can be linked into your application. This implies that you need to 
generate a different application image for each of your servers. 
 

 Open a command prompt/DOS window 
 Navigate to the directory that you want to house your device files 
 To make a Device CPP file with the key in it, execute the command (and press the Enter 

key when finished): 
 

openssl rsa -in devicename.key -nburn –out devicename.cpp 
 

 To add the Certificate to the CPP file, execute the command (and press the Enter key 
when finished): 

 
openssl x509 -nburn -in devicename.crt –append devicename.cpp 

 
 
 
Adding the Module to your Code Set 
 
Take the devicename.cpp file previously created and import it into your project directory. If you 
are using command line tools, copy it to your project directory and add it to your makefile. 

NetBurner Security Library  Page 23 



Create a Server Certificate for External CA 
 
If you are going to have your certificates signed by an external entity, they will need a Certificate 
Request file. Note: The common name you enter in this step must match the deployed DNS 
name or IP Address of the Server it will be used on. 
 

 Open a command prompt/DOS window 
 Navigate to the directory that you want to house your device files 
 To make a Device Certificate Request file, execute the command (and press the Enter key 

when finished): 
 
openssl req -new -key devicename.key -out devicename.csr 

 

 Send this devicename.csr to the CA that will create your certificate. 
 
 
Warning: If you lose the devicename.key file associated with this particular device, then you will 
not be able to use the certificate file they send back. 
 
 
 
 
 
 
 
 
 
 
 

NetBurner Security Library  Page 24 



4.4. Creating a Code Module - SSL Server Key & Certificate - Diagram 
 
 

 
 

NetBurner Security Library  Page 25 



4.5. Creating a Code Module for SSL Client Certificates 
 
 
Introduction 
 
The NetBurner SSL library provides some open source tools for the generation and maintenance 
of SSL Keys and Certificates. These key and certificate management tools are based on the fine 
openssl package available from http://www.openssl.org. These tools are subject to the openssl 
License.  
 
The embedded SSL Library code is derived from other sources and is subject to the standard 
NetBurner license (a copy is in your C:\Nburn\docs directory) that holds a list of certificate 
authorities that will be acceptable signers for SSL client connections. 
 
 
Determining what Certificates you need 
 
If you do not know what certificates are needed you should read the Easy SSL Overview 
document in this section. You want to include the certificates from the CA(s) that will be signing 
the server certificates that your SSL client will be connecting to. 
 
 
Testing your Certificates 
 
For each CA you want to trust you need to obtain a certificate. These certificates should be in the 
X509 format with the extension .crt (see RFC 3280). General purpose openssl documents can be 
found at: http://www.openssl.org. To test your certificate: 
 

 Make sure the openssl.exe provided with the NetBurner SSL library is in your path (by 
default it installs in C:\Nburn\pcbin) 

 Open a command prompt/DOS window in your project directory 
 Execute the command (and press the Enter key when finished):  

 
openssl x509 –in yourcert.crt –text 
 

 This command should dump the cert contents 
 If this command fails then you will need to convert the format. Note: One way to do this 

is to use the openssl tools. 
 Certificates can be in DER, NET and/or PEM formats. Warning: The Certificates Must 

be in the PEM format. To convert a Certificate from DER to PEM, just execute the 
following command (and press the Enter key when finished): 

 
openssl x509 -inform der -in server_cert.crt –out server_cert_in_pem.crt 
 
 

NetBurner Security Library  Page 26 



Creating a CA List file 
 
This step creates a cpp file that holds all of the CA certificates you will accept. To create a CA 
List file: 
 

 Open a command prompt/DOS window in your project directory 
 Execute the command (and press the Enter key when finished): 

 
openssl x509 –out ccerts.cpp -nburnccerts cerfile1 cerfile2   
             ...lastcertfile 
 

 This command should build the file ccerts.cpp (Important: Make sure that this file 
(ccerts.cpp) has all of your certs in it.) 

 If using NBEclipse, import this file into your project directory. If using command line 
tools, copy to your project directory and add this file to your project's makefile 

 
 
 
 
 
 

NetBurner Security Library  Page 27 



4.6. StartHTTPs 
 
 
Synopsis: 
 
void StartHTTPs( WORD ssl_port=443, WORD http_port=80 ); 
 
 
Description: 
 
This function starts the secure web server. By default it will listen on port 80 for unencrypted 
connections, and port 443 for encrypted connections.  
 
