etBurner
Networking in 1 Day!

2

NetBurner Network Development Kit

Programming Guide

Document Number: 350080-003

NetBurner Programmers Guide

R 1AV 12 O] 5 1 L I]\ 6
1.1 HOW TO USE THIS GUIDE ...veeciittiie e ettt ettee e ettt e e ettt e e sttt e e s sab e e e s sabta s s s ebteaessabbeesaabbesssbbesesssbaesesbraesessrenesssrbenean 6
1.2 SOURCE CODE FOR EXAMPLE PROGRAMSccoitiiii ittt e settee e setee e s setteessstbeesssaaaesssabaeesssbesssssbesesssbanesensessessnsens 6
1.3 How TO USE THE NETBURNER REFERENCE DOCUMENTSuuttiiiiieiiiiiitiiiie e s s s siitbbeie e e s s s sssbasseessssssssssssesssessns 6
1.4 NETBURNER NETWORK DEVELOPMENT KIT CONTENTS ...coiiiitttiiiiiee e iiittiii i e e s s s siitbber e s e s s s ssibbbase e e s s s s saasbaneseeeseas 7
15 GETTING STARTED ..utttiiiiieiiiitittiitteessetbabeetsesssesbsbasasesssasabbasseeaeessaabbbbaeeesessaasbbbbessesssabbbbbeseeesssssbbbbessesessesanre 7

15.1 SOFEWATE INSTAIIATIONeeiiieiiee ittt e e e e et e e s et e e e e s bt e e s seabaeessabaneessrbeeesssbenessans 7
1.5.2 HardwWare INSEAHATION.oooiiiiie ettt ettt e st e e e s st e e s sb e e e e s sabe e e s sabbeeesabaeeessabes 8
153 NEtWOIK CONTIGUIATION ...t bbbt bbb 8
154 [T o0 T o] o SRS 9

2 NETWORKING DEVICE CONFIGURATIONouiiiiitiii ettt etea et e s s satas s sabaa e s raee s 10
2.1 OVERVIEW. ... ctteie e ettt e ettt e s ettt e e e tte e e s baee e s sabe e e s aabee s e sabaeeesabbe e e s eabeesesabeeeesabbaeeseabeesesabbeeesssbaeesanbeesesssbenesssbeesesnns 10
2.2 OBTAINING AN [P ADDRESScccicttiieiittiie s ittie e ettt s e settee e s sttt e e s sbae s s s sbbeeesssbaeesasbeesssbaaeesssbeesssabeesesssbenessbeesesnns 10
2.3 STATIC TP ADDRESSuttiiiiittiie e ettt e ettt e s sttt e s ettt s e sebaeeessabeeesabeesesbbeeesssbeeesaabeesesabaesesssbaessasbessesbbeeesasbenessnns 10
24 DYNAMIC [P ADDRESS (DHECP) ...ttt ettt sttt sttt ettt e e st esteeteenaeanaeaneenneenreens 10
2.5 NETWORK CONFIGURATION STEP BY STEP INSTRUCTIONScuuttiiiieeiiiiiiriiiieeesssiibteseeessssssbssseseesssssssssensss 10

3 HOWDO | SELECT AN IP ADDRESS?.....ootiiiiiiiieeii ettt ettt s s e s e s s aaa e e e e e 11

4 WEB BROWSERS AND PROXY SERVERS ..ottt ettt 12

5 USING THE NBECLIPSE IDE TO CREATE THE TEMPLATE PROGRAM........oooveviiieeie e 13
5.1 CREATE A NEW PROJECT WITH THE APPWIZARD ...coiiiiiiiititiiii e seeittiit e e e e s s eattie s e e s s sssabtaesssesssssabbbanssesssssanses 13
5.2 TEMPLATE PROGRAM SOURCE CODEcuvtiiiiieiiiiiitiiit i e e s s esittiie e e e s s e sibbaatssessssabbaateeesssssabbaeteesssssssbarsseeeessns 15
5.3 TEMPLATE PROGRAM SETUPuutttiiiiiii ittt e et seibbtiee e et st iabbbaee s e e s s e sabb b b e s e s e e s s sbb b b e s e e e e e s sabbbabeeeeesssbbbrbeeeeeaian 18

5.3.1 Testing the RS-232 Debug CONNEBCLIONcciiiiiiiccie e re e 18
5.4 COMPILING AND RUNNING THE APPLICATION ..uuutttiitieeiiiititieeee et sisisstieesessssssssssssssssssssssssssssssssissssssessssssssnnes 19

6 DHCP-DYNAMIC HOST CONFIGURATION PROTOCOL......coociiiiieiee ettt 20

7 CHANGING IP ADDRESSES AT RUN-TIME ...ttt sttt 22
7.1 THE CONFIGURATION RECORDttt ettt ettt ettt e e e e e s st et e e e e e s s sabbaeaeeeeee s 22
7.2 READING THE CONFIGURATION RECORD......uutiiiiiiiiiiitittiieee e s seeitttieeseessssiasttetseesssssasbasssesessssssbsstessesssasssssesss 23
7.3 STATIC AND DHCP IP ADDRESS MODIFICATION EXAMPLEcoiiititiiiieee ettt eeeitiet e e s e eibbaee e e e e s e s saens 24

8 BASIC WEB SERVER FUNCTIONS ...ttt ettt e ettt e e e e e s s et e e e e e e s s s sabbaaeeeeeeean 31
8.1 TN 0] 518 o i (] 31
8.2 EDIT THE INDEX.HTIM WEB PAGE-.......cutttttitititteteteteeeteeeseessesesssesssssesssesssssssssssesssssesssssesssssessreeememe. 32

9 INTERACTIVE WEB FORM EXAMPLE ...ttt ettt ettt sata s s s eta e e s sbaee s 33
9.1 TN E2{0]n 10 o4 1 (0] N OO 33
9.2 HOW TO USE HTIML FORMS.....cco ittt ettt e e ettt e e e e s e st e it e e e e e s s e bbbt e e e e e e s seabbbbaee s 34
9.3 COLLECTING USER INPUT: WEB FORMS VS, URL’S ..ottt ettt ettt sabbbane e e sannes 35
9.4 APPLICATION OBUIECTIVES. ...ciiiittttiite et i iiitttiee e e e st ettt e e s e et s asbb b s et s e e e s e stbb b b et e e easessabbbateeeesessabbbrbeeeeesssasbbrseeeeesian 35
9.5 PN I o [0 Nt T = TR 35
9.6 INTERACTIVE WEB FUNCTIONSooiiiiiiiitiiiiitie it ittt ettt e e eeee ettt teteeeeeeeseeaeeeteeeeeteaeteeeteeeasaeeeesesassseseseseseesssssnessnnnes 36

10 DYNAMIC WEB CONTENT USING THE VARIABLE TAG ...ttt 42
O R T = = O N (O I [0 \\[@AY I 7Y 42
J0.2 THE VAR AB LE T AG ettt ettt ettt et e e et e e e ettt e e e et e e st b eeeeatbeeesaaateesesseeesasseeesassaesssnaeeeserenesanns 42

10.2.1 The INCLUDE Tag and htmlvar.h Header File..........cocooiiiiiiiiiiee e 43
10.2.2 Calling a FUNCtion With PArameters...........coooiiiiiiiiiiiee e e 45
10.2.3 Creating Custom StrUCIUIES OF CIASSESccuiiiiiieiiiieitirie ettt ettt e 46

Page 2

NetBurner Programmers Guide

11 TCP VS UDP ... bbbt b bbb bt Rt e b e s bt e bt bt bt b e e n e nennenns 47
12 TCP - TRANSMISSION CONTROL PROTOQCOL ..ottt e 49
12,1 TCP SERVER INTRODUCTIONtuteuteuteutesttatesteaseaseastessessessessessesseassessessesbessesbesseasseseensesessesbesseassessennessesnenses 49
12.2 WRITING ANETBURNER TCP SERVERcccutiittiiiitiiitiestiente ettt sttt sttt et e sseesbeasbeebeebesseesseesbeenbeenneenne 50
12.2.1 Simple TCP Server Application SOUICE COUE..........cuiiriiiiirieice ettt 51
12.2.2 Running the NetBurner TCP Server APPlICAtiONccceoiiiiiiiiiicisiee e 54
12.2.3 Simple TCP Server Using the Select() FUNCHIONccooiiiiiiiiiicecceseeee e 57
12.2.4 Advanced TCP Server Using the select() FUNCLION. ... 60
12.3 WRITING A WINDOWS TCP SERVER......cutiittiitiiiiaiieitiestte st e bt aiee e sieesbe e sbeebesieesseesbeesbeebeesbesseesbeesbeesbeenbeenne 64
12.3.1 Windows TCP Server Application SOUICE COUEcocviviieieieie ettt 64
12.3.2 Running the Windows TCP Server ApPlCAtioNccccvvviieiieieie e 68