 
Parameters: 
 
Type Name Description 
Word ssl_port=443 Port 443 is the standard HTTPS port. 
Word http_port=80 Port 80 is the standard HTTP Server 

port. 
 
 
Returns: 
 
Nothing --- This is a void function 
 
 
 
 
 
 

NetBurner Security Library  Page 28 



4.7. SSL_accept 
 
 
Synopsis: 
 
int SSL_accept( int fdListen, IPADDR * address, WORD * port, WORD timeout ); 
 
 
Description: 
 
Similar to TCP accept() but used for SSL connections. 
 
 
Parameters: 
 
Type Name Description 
int fdListen The file descriptor of the TCP listening socket. 
IPADDR *address The IPADDR variable to hold the address of 

the connecting computer. 
WORD *port The WORD variable to receive the remote port 

of this connection. 
WORD timeout The number of ticks to wait for a connection. 

 
 
Return Values: 
 
> 0 --- The file descriptor of the connected SSL socket 
TCP_ERR_TIMEOUT --- Underlying TCP system timed out 
TCP_ERR_NOCON --- The underlying TCP connection failed to negotiate 
TCP_ERR_CLOSING --- The underlying TCP fd was closing 
TCP_ERR_NOSUCH_SOCKET --- The fd listen socket was invalid 
TCP_ERR_NONE_AVAIL --- No free sockets to return 
TCP_ERR_CON_RESET --- The connection was reset by the remote device 
TCP_ERR_CON_ABORT --- The connection was aborted by the remote device 
SSL_ERROR_FAILED_NEGOTIATION --- The SSL system failed to successfully negotiate a 
connection 
SSL_ERROR_HASH_FAILED --- The connection failed the startup hash test 
SSL_ERROR_WRITE_FAIL --- The connection failed to write out a full record 
 
 
 
 
 
 

NetBurner Security Library  Page 29 



4.8. IsSSLfd 
 
 
Synopsis: 
 
BOOL IsSSLfd( int fd ); 
 
 
Description: 
 
This Boolean function is used to determine if the fd (file descriptor) is an SSL connection (i.e. Is 
the file descriptor an SSL FD or some other kind?). It can be used by things like the callback 
functions of the web server to determine how secure the fd is before sending sensitive 
information over it. 
 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 

 
 
Return Values: 
 
TRUE --- If it is an SSL file descriptor 
FALSE --- If it is not an SSL file descriptor, or on error 
 
 
 
 
 
 

NetBurner Security Library  Page 30 



4.9. SSL_GetSocketRemoteAddr 
 
 
Synopsis: 
 
IPADDR SSL_GetSocketRemoteAddr( int fd ); 
 
 
Description: 
 
This function returns the remote address of this connected socket. This function is used to 
retrieve the remote address of an SSL fd. This function will also work correctly if you pass in a 
fd that is a TCP connection. This allows you to use one set of code for both normal TCP and SSL 
connections. 
 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 

 
 
Return Values: 
 
remote ---The IP Address of the TCP or SSL connection 
0 --- Otherwise 
 
 
 
 
 
 

NetBurner Security Library  Page 31 



4.10. SSL_GetSocketRemotePort 
 
 
Synopsis: 
 
WORD SSL_GetSocketRemotePort( int fd ); 
 
 
Description: 
 
This function returns the remote port of this connected socket. This function is used to retrieve 
the remote port of an SSL fd. This function will also work correctly if you pass in a fd that is a 
TCP connection. This allows you to use one set of code for both normal TCP and SSL 
connections. 
 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 

 
 
Return Values: 
 
remote --- The port number of the TCP or SSL connection 
0 --- Otherwise 
 
 
 
 
 
 

NetBurner Security Library  Page 32 



4.11. SSL_GetSocketLocalAddr 
 
Synopsis: 
 
IPADDR SSL_GetSocketLocalAddr( int fd ); 
 
 
Description: 
 
This function returns the local address of this connected socket. This function is used to retrieve 
the local address of an SSL fd. This function will also work correctly if you pass in a fd that is a 
TCP connection. This allows you to use one set of code for both normal TCP and SSL 
connections. 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 

 
 
Return Values: 
 
local --- The IP address of the TCP or SSL connection 
0 --- Otherwise 
 
 
 
 
 

NetBurner Security Library  Page 33 



4.12. SSL_GetSocketLocalPort 
 
 
Synopsis: 
 
WORD SSL_GetSocketLocalPort( int fd ); 
 
 
Description: 
 
This function returns the local port of this connected socket. This function is used to retrieve the 
local port of an SSL fd. This function will also work correctly if you pass in an fd that is a TCP 
connection. This allows you to use one set of code for both normal TCP and SSL connections. 
 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 

 
 
Return Values: 
 
local ---The port number of the TCP or SSL connection 
0 --- Otherwise 
 
 
 
 
 
 

NetBurner Security Library  Page 34 



4.13. SSL_setsockoption 
 
 
Synopsis: 
 
int SSL_setsockoption( int fd, int option ); 
 
 
Description: 
 
This function will set the socket option. 
 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 
int option The socket option. 

 
 
Returns: 
 
> 0 --- The file descriptor of the connected SSL socket 
TCP_ERR_TIMEOUT --- Underlying TCP system timed out 
TCP_ERR_NOCON --- The underlying TCP connection failed to negotiate 
TCP_ERR_CLOSING --- The underlying TCP fd was closing 
TCP_ERR_NOSUCH_SOCKET --- The fd listen socket was invalid 
TCP_ERR_NONE_AVAIL --- No free sockets to return 
TCP_ERR_CON_RESET --- The connection was reset by the remote device 
TCP_ERR_CON_ABORT --- The connection was aborted by the remote device 
SSL_ERROR_FAILED_NEGOTIATION --- The SSL system failed to successfully negotiate a 
connection 
SSL_ERROR_HASH_FAILED --- The connection failed the startup hash test 
SSL_ERROR_WRITE_FAIL --- The connection failed to write out a full record 
SSL_ERROR_CERTIFICATE_UNKNOWN SSL --- Received a certificate it could not decode 
SSL_ERROR_CERTIFICATE_NAME_FAILED The connected name did not match 
common_name 
SSL_ERROR_CERTIFICATE_VERIFY_FAILED --- The server returned a certificate that we 
did not trust 
 
 
 

NetBurner Security Library  Page 35 



4.14. SSL_clrsockoption 
 
 
Synopsis: 
 
int SSL_clrsockoption( int fd, int option ); 
 
 
Description: 
 
This function will clear the socket option. 
 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 
int option The socket option. 

 
 
Returns: 
 
> 0 ---The file descriptor of the connected SSL socket 
TCP_ERR_TIMEOUT --- Underlying TCP system timed out 
TCP_ERR_NOCON --- The underlying TCP connection failed to negotiate 
TCP_ERR_CLOSING --- The underlying TCP fd was closing 
TCP_ERR_NOSUCH_SOCKET --- The fd listen socket was invalid 
TCP_ERR_NONE_AVAIL --- No free sockets to return 
TCP_ERR_CON_RESET --- The connection was reset by the remote device 
TCP_ERR_CON_ABORT --- The connection was aborted by the remote device 
SSL_ERROR_FAILED_NEGOTIATION --- The SSL system failed to successfully negotiate a 
connection 
SSL_ERROR_HASH_FAILED The connection failed the startup hash test 
SSL_ERROR_WRITE_FAIL The connection failed to write out a full record 
SSL_ERROR_CERTIFICATE_UNKNOWN SSL --- Received a certificate it could not decode 
SSL_ERROR_CERTIFICATE_NAME_FAILED --- The connected name did not match 
common_name 
SSL_ERROR_CERTIFICATE_VERIFY_FAILED --- The server returned a certificate that we 
did not trust. 
 
 
 
 

NetBurner Security Library  Page 36 



4.15. SSL_getsockoption 
 
 
Synopsis: 
 
int SSL_getsockoption( int fd ); 
 
 
Description: 
 
This function will get the socket option. 
 