124 WRITING ANETBURNER TCP CLIENT ...tittittittitietieieie sttt sttt ss ettt sb et nn et bbbt e e b nnennas 69
12.4.1 NetBurner TCP Client Application SOUICE COUE........cccviveieiieieie e se e 71
12.4.2 NetBurner TCP Client Application OPEration...........ccccvvvevieiieiieiesesese s iee et se e 77

13 UDP - USER DATAGRAM PROTOGCOL ..ottt sttt sbe st n e e 78
13.1 UDP CLIENT/SERVER APPLICATION USING THE UDP CLASS......ccieiiiiiriesieeiesieeieree e et 78
13.1.1 NetBurner UDP Class Application SOUICE COUE..........ceiiiiriiiiiiisie ettt 79
13.1.2 RUNNING the APPIICALION ...ocviiiiiitiicee bbbttt ettt 82
13.2 UDP CLIENT/SERVER APPLICATION USING UDP SOCKETS ...c.ccieieieriiniesientesieeseeeeseesieseeseessesseeseseeseeseeses 83
13.3 WRITING A WINDOWS UDP CLIENT/SERVER APPLICATIONceviiuieriesiesiestestesseeseeeeseeseessessessessessesseessessesses 86
13.3.1 Windows UDP Application SOUICE COUB........cuiiriiiiirieiiie ettt 87
13.3.2 Running the Windows UDP APPHCALION.........cccoiieiieiiiie sttt 91
13.4 WRITING A WINDOWS JAVA UDP CLIENT/SERVER APPLICATIONccutitiitiatiriiaiiaeeniesiesiestesiesneseeeesaeseennes 92
13.4.1 Windows Java UDP Application SOUICE COUEccveiuiiiiiieiie st 92
13.4.2 Running the Windows Java UDP APPLICAtIONccveiiiiiiii e 95

14 UC/OS REAL-TIME OPERATING SYSTEM ..ot 96
I R O 1=l Y | TSRO UPPPR 96
14.2 PRE-EMPTIVE OPERATION AND BLOCKINGceiutiiuiiitiestieieeieeiiesieesteesteesae e e sneesseesseesteeaeeeesseesnessseeseeenseanns 96
14.3 DEFAULT CONFIGURATION AND RESOURCESceiuttitieitieteasiesseesieesieesseesseanseaneeasessseessesssessssssesssesssesssesnsesnns 97
O O 7 L 1 SRR 97
LA.5 INTERRUPTS. .t etuttettt ettt sttt e ettt ettt esie e e st bt e sae e e sh bt e eab e e es bt e e Rt e e eh bt e eab e e eh bt e eR b e e aH b e e emb e e e ekt e eab e e e s ke e ambe e e nb e e enbeeebeeennee et s 99
15 PROTECTING SHARED DATA STRUCTURES.ccot ittt e 100
L5.101 OVBIVIBW ..ttt sttt bbbt h e bt bbb ek e Rt e e e bt e bt b e e bt e b e e b e e m b et nheeb e e bt eb e e b e e bt nbe it 100
15.1.2 SemMaphore EXAMPIEcc.ooouieiiiie ettt ettt te e s te e te e e e nb e eaa e te e te e teeaeenneaneas 102
15.1.3 MailDOX EXAMPIE ...c.eeieiieiee ettt et et e b r e te e te e aearaeares 104
15.1.4 FIFO EXAMPIE ..ottt b bbbttt et bbbt bt e e e b nn et 107
15.1.5 OSCritODJECt EXAMPIE ...veeiieiicie ettt ettt te e e e b e teesta e teesteaneennnas 110
T T O 11 o =T F R = U] o =SSR 112

16 FILE DESCRIPTORS. ...ttt sttt e st ste et s e e e st e besteeteeseeneessenaentesaeeteeseeneeseeneeneenes 116
L16.1 OVERVIEW. .. tiiiiiieiiee ettt e et et e ettt e st e steeseeesae e et emeeea e e ee e e et e n b e es e eseeeE e e eE e e eReesbeeneeamseemeeaaeeneeenbeenbeenteeneeaneas 116
16.2 CREATING CUSTOM I/O DRIVERS USING FILE DESCRIPTORScviveteitisiestessesseeieseessessessessessessseseessessessens 116
16.3 USING FILE DESCRIPTORS TO PEND ON MULTIPLE EVENTS ...cviiiiieiesiesiesiesteeeeie e seesae e stesreeneeseeeeseesnens 117
16.4 EXAMPLE: CIRCULAR BUFFER IMPLEMENTATION USING FILE DESCRIPTORS.....ccveiuirierirrersersreaneeeeneeseesnnns 117
17 MULTIPLE NETWORK INTERFAGCESo oottt st 122
17.1 MULTIPLE HARDWARE INTERFACES (ETHERNET, WIFI, PPP) ..ot 122
17.1.1 WIFI INErface EXAMPIE ..ottt e bbbt e b e 122
L17.2 IMULTIFHOME ..ottt b bbbt h e s bt e b e e bt e bt e ab e e he e ebt e et e e ebeebeebeenneaneas 125
17.21 Multi-Home EXampPIe PrOGram.......cccoiiiiiiiieesesie ettt sttt bbb see b e 125

18 USING THE COLDFIRE PROCESSOR ON-CHIP SRAMcccooiiiiiiintiieeee e e 128

Page 3

NetBurner Programmers Guide

200 R [N =T o 10 Lo] N 128
18.2 USING FAST SRAM IN TOOLS RELEASE 2.2 AND LATEReiiiiitiiecicttiee ettt ettt sevtee e st e s sbte s s s envae e s snaee s 128
18.3 USING SRAM IN TOOLS RELEASE PRIORTO 2.1 RCBvvviiiiciiie ettt ettt e s b 130
19 THME FUNGCTIONS ettt e e e e e s e bbbt e e e e e s s e b bbbt e e e e e s ssab bbb beseeesssssbbbbessesssesantes 131
19.1 STANDARD C TIME FUNCTIONSttttiiiiiiiiiiitiiie e e e s ettt s e e s s e et e e s e e s s s s sbb bbb e e e e s s ssbbbbteesessssssabbbaaeeesssssasres 131
20 DYNAMIC MEMROY ALLOCATION AND FREE SPACE ... 132
21 THE TEMPLATE PROGRAM — COMMAND LINE MODEcooooiiiitiiiiiee ittt 135
21.1 TEMPLATE PROGRAM SOURGCE CODEccciciiiiitttiiiiieeiiiiiitiees e e e s sibbtieesessssssbbsssssesssssbsbssssessssssasbssssesssssssnes 136
21.2 COMPILING AND RUNNING THE APPLICATION = OVERVIEWciiiiuitiiiiee e s eiittiie e e e s s ssitbien s e e s s s sasbasnseesssssannns 137

2 R T O = =7y 1 N3N Y Y S = = T = 137
21.4 COMPILING THE APPLICATIONiuttiiiittteeietteeesettteeeestetsesbaeesssstesesassessssbtesssasbessssbesessbesssasstessssresssssseeneas 138
21.5 TEMPLATE PROGRAM SETUP ..uoiiiiitiie i ettt e sttt e s ettte e e ettt s s sttt e e s sttt e s saabessessbaeeesabbaessaabesesssbaeessasbasssssbeesssbaenean 139
21.5.1 Testing the RS-232 Debug CONNECLIONccuiiieieie ettt 139

22 SOFTWARE LICENSING ..ottt ettt ettt s bt e e s s eab b e e s e b e e e s s bb e e e s sabbe e s sbeaeessrbes 140
22.1 NETBURNER LICENSE AGREEMENT ...uutttiitieiiiiitttietteeiiiiisissessesssssissssssssssssmissssssssssssmissssssssssssissssseesssssinne 140
22.2 THE NETBURNER TOOLS SOFTWARE LICENSE ...vvviiiiiiiiiiiiiiiieessiitttiieeeessssibbieesesssssssssssssessssssssssssesssssssnns 140
22.3 THE NETBURNER EMBEDDED SOFTWARE LICENSEuuttiiiiieiiiiitiiiiieeessesittiteeesssssisssesesssssssasssasssesssssnnns 141
23 NETBURNER CONTACT INFORMATIONttt ettt e e sabbate e e e e 141
24 NETBURNER SUPPORT INFORMATIONttt et e e saabaaa e e e e e 141
25 REVISTION HISTORY oottt ettt e e ettt e e e e s e et e e s e e e s sa bbb b et e e eessa bbb besseesssasabbbeaseeesssssnees 5

Page 4

NetBurner Programmers Guide

Revision History

Revision Date Description

3.1 10/27/2007 Added HTML Variable tag section

3.2 2/8/2008 Updated SRAM section 18, with description of 2.1 RC6 implemenation of
SRAM usage

3.3 4/18/2008 Added OSFlags and updated examples in RTOS.

3.31 3/8/2010 Fixed example code in section 12 so that read() function using

RX_BUFSIZE would read a maximum of RX_BUFSIZE-1 so that a NULL
can be appended without overflowing the buffer.

3.32 10/29/2010 Added text in intro paragraph explaining this document applies only to the
NetBurner Standard TCP/IP Stack.
Added Dynamic Memory section and mallinfo example.

3.33 2/9/2011 Corrected Error in File Descriptor section, 5-37 changed to 5-36:
e 536 for TCP (32 in total)
e 37 - 63 for expansion (additional UARTS, TCP sockets, or custom)

Page 5

NetBurner Programmers Guide

1 Introduction

1.1 How to Use This Guide

The NetBurner Programming Guide is intended to provide an overview of the features and capabilities of the
NetBurner Network Development Kits that use the NetBurner Standard TCP/IP Stack. If you have a development
kit that uses the SBL2e hardware platform and NetBurner Single Chip TCP/IP Stack, please refer to the SBL2e
Programmers Guide. The primary goal of this guide is to provide a brief explanation of common network
applications and illustrate how you can implement these applications using NetBurner hardware, software and
development tools.

The approach of this guide is to learn by example. The first program example, called Template, can be used as a
starting point for most applications, and each application in this guide uses it as a base.

This guide should be useful to those new to embedded networking, and to experienced network professionals who
are unfamiliar with the NetBurner tools.

1.2 Source Code for Example Programs

Source code for all the examples in this manual, as well as the latest manual revision, can be downloaded from
http://www.netburner.com in the “support” section.

1.3 How to Use the NetBurner Reference Documents

All documentation is located in the “doc” directory of your tools installation. The default location is c:\nburn\docs.
These documents include:

NBEclipse Getting Started Guide Installation instructions and users guide for NBEclipse. This
is required reading before using NBEclipse.

Network Programmers Guide Programming tutorial for network platforms

NetBurner Runtime Libraries Library reference guide for network and non-network
platforms.

uC/OS Reference Manual Library reference for uC/OS Real-time operating system.

Mod5213 Programmers Guide Programming tutorial for Mod5213 devices

EFFS Programmers Guide Embedded Flash File System programming tutorial

Freescale Processor Manual Freescale detailed manuals for ColdFire microprocessors.

GNU Manuals Manuals for GNU C/C++ libraries, compiler an linker. This
includes the C/C++ language API functions.

NetBurner PC Tools Reference manual for NetBurner tools that run on the PC,
such as IPSetup, Autoupdate and MTTTY.

Platform Manuals for NetBurner Hardware These are the NetBurner hardware manuals that include
schematic information, memory maps and design guides.

There are a number of very useful resources available:
e Your support account at http://support.netburner.com
e The NetBurner public newsgroup located at groups.yahoo.com

Page 6

http://www.netburner.com/
http://support.netburner.com/

NetBurner Programmers Guide

1.4 NetBurner Network Development Kit Contents

You development Kit contains everything you need to immediately begin writing network applications:

NetBurner Hardware Platform

uC/OS Real-Time Operating System

NetBurner TCP/IP Stack

NetBurner Web Server

NBEclipse Integrated Development Environment (IDE)

Command Line Tools for those who prefer not to use Eclipse

GNU C/C++ Compiler and Linker

NetBurner Configuration Utilities including IPSetup and AutoUpdate

Power Supply

Serial Cable, Standard Network Cable (blue) and Cross-wired Network Cable (red)

1.5 Getting Started

This guide will provide an overview of how to install and configure your NetBurner tools and devices, but please
refer to the Quick Start Guide and User Manual (from Windows: Start-> Programs - Netburner NNDK - NNDK
Users Manual) that came with your development kit for additional details.

1.5.1 Software Installation

NetBurner software and tools run on Windows 2000, XP and Vista. Insert the CD into the CD-ROM drive. The
Autorun feature should automatically start the install. If it does not, run “setup.exe” from the CD-ROM.

In addition, you will need Java JRE 1.5 or later to run the NBEclipse IDE.

Page 7

NetBurner Programmers Guide

1.5.2 Hardware Installation

Your Network Development Kit includes one of several possible NetBurner hardware platforms. Each platform will
require a power connection, an Ethernet network connection, and an optional serial connection. Please refer to the
Quick Start Guide that came with your hardware platform for detailed instructions. Once the hardware installation is
complete, you should have the equivalent of one of the two block diagrams below:

Connection using cross-over Ethernet cable (red):

Host Ethernet (red cross-over cable) - NetBurner
Computer [~ ”| Hardware
) RS-232 g
Connection using standard (blue) Ethernet cables:
Ethernet
Host Ethernet | gyitch | Ethernet | NetBurner
Computer [T g - ”| Hardware
) RS-232 g

1.5.3 Network Configuration

Once the hardware and software installations are complete, you will need to either verify automatic network
settings, or assign static network settings of the NetBurner device.

1. Verify the hardware is connected correctly. A link light is located near the RJ-45 Ethernet connector on
your NetBurner board. The link light will be lit if the network cable is connected correctly to both the host
computer and the NetBurner device. Note: If the link light is not lit, network communication will not be
possible.

2. Run the NetBurner IPSetup program. (From Windows: Start - Programs > Netburner NNDK —>IP Setup
tool.) IPSetup will allow you to view your NetBurner device’s current settings, or modify the settings. If
you are using DHCP, then the values in the left pane in the IP Setup window will be zero, and the IP
address assigned by the DHCP server will appear in the “Select a Unit” pane as shown below. The name
following the IP address indicates the NetBurner platform name. If your running application supports a
web interface, the “Launch Webpage” button will open up (when clicked) your default web browser to
display your NetBurner device’s home page.

Page 8

NetBurner Programmers Guide

ﬂ: HetBurner, IPSetup

MHDE Settings Select a Unit
Pl 0.0 . 0.0 0-10-88-F1-F4-6B] IP-0.0.0.0 DHCP-10.1.1.101 CFV2-40
Metwork Mask | n o .o n
Set--»
Gatewiay| O . 0O . 0O . O

DNG | O . 0 .0 .0

Baudrate 115200 ~| Search Again

Mas Address |00-10-88-F1-FA-68

Launch ‘webpage | Advanced... | Cloze

3. If you wish to assign a static IP address, enter the information into the “NDK Settings” pane (as shown
below) and click on the “Set” button. There will be a short pause while parameters are updated. If you do
not see your device in the “Select a Unit” window, click on the “Search Again” button. If your running
application supports a web interface, the “Launch Webpage” button (when clicked) will open up your
default web browser to display your NetBurner board’s home page.