 
Parameters: 
 
Type Name Description 
int fd The file descriptor to test. 

 
 
Returns: 
 
> 0 --- The file descriptor of the connected SSL socket 
TCP_ERR_TIMEOUT --- Underlying TCP system timed out 
TCP_ERR_NOCON --- The underlying TCP connection failed to negotiate 
TCP_ERR_CLOSING --- The underlying TCP fd was closing 
TCP_ERR_NOSUCH_SOCKET --- The fd listen socket was invalid 
TCP_ERR_NONE_AVAIL --- No free sockets to return 
TCP_ERR_CON_RESET --- The connection was reset by the remote device 
TCP_ERR_CON_ABORT --- The connection was aborted by the remote device 
SSL_ERROR_FAILED_NEGOTIATION --- The SSL system failed to successfully negotiate a 
connection 
SSL_ERROR_HASH_FAILED --- The connection failed the startup hash test 
SSL_ERROR_WRITE_FAIL --- The connection failed to write out a full record 
SSL_ERROR_CERTIFICATE_UNKNOWN SSL --- Received a certificate it could not decode 
SSL_ERROR_CERTIFICATE_NAME_FAILED --- The connected name did not match 
common_name 
SSL_ERROR_CERTIFICATE_VERIFY_FAILED --- The server returned a certificate that we 
did not trust 
 
 
 
 
 

NetBurner Security Library  Page 37 



4.16. SSL_connect 
 
 
Synopsis: 
 
int SSL_connect( IPADDR ip, WORD local_port, WORD remote_port,  
                 DWORD timeout, const char * common_name ); 
 
 

Description: 
 
Make an outgoing SSL connection to a SSL server or peer.  
 
Parameters: 
 
Type Name Description 
IPADDR ip The address to connect to. 
WORD local_port The local port to use. Note: 0 will pick a local 

port. 
WORD remote_port The port to connect to. 
DWORD timeout The number of ticks to wait for a connection. 
const char *common_nam

e 
The common name to use for checking 
certificate validity. Note: Passing in NULL 
will accept any connection. 

 
 
Return Values: 
 
> 0 ---The file descriptor of the connected SSL socket 
TCP_ERR_TIMEOUT --- Underlying TCP system timed out 
TCP_ERR_NOCON --- The underlying TCP connection failed to negotiate 
TCP_ERR_CLOSING --- The underlying TCP fd was closing 
TCP_ERR_NOSUCH_SOCKET --- The fd listen socket was invalid 
TCP_ERR_NONE_AVAIL --- No free sockets to return 
TCP_ERR_CON_RESET --- The connection was reset by the remote device 
TCP_ERR_CON_ABORT --- The connection was aborted by the remote device 
SSL_ERROR_FAILED_NEGOTIATION --- The SSL system failed to successfully  
                                 negotiate a connection 
SSL_ERROR_HASH_FAILED --- The connection failed the startup hash test 
SSL_ERROR_WRITE_FAIL --- The connection failed to write out a full record 
SSL_ERROR_CERTIFICATE_UNKNOWN SSL --- Received a certificate it could not  
                                      decode 
SSL_ERROR_CERTIFICATE_NAME_FAILED --- The connected name did not match  
                                      common_name 
SSL_ERROR_CERTIFICATE_VERIFY_FAILED --- The server returned a certificate  
                                        that we did not trust 

NetBurner Security Library  Page 38 



4.17. SSL_SendMail 
 
 
Synopsis: 
 
int SSL_SendMail( IPADDR smtp_server,  
   PCSTR userid,                 
        PCSTR pass,                   
        PCSTR from_addr,              
        PCSTR to_addr,                
        PCSTR subject,                
        PCSTR textbody,               
   BOOL STARTTLS = FALSE ); 
 
 

Description: 
 
Send an email message using SSL encryption. This function is very similar to the unencrypted 
SendMail() function.  
 
The initial connection to the SMTP server can happen in one of two ways: 
1. An SSL connection is negotiated immediately. 
2. A TCP connection is opened first, and a SSL connection is negotiated 
   when the SMTP server sends a STARTTLS command to the NetBurner device. 
 