ﬂ: NetBurner, IPSetup

MHDE Settings Select a Unit
N AT [00-10-88-F1-FA-BE] 1F:10.1.1.30 CFy2-400

Metwork Mask | 255 . 255 . 255 . O

Gate"-.-'-.-"a_l,l| m .1 1

DNS| O . 0 .0 .0

Baudrate [115200 | Search Again

Mac Address |nn-1 0-8B-F1-FA-BE

|
|

Launch ‘webpage | Advanced... | Cloze

1.5.4 Debug Port

Throughout this guide, we will refer to the “debug port”. The debug port is one of the RS-232 ports that can be used
to interact with your NetBurner device in the example programs. By default stdout, stdin and stderr are mapped to
the debug port, so when you use functions like printf(), scanf(), gets(), etc. they read and write to the debug port.
All of this is configurable. You can also disable the debug port and use the port as a general purpose UART, or you
can reassign the stdio file descriptors to use other serial or network interfaces.

Page 9

NetBurner Programmers Guide

2 Networking Device Configuration

2.1 Overview

The NetBurner hardware and software solution supports Ethernet and PPP network connections. The Ethernet
connection is made through the RJ-45 connector on your NetBurner device, which then will connect directly to your
host computer (use the red crossover cable for direct connections without a hub, switch or router), to your Local
Area Network (LAN) through a hub, switch or router, the Internet, or both. A PPP connection can be made using a
RS-232 serial port as a hard-wired connection, or through a modem. The NNDK supports the modem initialization
for a ZOOM 56K modem. If you are using a different modem, you may need to modify the modem initialization
string. Contact the manufacturer of your modem for additional information.

2.2 Obtaining an IP Address

To get your NetBurner Network Development Kit (NNDK) up and running as quickly as possible, you must have an
IP Address for both your host computer and your NetBurner device. The NetBurner factory application supports
both static and DHCP assigned IP addresses.

2.3 Static IP Address

If you are part of an existing network and want to use a static IP address, you must get the address from your
network administrator. If you connecting your NetBurner hardware to a single computer, or are on an

isolated network, you should select one of the reserved addresses described in the “How do I select an IP address”
section of this guide.

2.4 Dynamic IP Address (DHCP)

When the factory program boots, it will first attempt to obtain an address from a DHCP server. If you are connected
to a network with a DHCP server, everything should get configured automatically.

2.5 Network Configuration Step by Step Instructions

=

Get a static IP address, or use DHCP.

Install the NetBurner Development Tools on your host computer.

3. Connect the 12 VDC power supply (US and Canadian customers only) to the board by inserting the P5
male connector on the power supply cord into the P5 female connector on the board assembly (on the edge
of the board near the DB-9 connector). Please refer to your Quick Start Guide for additional information.

4. If you are part of an existing network, or are using a hub: Use the blue RJ-45 patch cord to connect your
NetBurner board to an unused network jack or hub port. Note: You cannot use the blue patch cable to
connect directly to a network card in a computer. When finished, skip to step 6.

5. If you do not have a hub and want to connect directly to your host computer: Use the red RJ-45 patch cable
to connect your NetBurner board to your host computer. Note: You cannot use the red patch cable to
connect to a network hub or existing network jack.

6. Plug in the power supply (120VAC input).

N

Page 10

NetBurner Programmers Guide

7. Execute the IPSetup.exe program. From the Windows: Start-> NetBurner—> 1PSetup tool. (If you used the
default installation settings, the program is located in the C:\nburn\pctools\ipsetup directory).

8. The IPSetup program will automatically locate all NetBurner devices on your network. If more than one
device appears, select your device by matching the MAC address displayed in IPSetup with the MAC
address sticker on your NetBurner board.

If using a static IP address: Enter your IP Address and Mask in the corresponding IPSetup text boxes. For
example, if you are on an isolated network, the IP Address could be 10.1.1.11 and the Mask could be
255.255.255.0 (see “How Do I Select an IP Address”). Select the “Set” button to send the modifications in
the CFV2-40.

If using DHCP: Verify that the IP address and mask have been set.

9. Your NetBurner hardware is now configured! Simply click on the “Launch Webpage” page button in the
IPSetup window to view the factory application.

s NetBurner IPSetup

MO, Settings Select a Unit
pf B0 .1 .1 .30 MAC: [00-10-88-F1-FA-B8] 1P-10.1.1.30 CFY2-40

Network Mask | 255 . 255 . 255 . O

Gatewfay| 10 . 1 . 1 . 1

)]

DNS | O . 0 .0

Baudrate 115200 ~| Search Again

Mac Address |00-10-88-F1-F4-68

Launch ‘Webpage | Advanced... | Cloge

For additional information, please refer to your User Manual. From the Windows Start Menu: Start-> Programs—>
NetBurner NNDK-> NNDK Users Manual.

3 How Do | Select an IP Address?

If you are part of an existing network and are not using DHCP, stop reading now and go get an IP address and
network mask from your network administrator. If you follow the advice in this paragraph on an
existing network without an assigned IP address, the Administrator will hunt you down.....

IP addresses are used to route packets from place-to-place on Intranets/Internet. If you are not part of an established
network, and your Ethernet segment is isolated, you can choose just about any IP address you desire.

The powers that be have actually set aside some addresses for isolated networks. They are documented in RFC1918.
The reserved ranges are:

10.0.0.0 to 10.255.255.255 Class A

172.16.0.0 to 172.31.255.255 Class B
192.168.0.0 to 192.168.255.255 Class C

Page 11

http://www.faqs.org/rfcs/rfc1918.html

NetBurner Programmers Guide

If you are doing development on an isolated network, you can use the following addresses (they will be used for all
of the examples in the documentation):

e Set Your PC’s Network Adapter Card IP Address to 10.1.1.10 (only change the Network Adapter Card, do
not change your Dial-Up Adapter settings)

e Set the IP address of the NetBurner board to 10.1.1.11

e Set the network mask for both the PC network adapter and the NetBurner board to 255.255.255.0

4 Web Browsers and Proxy Servers

If you are working on a corporate LAN that uses a proxy server for Internet web browsing, you will need to exclude
the IP address of your NetBurner hardware in your web browser’s proxy server settings/preferences. Otherwise, an
attempt to connect to a web page on the LAN will fail because the proxy server will attempt to route the request
outside the LAN. For most web browsers, this can be accomplished in the advanced settings for the proxy server
configuration. If you are using IE 6.x, click on Tools = Internet Options > Connections - LAN Settings = Proxy
server. For additional information, please contact your IT Department.

Page 12

NetBurner Programmers Guide

5 Using the NBEclipse IDE to Create the Template Program

The NBEclipse Application Wizard can quickly create a project and generate source code for a fully functional
network-enabled application. This application can be used as a starting point and modified to suit your product
requirements. The tutorial on the NBEclipse Application Wizard is covered in detail in the NBEclipse Getting
Started Guide, and is not repeated in this document.

If you prefer command line tools, you can do all of your development using the make utility. Please see the section
entitled “Using the NetBurner Command Line Tools to Create the Template Program” for details.

Traditionally called the “Hello World” program, the “Template Program” will specify a minimal code base from
which you can write your future applications. The objective of this template program is to print the characters “Hello
World” out the debug port of your NetBurner device. In addition, this template program will enable network
services so that it can be downloaded over a network connection instead of through a serial port or a BDM
(Background Debug Mode) port.

The Debug Monitor

The NetBurner device contains a flash memory boot sector loaded with a boot program called
the “Debug Monitor”. This program is designed to be very small and takes up less than 16
Kbytes of memory space. The Debug Monitor is not designed to provide full TCP network
communications, although it does support the TFTP protocol.

The full TCP/IP Stack functionality is compiled as part of your application. If you download an
application that immediately crashes when it boots, full network services will not be available. In
this case, the NetBurner Debug Monitor comes to the rescue. Once in the Debug Monitor (at the
NB> prompt), you can download a working application through the serial debug port. See the
section on serial downloads using the Debug Monitor for more information.

5.1 Create a New Project with the AppWizard

The NetBurner Application Wizard will create a project and C/C++ source code for your application. This is a great
way to start a new project since you can add functions like DHCP and HTML processing by selecting the
appropriate checkbox items in the Application Wizard dialog box. The screenshot below shows the features selected
in the NBEclipse Application Wizard to produce the code for the Template Program.

Page 13

NetBurner Programmers Guide

d? New Project §|

NetBurner Project Options .
Set the various options for the new NetBurner project.
Project Configuration Options
Target platform: |MOD52}'EI ﬂ
Target IP: |

NetBurner Application Wizard

If you would like NBEclipse to generate your project, please select your configur
Mot all options are avaiable for every platform

Options

v AutoUpdate v SmartTrap

[[WiFi

[+ DHCP [v" Metwork Debugging
[v WebServer [

|[v TaskScan

< Back | Einish | Cancel

The features we selected are:

AutoUpdate Enables application updates through a network connection.

DHCP Ability to get a DHCP address from a DHCP server

Web Server Enables HTTP web services

Task Scan Task Scan enables you to get a snapshot of what RTOS tasks are running in the
Release build of your application, including the call stack and source code line
numbers for each task. To use Task Scan you run the Windows TaskScan.exe
program on a PC, which communicates with your NetBurner device.

Smart Trap Provides additional debug information if your application crashes. For example, a null
pointer assignment, stack overflow, or bus error. The information is displayed through
the debug serial port and can be viewed with a utility such as MTTTY. The default
serial port is UART 0.

Network Adds function call to enable network debugging if a Debug build of the code is

Debugging compiled and downloaded to the target device.

Page 14

NetBurner Programmers Guide

5.2 Template Program Source Code

Edit the top of the file to add the Template header description as shown below. Comments have been added to the
source code to explain the function of important functions.

Description: The Template Program
Filename: main.cpp

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <smarttrap.h>
#include <taskmon.h>
#include <NetworkDebug.h>

extern "C" {
void UserMain (void * pd);

}

const char * AppName="Template Program"; // Name for IPSetup

void UserMain (void * pd) {
InitializeStack(); // Initialize TCP Stack
if (EthernetIP == 0) // Enable DHCP if no static IP
GetDHCPAddress () ;
OSChangePrio (MAIN PRIO);// Set UserMain() task priority

EnableAutoUpdate () ; // Enable network updates
StartHTTP () ; // Start Web Server
EnableSmartTraps () ; // Enable Smart Traps

EnableTaskMonitor () ; // Enable Task Scan

#ifdef DEBUG // Enable GDB stub if Debug build
InitializeNetworkGDB and Wait();
#endif

iprintf ("Application started\n");
while (1) {
OSTimeDly (20);

The above program is a fully functional network application in just a few lines of code! The only application
specific code is inside the while (1) loop; the remainder of the program is what we will refer to as the “Template
Program”. Although the purpose of our application is to print “Hello World” out the debug serial port, adding the
network support will allow fast code development using NBEclipse, and also allow network configuration using the
NetBurner IPSetup utility (i.e. IPSetup tool). For additional information on IPSetup and AutoUpdate please refer to
your NNDK User Manual. From Windows: Start = Programs = Netburner NNDK - NNDK Users Manual.

Page 15

NetBurner Programmers Guide

The “extern C” declaration is used to so that UserMain() is compatible with both C and C++ applications; it
prevents the name mangling associated with C++,

extern "C" {
void UserMain (void * pd);

}

The line: const char * AppName="Template Program"; will enable the IPSetup utility to display the
application name. You can change “Template Program” to any string you wish. If this variable is not set, IPSetup
will not display a value for this field. The maximum string length is 40 characters.

The UserMain() function is a thread created by the system to be your application’s main entry point for taking
control over the function of the device . The parameter passed to UserMain() is a void pointer to some type of data.
This is a feature of the uC/OS RTOS, but it is not needed for the NetBurner tool set.

The next group of function calls handle system initialization;

InitializeStack(); // Initialize TCP Stack

if (EthernetIP == 0) // Enable DHCP if no static IP
GetDHCPAddress () ;

OSChangePrio (MAIN PRIO);// Set UserMain() task priority

EnableAutoUpdate () ; // Enable network updates
StartHTTP () ; // Start Web Server
EnableSmartTraps () ; // Enable Smart Traps

EnableTaskMonitor () ; // Enable Task Scan

InitializeStack () initializes the TCP/IP Stack. This is required for any network communications to take place.

The line: if (EthernetlP = = 0) GetDHCPAddress(); checks the NetBurner device’s IP address setting, and if the IP
address is 0.0.0.0, the device will attempt to contact a DHCP Server and obtain a dynamic IP configuration,
including the IP address, mask, gateway and DNS Server.

What if DHCP fails?

If you run IPSetup and notice that the IP address of your device is 0.0.0.1, this is an indication
that a DHCP Server could not be found on your network. The DHCP Client runs as a separate
task, so it will keep trying to get a DHCP address until it succeeds, or the application explicitly
calls StopDHCP();.

The function call OSChangePrio(MAIN_PRIO) sets the UserMain task priority to the default, which is 50. The
RTOS has a total of 63 priority levels. Level 1 is the highest, and level 63 is the lowest priority. In a preemptive
RTOS, the highest priority task ready to run will execute. For example, the TCP/IP stack task is a higher priority
task (lower priority number), and will interrupt UserMain() when necessary to process network data.

Some of the tasks are reserved. For example, task 63 is the system idle task, which runs when no other tasks are
ready to run. The system defines the following tasks in \nburn\include\constants.h:

#define MAIN PRIO (50)
#define HTTP_PRIO (45)
#define PPP_PRIO (44)
#define TCP_PRIO (40)
#define IP_PRIO (39)

#define ETHER SEND PRIO (38)

Page 16

NetBurner Programmers Guide

In addition, task 0 and task 63 are reserved. Tasks available for user applications are any of the remaining task
priority numbers. Some network modules such as FTP and Telnet Command will also use task priorities, but the
priority will be an option passed to the function that starts the task.

Always check the return value when creating a task!

If you call a function that creates a new task and you specify a task priority that is already in use,
the function will return an error.

An easy way to keep track of priority levels for user applications is to use the MAIN_PRIO definition and add or
subtract a number from it. For example, if you create a new task and want it to be of higher priority than UserMain,
then use (MAIN_PRIO — 1). If you want it to be of lower priority, the add 1, etc.

The function EnableAutoUpdate () ; Will enable the network flash memory update capability of the device. The
Autoupdate utility is used both during development to quickly download code to flash memory, and also as an
update mechanism once the device is deployed.

The startHTTP () function starts the HTTP Web Server task. When you build your project, the web page data in
your project’s “html” directory will be processed and made available to be served up as a web page. For example,
you will probably have a web page called “index.htm”. The startHTTP () function will start a task that listens on
port 80 for incoming HTTP requests such as those from a web browser. An optional parameter may be passed to the
function to select a different port number. For example, startHTTP (81) ; will start the Web Server and tell it to
listen on port 81. startHTTP () may only be called once.

The EnableTaskMonitor () enables TaskScan, a network debugging tool that is used to view tasks and their
status in a running application. To use TaskScan you must add #include <taskmon.h> in your application's main.cpp
file and EnableTaskMonitor(); in user main. When the TaskScan utility is run on your Windows computer you can
view the running tasks, their status and current source code line number. There are no performance hits if you
include TaskScan in your application; the only time it will be invoked is when you run the TaskScan utility and
connect to your NetBurner device. TaskScan is covered later in this manual.

The NetBurner system will catch programming errors that cause traps, such as null pointers, and display debug
information such as the program counter, address registers and data registers. The EnableSmartTraps () function
call provides more detailed debugging information when a trap occurs, such as the RTOS task information. Note that
if you are using GDB/Insight Debugging, EnableSmartTraps() must called before the GDB stub function.

The section of code for the debugger with check for the definition “ DEBUG”. If defined, the build is a Debug build
(as opposed to a Release build), and the network debug stub will be initialized. The “wait” in the function call name
refers to the fact that the application will wait until the debugger connects, then continue execution.

#ifdef DEBUG // Enable GDB stub if Debug build
InitializeNetworkGDB and Wait();
fendif

The inside of the while loop is where you would place your application code. Modify main.cpp to add the iprintf()
shown below:

while (1)
{
iprintf (“Hello World\r\n”); // integer version of printf ()

OSTimeDly (20);

Page 17

NetBurner Programmers Guide

The iprintf () and 0STimeDly (20) are just there for the example; you would replace those lines with whatever
you want your application to do. Note that you should never return from this while loop; if you did, then your
application would lose control of the hardware.