Setting STARTTLS = TRUE enables the second mode of operation. The default is FALSE. Most 
SMTP serves will support both modes, but there are no rules as to whether or not both modes 
must be supported.  
 
 
Type Name Description 
IPADDR smtp_server Name or IP Address of the SMTP Server 
PCSTR userid SMTP account user id string 
PCSTR pass SMTP account password 
PCSTR from_addr From email address. 
PCSTR to_addr Send to email address  
PCSTR subject email subject 
PCSTR textbody email body content  
BOOL  STARTTLS Enable/disable STARTTLS functionality. Default 

is disabled. 
 
 
Return Values: 
 
0 --- Send failed 
1 --- Send was successful 
 

NetBurner Security Library  Page 39 



5. SSH Library (Secure Shell) 
The NetBurner SSH package is sold as a licensed option only, and is not part of the standard 
development kit package. Please contact our Sales Department for purchase information.  
 

5.1. Features 
SSH supports the following : 

 SSH Server Mode 
 SSHV1 and SSHV2 
 Encryption ciphers of DES, 3DES, IDEA and Arcfour. 
 Public-key cryptography: RSA, Diffie-Hellman, DSA. 
 One-way hash functions: MD2, MD4, MD5 or SHA1. 
 Permanent RSA and DSA 512 bit private keys installed by default. 

 
Compile Options: 

 Encryption ciphers Twofish (128/256), Blowfish not compiled in by default. Enabling 
this option will increase the size of the library. 

 Conditional compilation tags to use 512, 1024 or 2048 bit keys separately for RSA and 
DSA private keys. 

 User supplied private key accessor. 
 User supplied password authentication. 

 
 

5.2. Performance 
The fastest performance will be on NetBurner devices based on the 5270 and 5234 processors. 
When the server is first contacted it requires an exchange of session keys. The generation of this 
session key uses various amounts of time for various size keys and module types. These are 
typical average times in seconds: 
 
 Modules 
Key Size (Width) MOD5270 

MOD5234 
CB34EX 
PK70 

MOD5282 MOD5272 
SB72(EX) 

512 7 15 30 
1024 10 21 41 
2048 31 64 134 
 
Including a single SSH socket increases the size of the application by at least 110K bytes for 
SSH protocol, encryption and supporting mathematics routines 
 

NetBurner Security Library  Page 40 



5.3. System Library Requirements 
Important: Before you compile any programs, edit predef.h (located in C:\Nburn\include) with 
any text editor, and uncomment the lines for SSH support, SSL too if used. Any changes to 
system files require that the system libraries be rebuilt. From NBEclipse, select NBEclipse -> 
Rebuild System Files.  
 
/* 
 * SSH Supported 
 *    Should be defined when SSH is included in library 
 */ 
 
/* #define NB_SSH_SUPPORTED   ( 1 ) */ 
 
Header File 
 
#include <ssh\ssh.h>        // Found in C:\Nburn\include\ssh 
 
 
SSH Server Functions 
 
SshAccept SSH equivalent of the TCP accept function 

 
SshSetUserAuthenticate Assigns the callback function used by the SSH library to 

authenticate a user login. 
 

SshSetUserGetKey 
 

Specify the callback function to use to get the user supplied key. The 
callback will be executed anytime SshAccept() or 
SshNegotiateSession() is called. If you do not provide your own 
callback function, the NetBurner SSH Library keys will be used by 
default. 
 

SshValidateKey Validates a PEM encoded key. 
  

SshWritePublicKey Write the current SSH public key to a file descriptor. Can be used to 
display a public key that can be copied to a SSH client program. 
 

SshPrintStatistics  Prints amounts and processing times for each SSH packet type. 
 

SshNegotiateSession  Negotiates SSH session on accepted socket. Designed for use with 
the command processor provided with the library. 
 

 
 
Sockets are released using the file descriptor close function: close(). 
  

NetBurner Security Library  Page 41 



5.4. Protection 
Secure Shell protects against :  
 

 IP spoofing: A remote host sends out packets which pretend to come from another, 
trusted host. SSH even protects against a spoofer on the local network, who can pretend 
he is your router to the outside.  