There are 20 ticks per second by default. The definition “TICKS PER SECOND” is defined as “20”, and can be
used in place of a numeric value. For example, a delay of 2 seconds is: “OSTimeDly(TICKS PER SECOND * 2)”

5.3 Template Program Setup

Before running our program, let’s make sure your hardware is set up correctly. To run the Template program, you
will need your hardware to be set up as shown below:

Connection using cross-over Ethernet cable (red):

Host Ethernet (red cross-over cable) NetBurner

Computer [T ”| Hardware
RS-232

Connection using standard (blue) Ethernet cables:

Ethernet

Host Ethernet Switch Ethernet NetBurner

Computer [T d - ”| Hardware
RS-232

The Ethernet connection should be between your host computer and your NetBurner device’s RJ-45 connector. The
RS-232 connection should be made between your host computer's Serial port and the Debug Serial port of your
NetBurner device. The Serial port connection on the NetBurner device will vary with each hardware platform, but it
should be a DB9 connector on the processor board itself, or on a separate Adapter board or Carrier board supplied
with your kit. Please refer to your Quick Start Guide for additional details on how to "make" and download files to
your NetBurner device.

5.3.1 Testing the RS-232 Debug Connection
You can determine if you are properly connected to the debug port with the following test:

1. Start the dumb terminal program MTTTY, which is included in your NetBurner tools. You can start it from
within NBEclipse from the NBEclipe menu item or MTTTY icon, or from the Windows start menu: Start
-> Programs > Netburner NNDK - Mttty Serial Terminal. Set the com port to whichever port you are
using on your computer (usually coml), and set the baud rate to 115,200. Make sure to click on the
“Connect” button in the MTTTY window to establish the connection.

2. Power on or reset your NetBurner device. The MTTTY screen should display a sign-on message similar to:
“Waiting to boot.......... . If you see this message, then you are connected correctly.

For additional information, please refer to your User Manual. From Windows: Start = Programs = Netburner
NNDK - NNDK Users Manual.

Page 18

NetBurner Programmers Guide

5.4 Compiling and Running the Application

Now that we have the application source code file, we need to compile it into a code image and download it to your
NetBurner device. There are four methods to download your applications:

1. Through the serial port

2. Through a network connection using AutoUpdate. This is the preferred method, and can be run from within
the IDE, or as a stand-alone application.

3. Through a network connection using TFTP

4. Through a network connection using FTP

In order to execute your application on your NetBurner device you will need to do the following:

1. Compile the source code into an application image
2. Download the application image to the flash memory of the NetBurner device
3. Reboot the NetBurner device so the application can begin execution

The NBEclipse IDE uses the AutoUpdate functionality to download code to your NetBurner device by using a “Run
Configuration”. The device will then reboot and begin execution of the new application. If you are unfamiliar with
this process, please reference the NBEclipse Getting Started Guide. Once the download is complete, you will see the
debug messages appear in MTTTY, along with “Hello World”.

Flash and RAM application files

When your code compiles correctly, two files are created: template.s19 and template_ APP.s19.
The template.s19 file is memory mapped to run from RAM, while template_ APP.s19 is memory
mapped to run from Flash memory. Note: All compiled images will be located in the
c:\nburn\bin directory. This guide will focus on Flash downloads. Please refer to the section on
Downloading to RAM in your User Manual for more information on downloading applications
to RAM. (From Windows: Start > Programs - NetBurner NNDK - NNDK Users Manual.)

Page 19

NetBurner Programmers Guide

6 DHCP - Dynamic Host Configuration Protocol

DHCP is used to provide host configuration parameters on a TCP/IP network. DHCP is built on a client-server
architecture in which one or more designated DHCP Servers allocate network addresses and other configuration
information to hosts (DHCP Clients). Note: All NetBurner devices can function as a DCHP Client. For additional
information about DHCP, please refer to your NNDK User Manual. From Windows: Start - Programs -
NetBurner NNDK - NNDK Users Manual.

To enable DHPC Client services, your application code must contain DHCP Client API function calls to enable the
service. DHCP can dynamically configure many parameters, including:

IP Address

Subnet Mask
Gateway Address
DNS Server Address

el NS

The example code below checks the first interface, but you can modify it to check for the second or third interfaces.
Typically the first interface will be your primary Ethernet interface. To use the network interface functions, you
must include netinterface.h.

// Get first interface identifier. Use GetNextInterface (<last interface>) to
// obtain additional interface numbers if necessary.

int FirstInterface = GetFirstInterface():;

InterfaceBlock *ib = GetInterFaceBlock (FirstInterface); // Get interface data

if (ib->netIP == 0) // Check IP address for 0.0.0.0, and use DHCP if necessary
{
iprintf ("\r\nNo static IP address set, attempting DHCP\r\n");
if (GetDHCPAddress(FirstInterface) == DHCP OK)
{
iprintf ("DHCP address: "); ShowIP (ib->netIP); iprintf ("\r\n");
else

{

iprintf ("Error: could not obtain a DHCP address\r\n");
}
}

The code checks the interface block variable ib->netIP to determine if the host IP address is 0. If the IP address is 0,
then the DHCP Client should be invoked to obtain a dynamic IP parameters. If EthernetlP is not 0, then the system
assumes a static IP address has been assigned, and DHCP is not used.

In previous tools releases that did not include multiple network interface support, a global variable named
EthernetIP was used to access the Ethernet IP address of the device. While this variable will still work for backward
compatibility, it is recommended that the interface functions be used for all new applications.

An easy way to check your NetBurner board to determine if it has a DHCP assigned IP address is to use the IPSetup
program (from Windows: Start-> Programs - Netburner NNDK - IP Setup tool). In the screenshot below, the IP
address field representing the static IP address is shown as 0.0.0.0, followed by the DHCP-assigned IP address (i.e.
10.1.1.101). Other parameters such as the network mask, gateway and DNS are also assigned and can be accessed as
parameters in your application. The NDK Settings section (left pane of the IPSetup window), represents the static
settings.

Page 20

NetBurner Programmers Guide

m= NetBurner IPSetup

MHDE Settings Select a Unit

Pl 0.0 .0 .0 0-10-88-F1-F4-ER] IP:0.0.0.0 DHCP-10.1.1.101 CFy2-40

)]
)]
)]

M etwark, Mask| o

=

=

=
o
o
B

GateWa_l,l| n .

DNG | O . 0 .0 .0

Baudrate 115200 ~| Search Again

Mas Address |00-10-88-F1-FA-68

[
|

Launch ‘webpage | Advanced... | Cloze

For additional information about IP Setup, please refer to your NNDK User Manual. From Windows: Start >
Programs = Netburner NNDK - NNDK Users Manual.

Page 21

NetBurner Programmers Guide

7 Changing IP Addresses at Run-Time

System configuration parameters such as IP address, mask, gateway and DNS are stored in two places:

1. Configuration Records used by the system to store configuration parameters in flash memory.
2. Interface Blocks used by the system at run time.

There are 3 Configuration Records, numbered 0, 1 and 2, as defined in \nburn\include\netinterface.h:

#define CONFIG IF ID ETHERNET (0)
#define CONFIG IF ID WIFI (1)
#define CONFIG IF ID ETHERNET2 (2)

The Configuration Record is a structure that contains all the system configuration parameters. When your NetBurner
device boots, it copies these parameters to run-time variables that are used during normal system operation, called
Interface Blocks. This application illustrated how to read and modify both runtime and stored flash configuration
parameters.

NOTE: This application note was written for tools release 1.95. If you are using a later revision, please check the
system file references to verify specific information on function calls and structures. This application note does not
apply to prior releases.