 IP source routing: A host can pretend that an IP packet comes from another, trusted, host.  
 DNS spoofing: An attacker forges domain name server records, then intercepts plain text 

passwords and other data. 
 Attacks based on listening to X authentication data and spoofed connection to the X11 

server. 
 
In other words, SSH never trusts the net; somebody hostile who has taken over the network can 
only force SSH to disconnect, but cannot decrypt or play back the traffic, or hijack the 
connection. 
 
 

5.5. SSH Keys 
The SSH support library, sshLibrary.a, contains by default a RSA and DSA private key. The 
example in directory \nburn\examples\ssh\SSHFactoryApp uses the SSH library function calls, 
the web server interface, and Embedded Flash File System (EFFS) to acquire, validate and  store 
a user created private key.  
 

5.5.1. NetBurner Default Keys 
The SSH key and size is determined by the #define value set in \nburn\include\ssh\ssh.h. An 
excerpt from the header file is shown below: 
 
/* Default static key size, no choice is 1024 */ 
#define SSH_RSA_KEY_DEFAULT_512                 (  512 ) 
/* #define SSH_RSA_KEY_DEFAULT_1024             ( 1024 ) */ 
/* #define SSH_RSA_KEY_DEFAULT_2048             ( 2048 ) */ 
 
#define SSH_DSS_KEY_DEFAULT_512                 (  512 ) 
/* #define SSH_DSS_KEY_DEFAULT_1024             ( 1024 ) */ 
/* #define SSH_DSS_KEY_DEFAULT_2048             ( 2048 ) */ 
 
Any change to the ssh.h file requires that you rebuild the system libraries. This can be done in 
NBEclipse by selecting NBEclipse -> Rebuild All Libraries. 
 
 
 
 
 

NetBurner Security Library  Page 42 



5.5.2. Using a Custom Key 
 
An application must use the SshSetUserGetKey() function to specify a callback function 
that the SSH library can use during runtime to access the user created key. The SSH library must 
have access to the key before an application can call SshAccept() or SshNegotiateSession(). See 
the section on the SshSetUserGetKey() function for more details.  
 
 

5.6. Creating a SSH Server 
 
Calling any of the SSH functions will include the SSH library. When the first connection is 
established, SSH server session key task will be created at priority SSH_TASK_PRIORITY, 
which is set to 56 by default. The additional libraries needed are sshLibrary and debugLibrary. 
Debug libraries have a DB prepended to their names. 
 

5.7. Implementing a Login User Name and Password 
 
If a SSH User Authentication callback function is defined, the SSH library will call it before 
allowing an incoming SSH connection to be established. To activate this feature, create a 
function of type SshSetUserAuthenticate() in your application, then instruct the SSH 
library to call this function with SshSetUserAuthenticate(). See the section on 
SshSetUserAuthenticate() for additional information.        
 
 

5.8. Example Applications 
 
SSH example applications are located in the \nburn\examples\ssh directory. 
 
 

5.9. Recommended Reading 
 
For an excellent overview of SSH:  
SSH, The Secure Shell: The Definitive Guide, Second Edition, by Daniel J. Barrett, Richard E. 
Silverman, Robert G. Byrnes, May 2005, O'Reilly Media, Inc. 
 
For quick review of SSH:   
URL: http://en.wikipedia.org/wiki/Secure_shell 
 
 

NetBurner Security Library  Page 43 



5.10. SSH_accept 
 
Synopsis: 
 
int SSH_accept( int fdListen, IPADDR * address, WORD * port, WORD timeout ) 
 
Description: 
This function accepts a SSH connection from a listening TCP socket. 
 
Parameters: 
 

Type Name  Description 
int fdListen The file descriptor of the listening socket 
IPADDR *address Pointer to the variable that will be written with the IP 

address of the connecting host. 
WORD *port Pointer to the variable that will be written with the TCP 

port number of the connecting host.  
WORD timeout The number of timer ticks to wait for a connection. 

 
 
Return Values: 
Returns the file descriptor of the connected SSH socket, or a negative number on error: 
TCP_ERR_TIMEOUT  Underlying TCP system timed out 
TCP_ERR_NOCON   The underlying TCP connection failed to negotiate 
TCP_ERR_CLOSING  The underlying TCP fd was closing 
TCP_ERR_NONE_AVAIL  No free sockets to return 
TCP_ERR_CON_RESET  The connection was reset by the remote device 
TCP_ERR_CON_ABORT  The connection was aborted by the remote device 
TCP_ERR_NOSUCH_SOCKET  The fd listen socket was invalid 
SSH_ERROR_FAILED_NEGOTIATION  SSH failed to successfully negotiate a connection 
 
  

NetBurner Security Library  Page 44 



  

5.11. SshSetUserAuthenticate 
 
Synopsis: 
 
void SshSetUserAuthenticate( sshUserAuthenticateFn sshUserAuthenticateFnPtr ) 
 
 
Description: 
Assigns a user created callback function that will be called by the SSH library to authenticate a 
username and password during login.  
 
Parameters: 
 

Type Name  Description 
Pointer to a 
function 

sshUserAuthenticateFnPtr Pointer to a function 

 
Returns:  Nothing 
 
 
Type definition for a function pointer to a user-provided SSH authentication function: 
 
typedef int ( *sshUserAuthenticateFn ) 
            ( const char* usernamePtr, const char* passwordPtr ); 
    

Type Name  Description 
const char * usernamePtr User name in plain text 
const char * passwordPtr Password in plain text 

 
       
   Returns: 
      1 = Authentication passed, any other value is a failure.  

NetBurner Security Library  Page 45 



SshSetUserGetKey 
 
Synopsis: 
 
void SshSetUserGetKey( sshUserGetKeyFn sshUserGetKeyFnPtr ) 
 
Description: 
This function is used to specify a user created/defined key to be used in SSH connections.  
 
Parameters: 
 

Type Name  Description 
Pointer to a 
function 

sshUserGetKeyFnPtr User provided key provision routine called as a 
pointer to a function. See typedef explanation 
below. 

 
Returns:  Nothing 
 
 
Type definition for a function pointer to a user-provided SSH key function: 
 
To use a user-provided SSH key an application must create and execute a function of the 
following type. The buffer must contain an opens(L|H) key pair, PEM encoded, unencrypted, 
with no pass phrase. The buffer containing the key must not be deallocated.  
 
typedef int ( *sshUserGetKeyFn )( int keyRequested,  
                                  const unsigned char** keyBufferPtr,  
                                  int* keyLengthPtr ); 
 
    

Type Name  Description 
int keyRequested Type of key requested: SSH_KEY_RSA or 

SSH_KEY_DSS. 
const 
unsigned char 

**keyBufferPtr Buffer containing the key. 

int *keyLengthPtr Size of key in 8-bit bytes. 
 
       
   Returns: 
      0 if key and length is valid, or a  -1 if the key requested is not available 
       
       
  
  
 

NetBurner Security Library  Page 46 



 
Example: 
In this example we create a function named SshUserGetKey() that will be called in main.cpp. It 
returns the key requested, which is part of the NV_Settings structure that is read in on startup 
from the flash memory file system. Note DSS is the security algorithm abbreviation that uses the 
DSA key. 
 
This function is an excerpt from \nburn\examples\ssh\SSHFactoryApp\sshuser.cpp. The example 
also uses the Web server interface to read in a key, SshValidateKey() to validate the key, and 
stores it in the flash file system which at startup is copied into the structure NV_Settings. 
 
 
int SshUserGetKey( int keyRequested, const unsigned char** keyBufferPtr,  
                   int* keyLengthPtr ) 
{ 
   int keyValid = -1; 
    
   if ( ( keyBufferPtr != NULL ) && ( keyLengthPtr != NULL ) ) 
   { 
      if ( ( keyRequested == SSH_KEY_RSA ) &&  
            ( NV_Settings.SshKeyRsaSource != 0 ) &&  
            ( NV_Settings.SshKeyRsaLength > 0 ) ) 
      { 
            *keyLengthPtr = NV_Settings.SshKeyRsaLength; 
            *keyBufferPtr = (const unsigned char*)gSshRsaKeyPemEncoded; 
            keyValid = 0; 
      } 
      else if ( ( keyRequested == SSH_KEY_DSS ) &&  
            ( NV_Settings.SshKeyDsaSource != 0 ) &&  
            ( NV_Settings.SshKeyDsaLength > 0 ) ) 
      { 
            *keyLengthPtr = NV_Settings.SshKeyDsaLength; 
            *keyBufferPtr = (const unsigned char*)gSshDsaKeyPemEncoded; 
            keyValid = 0; 
      } 
   }  /* End if ( ( keyBufferPtr != NULL ) && ( keyLengthPtr != NULL ) ) */ 
    
   return keyValid; 
} 
 
 
 