7.1 THE CONFIGURATION RECORD

Configuration Records are stored in an 8k bytes sector of flash memory. There is one ConfigRecord structure for
each network interface in your NetBurner device. In the 1.95 release, the each ConfigRecord occupies 256 bytes.
To enable an application to modify and save the network settings you must retrieve the ConfigRecord for a specific
interface, modify it, and save it to flash. The ConfigRecord structure is defined in \nburn\include\system.h:

typedef struct
{

unsigned long recordsize; /* The stored size of the struct */

unsigned long ip Addr; /* The device IP Address */

unsigned long ip Mask; /* The IP Address Mask */

unsigned long ip GateWay; /* The address of the P gateway */

unsigned long ip TftpServer; /* The address of the TFTP server to load
data from */

unsigned long baud_rate; /* The initial system Baud rate */

unsigned char wait seconds; /* The number of seconds to wait before
booting */

unsigned char bBoot To Application; /* True = app., False = monitor */

unsigned char bException Action; /* What should we do when we have an

exception? */
unsigned char m FileName[80]; /* The file name of the TFTP file to load */
unsigned char mac_address[6]; /* The Ethernet MAC address */

unsigned char ser boot;

unsigned long ip DNS server;

unsigned char core mac address[6]; /* The Base unit MAC address */
unsigned char typeof if;

unsigned char direct Tx;

unsigned long m ExtraDataf[4];

unsigned char m bUnused[3];

unsigned char m_g boot; /* True to boot without messages */
unsigned short checksum; /* A Checksum for this structure */
}__attribute ((packed)) ConfigRecord;

Page 22

NetBurner Programmers Guide

/* The read-only system config record */
extern const ConfigRecord gConfigRec;

7.2 Reading the Configuration Record

The functions to retrieve and save a ConfigRecord are:

ConfigRecord *GetIfConfig(int num);
void SaveIfConfig(ConfigRecord *cr, int num);

where num represents the interface number: 0, 1 or 2. The *cr pointer would point to the new ConfigRecord you
wish to save in flash memory.

Although the gConfigRec is available as the run-time copy for the first interface, it is recommended you use the
Getlfconfig() function to get a fresh copy for the specific interface you want to modify.

THE NETWORK INTRFACE BLOCK

While the ConfigRecord described in the previous section is used to store parameters in flash, the InterfaceBlock
structure is used during system run-time to store the network configuration settings for each network interface. At
boot time, the network settings from the ConfigRecord are read and copied to the InterfaceBlock.

As of tools revision 1.95, the values of the device IP address, mask, gateway, DNS, etc. are controlled by a structure
located in \nburn\include\netinterface.h. The netinterface method was created to enable devices to have multiple
network interfaces, such as multiple Ethernet ports and WiFi. The configuration information is kept in a linked list
of structures with the following format:

struct InterfaceBlock

{
MACADR theMac;
IPADDR netIP;
IPADDR netIpMask;
IPADDR netIpGate;
IPADDR netDNS;
SendNetBuffer *send func;
KillInterface *kill if;
fEnableMulticast *enab multicast;
const char *InterfaceName;
int config num;

b

The functions to get an existing structure or save a modified structure are:

int GetFirstInterface();
int GetnextInterface(int last);

Functions to read InterfaceBlock parameters are:

IPADDR InterfacelIP(int InterfaceNumber);
IPADDR InterfaceDNS(int InterfaceNumber);
IPADDR InterfaceMASK(int InterfaceNumber);
IPADDR InterfaceGate(int InterfaceNumber)
MACADR InterfaceMAC(int InterfaceNumber);

’

Page 23

NetBurner Programmers Guide

Where InterfaceNumber is the interface number: 1, 2, 3, etc.

If all you wish to do is to change a network parameter at run-time, then you only need to change the InterfaceBlock
value.

EXAMPLE: MODIFY AND CHANGE NETWORK SETTINGS

The following is an example program illustrating how modify and save a network setting:

Read ConfigRecord

Read InterfaceBlock

Modify InterfaceBlock to affect run-time values
Save ConfigRecord to store new parameters

NS S

7.3 Static and DHCP IP Address Modification Example

/*****************************k***************************************

Example program to illustrate how an application can change the
run-time and stored Flash values for Ethernet IP, mask, Gateway
and DNS.

THIS EXAMPLE APPLIES TO TOOLS RELEASE 1.95 OR LATER

INTRODUCTION FOR CONFIGURATION RECORDS AND INTERFACE BLOCKS

- The NetBurner device contains runtime and stored (Flash) system
configuration parameters. Interface Blocks are used at runtime,
and Configuration Records are stored in Flash. At boot time,
data from the Configuration Records are copied to Interface
Blocks.

- There are 3 Configuration Records as defined in netinterface.h:
#define CONFIG IF ID ETHERNET (0)
#define CONFIG IF ID WIFI (1)
#define CONFIG IF ID ETHERNET2 (2)

The order of these configuration records is fixed, regardless of
the Interface Block number. For example, if you have only a WiFi
interface, you still use Configuration Record 1.

- Configuration Records are numbered 0, 1 and 2. Interface Blocks
are numbered 1, 2, 3. There is no correlation between this
numbering. Interface Block 3 could reference Configuration Record
1, depending on the order of interface registration calls by your
application.

- This example will provide a menu through the serial debug port
that enables you to set/clear static IP settings, and start/stop
the DHCP Client service.

**/
#include "predef.h"

#include <stdio.h>

#include <ctype.h>

#include <startnet.h>

Page 24

NetBurner Programmers Guide

#include <autoupdate.h>
#include <dhcpclient.h>

// Make sure to include these header files
#include <bsp.h>

#include <string.h>

#include <utils.h>

#include <system.h>

#include <netinterface.h>

extern "C" {
void UserMain (void * pd);

}

// Application name
const char * AppName = "Change IP Example";

// Variable to indicate if appliction tried to obtain runtime IP settings
// from a DHCP server.
bool AssignedDHCP = FALSE;

// Since we want to be able to start and stop DHCP, we need to create out
// own DHCP Object instead of using the GetDHCPAdderss () function which
// handles this automatically.

DhcpObject *pDhcpObj;

// Add a device name for DNS

const char *DeviceName = "NetBurner";
extern const char *pDHCPOfferName; // point this at above name in UserMain
2 -

Display runtime IP values

This function demonstrates two methods to read the runtime IP

values:

1. Using the read-only Interface function calls

2. Using the GetInterfaceBlock () function to get a pointer to an
Interface Record.

void DisplayRuntimeIPSettings (int InterfaceNumber)
{
iprintf ("\r\n\r\n--- RUNTIME IP SETTINGS ---\r\n");
if (AssignedDHCP)
iprintf ("Values assigned by DHCP Server\r\n");

// Display current runtime values using Interface read-only functions
iprintf ("IP runtime settings using Interface Functions for interface %d:\r\n",
InterfaceNumber) ;

iprintf ("IP: "); ShowIP(InterfaceIP(InterfaceNumber)); iprintf ("\r\n");

iprintf ("Mask: "); ShowIP (InterfaceMASK (InterfaceNumber)); iprintf ("\r\n");
iprintf ("Gate: "); ShowIP(InterfaceGate (InterfaceNumber)); iprintf ("\r\n");
iprintf ("DNS: "); ShowIP (InterfaceDNS (InterfaceNumber)); iprintf ("\r\n");

// Display current runtime values by getting a pointer to the Interface Block

// and accessing it's variables.

iprintf ("\r\nIP runtime settings using GetInterfaceBlock() for interface %d:\r\n",
InterfaceNumber) ;

InterfaceBlock *ib = GetInterFaceBlock (InterfaceNumber) ;

iprintf ("IP: "); ShowIP(ib->netIP); iprintf ("\r\n");

iprintf ("Mask: "); ShowIP (ib->netIpMask); iprintf ("\r\n");

Page 25

NetBurner Programmers Guide

iprintf ("Gate: "); ShowIP (ib->netIpGate); iprintf ("\r\n");
iprintf ("DNS: "); ShowIP (ib->netDNS); iprintf ("\r\n");
iprintf ("Interface Name: %s\r\n", ib->InterfaceName) ;
iprintf ("\r\n");

Display Flash IP values

This function demonstrates two methods to read the IP settings

stored in the Flash Configuration Record:

1. Using the gConfigRec global read-only structure

2. Using the RawGetConfig() functoin to obtain a pointer to a
specific Configuration Record.

___ * /
void DisplayFlashIPSettings (int RecordNumber)
{
// Note that gConfigRec only applies to ConfigRecord 0
iprintf ("\r\n--- FLASH IP SETTINGS ---\r\n");
iprintf ("These values will be 0 if you are using DHCP\r\n");
iprintf('IP Flash settings using gConfigRec for Record 0:\r\n");
iprintf ("I "); ShowIP(gConfigRec.ip Addr); iprintf ("\r\n")
iprintf("Mask); ShowIP(gConfigRec.ip Mask); iprintf ("\r\n");
iprintf ("Gate: "); ShowIP(gConfigRec.ip GateWay); iprintf ("\r\n");
() (

iprintf ("DNS: "); ShowIP(gConfigRec.ip DNS server); iprintf ("\r\n");

// Note that ConfigRecord structures start at 0 for the first interface

ConfigRecord *cr = RawGetConfig(RecordNumber) ;

iprintf ("\r\nIP Flash settings using RawGetConfig() for Record %d:\r\n",
RecordNumber) ;

iprintf ("IP: "); ShowIP(cr->ip Addr); iprintf ("\r\n");
iprintf ("Mask: "); ShowIP(cr->ip Mask); iprintf ("\r\n");
iprintf ("Gate: "); ShowIP(cr->ip GateWay); iprintf ("\r\n");
iprintf ("DNS: "); ShowIP(cr->ip DNS server); iprintf ("\r\n");

Change the runtime IP settings.