 
 
 
 

NetBurner Security Library  Page 47 



5.12. SshValidateKey 
 
Synopsis: 
 
BOOL SshValidateKey( const char* candidateKey, int candidateKeySize, 
                     int* keyTypePtr ); 
 
 
Description: 
Validate a PEM encoded openSS(L|H) key 
 
 
Parameters: 
 

Type Name  Description 
const char 
ptr 

*candidateKey Pointer to a PEM encoded key buffer. 

int candidateKeySize Size of key in 8-bit bytes. 
int *keyTypePtr Pointer to variable to store the type of key 

detected: 0 = None, 1 = RSA, 2 = DSA. 
 
 
Return Values: 
 
Returns TRUE if valid RSA or DSA key is detected, otherwise returns FALSE. 
 
 

NetBurner Security Library  Page 48 



5.13. SshPrintStatistics 
 
Synopsis: 
 
void SshPrintStatistics ( int secureFd ) 
 
Description: 
Used for application debugging and troubleshooting. Calling this functions displays the SSH 
statistics to the debug serial port using the stdio iprintf() function. 
 
Parameters: 
 

Type Name  Description 
int secureFd Secure SSH file descriptor 

 
 
Return Values: 
 
None 
 
 

NetBurner Security Library  Page 49 



NetBurner Security Library  Page 50 

5.14. SshNegotiateSession 
 
Synopsis: 
 
void* SshNegotiateSession(  FILE* acceptedSocketFILEptr  ) 
 
Description: 
Negotiates a SSH connection using the FILE object which has already been accepted. The yet 
unsecured file descriptor is replaced in the object with the secure file descriptor if the function 
succeeds.  
 
 
Parameters: 
 

Type Name  Description 
FILE *acceptedSocketFilePtr Not yet secure socket FILE pointer 

 
 
Return Values: 
 
Returns a pointer to a SshSession object, or NULL on failed negotiation.  
 
 
 
  


	1. Introduction 
	2. NetBurner License Information
	3. AES Library  (Advanced Encryption Standard)
	3.1. Introduction
	3.2. Function Call Summary
	3.3. Examples
	3.4. aes_set_key
	3.5. aes_encrypt
	3.6. aes_decrypt
	3.7. aes_cbc_encrypt
	3.8. aes_cbc_decrypt

	4. SSL Library
	4.1. Introduction
	4.2. SSL Overview
	4.3. Creating a Code Module for SSL Server Certificates
	4.4. Creating a Code Module - SSL Server Key & Certificate - Diagram
	4.5. Creating a Code Module for SSL Client Certificates
	4.6. StartHTTPs
	4.7. SSL_accept
	4.8. IsSSLfd
	4.9. SSL_GetSocketRemoteAddr
	4.10. SSL_GetSocketRemotePort
	4.11. SSL_GetSocketLocalAddr
	4.12. SSL_GetSocketLocalPort
	4.13. SSL_setsockoption
	4.14. SSL_clrsockoption
	4.15. SSL_getsockoption
	4.16. SSL_connect
	4.17. SSL_SendMail

	5. SSH Library (Secure Shell)
	5.1. Features
	5.2. Performance
	5.3. System Library Requirements
	5.4. Protection
	5.5. SSH Keys
	5.5.1. NetBurner Default Keys
	5.5.2. Using a Custom Key

	5.6. Creating a SSH Server
	5.7. Implementing a Login User Name and Password
	5.8. Example Applications
	5.9. Recommended Reading
	5.10. SSH_accept
	5.11. SshSetUserAuthenticate
	SshSetUserGetKey
	5.12. SshValidateKey
	5.13. SshPrintStatistics
	5.14. SshNegotiateSession