This function will display the current IP address and mask,
change the runtime variables to new values, then display the
new values.

void ChangeRuntimeIPSettings (int InterfaceNumber, IPADDR IpAddr, IPADDR IpMask,

IpGate, IPADDR IpDNS)
{
iprintf ("\r\nChanging IP runtime settings for interface %d:\r\n",
InterfaceNumber) ;

// Display current values
InterfaceBlock *ib = GetInterFaceBlock (InterfaceNumber) ;
iprintf ("0ld Settings:\r\n");

iprintf (" IP: "); ShowIP (ib->netIP); iprintf ("\r\n")
iprintf (" Mask: "); ShowIP (ib->netIpMask); iprintf ("\r\n");
iprintf (" Gway: "); ShowIP (ib->netIpGate); iprintf ("\r\n")
iprintf (" DNS: "); ShowIP(ib->netDNS); iprintf ("\r\n");
iprintf (" Interface Name: %$s\r\n", ib->InterfaceName) ;

// Change to new values
ib->netIP = IpAddr;

ib->netIpMask = IpMask;
ib->netIpGate = IpGate;

Page 26

IPADDR

NetBurner Programmers Guide

ib->netDNS = IpDNS;

// Display new values. At this point, you can communicate with the
// device using the new ip address and mask.

iprintf ("New Settings:\r\n");

iprintf (" IP: "); ShowIP
iprintf (" Mask: "); ShowIP(ib->netIpMask); iprintf ("\r\n");

(ib->netIP); iprintf ("\r\n");
(
iprintf (" Gway: "); ShowIP(ib->netIpGate); iprintf ("\r\n");
(
(

iprintf (" DNS: "); ShowIP(ib->netDNS); iprintf ("\r\n");
iprintf (" Interface Name: %s\r\n", ib->InterfaceName) ;

Store new IP address and mask settings to the configuration record
in Flash. In most cases you would have already changed the runtime
values to the same settings.

void ChangeFlashIPSettings (int RecordNumber, IPADDR IpAddr, IPADDR IpMask, IPADDR
IpGate, IPADDR IpDNS)
{
iprintf ("\r\nChanging Flash settings using RawGetConfig() for Record %d:\r\n",
RecordNumber) ;

// Get pointer to Configuration Record
ConfigRecord *cr = RawGetConfig(RecordNumber) ;

// Display current Flash values
iprintf ("0ld Settings:\r\n");

iprintf (" IP: "); ShowIP(cr->ip Addr); iprintf ("\r\n");
iprintf (" Mask: "); ShowIP(cr->ip Mask); iprintf ("\r\n");
iprintf (" Gate: "); ShowIP(cr->ip GateWay); iprintf ("\r\n");
iprintf (" DNS : "); ShowIP(cr->ip DNS server); iprintf ("\r\n");

// create new config record and copy data
ConfigRecord NewRec;
memcpy (&NewRec, cr, sizeof(NewRec));

// Change parameters
NewRec.ip Addr = IpAddr;
NewRec.ip Mask = IpMask;
NewRec.ip GateWay = IpGate;
NewRec.ip DNS server = IpDNS;

// Write new values to Flash system configuration sector
UpdateConfigRecord Num(&NewRec, RecordNumber);

// Display current Flash values
iprintf ("New Settings:\r\n");

iprintf (" IP: "); ShowIP(cr->ip Addr); iprintf ("\r\n");
iprintf (" Mask: "); ShowIP(cr->ip Mask); iprintf ("\r\n");
iprintf (" Gate: "); ShowIP(cr->ip GateWay); iprintf ("\r\n");
iprintf (" DNS : "); ShowIP(cr->ip DNS server); iprintf ("\r\n");

// You do not need to reboot if you change both the runtime
// and flash values. This function call requires #include <bsp.h>
// ForceReboot () ;

DisplayUserMenu
Displays menu through the serial port to interact with program.

Page 27

NetBurner Programmers Guide

void DisplayUserMenu ()

{

iprintf (" Start DHCP Client Servcelr\n");
iprintf (" and attempt to get a DHCP address\r\n");
iprintf ("7. Stop DHCP Client Service\r\n");

iprintf ("\r\n--- Main Menu ---\r\n");

iprintf("1l. Display Runtime Settings\r\n")

iprintf ("2. Display Flash Settings\r\n");

iprintf ("3. Change Runtime Static Settings\r\n")

iprintf ("4. Change Flash Static Settings\r\n");

iprintf ("5. Change Flash & Runtime Static Settings to 0.0.0.0\r\n");
("6
(
(

MyStartDHCP

Most applications can just use the GetDHCPAddress () function at boot
time to enable the DHCP Client. If you require more control over the
DHCP service, such as starting and stopping, then a few lines of
code are required to create a DhcpObject and check a semaphore to
determine if the DHCP request was successful. This is essentially
what the GetDHCPAddress () function does.

void MyStartDHCP(InterfaceBlock *ib)
{

int FirstInterface = GetFirstInterface(); // Get first interface identifier

// The following lines of code are essentially what the GetDHCPAddress () function
// does to make the DHCP process easier.

pDhcpObj = new DhcpObject(FirstInterface);

pDhcpObj->StartDHCP () ; // Start DHCP

// Pend on semaphore to verify an address was obtained
if (OSSemPend(&(pDhcpObj->NotifySem), 10 * TICKS PER SECOND) == OS TIMEOUT)
//Wait 10 seconds
{
iprintf ("\r\n\r\n*** WARNING ***\r\n")
iprintf ("IP Address was set to 0.0.0.0, and a DHCP server could not be
found.\r\n") ;
iprintf ("Device does not have a valid IP address.\r\n\r\n")
}
else
{
iprintf 'DHCP assigned the following values:\r\n");

(
iprintf ("I "); ShowIP (ib->netIP); iprintf ("\r\n");
iprintf("Mask "); ShowIP (ib->netIpMask); iprintf ("\r\n")
iprintf ("Gate: "); ShowIP (ib->netIpGate); iprintf ("\r\n");
iprintf ("DNS: "); ShowIP (ib->netDNS); iprintf ("\r\n");

(

iprintf ("Interface Name: %$s\r\n", ib->InterfaceName) ;
iprintf ("\r\n")
AssignedDHCP = TRUE;

void UserMain (void * pd)
{
InitializeStack();
pDHCPOfferName = DeviceName; // Host name for DNS

Page 28

NetBurner Programmers Guide

int FirstInterface = GetFirstInterface(); // Get first interface identifier
InterfaceBlock *ib = GetInterFaceBlock (FirstInterface); // Get interface data

if (ib->netIP == 0) // Check IP address for 0.0.0.0, and use DHCP if necessary
{

iprintf ("\r\nNo static IP address set, attempting DHCP\r\n");

MyStartDHCP(ib);
}

OSChangePrio (MAIN PRIO);
EnableAutoUpdate () ;
StartHTTP () ;

DisplayUserMenu () ;
while (1)
{
char ¢ = getchar():;
switch (c)

{

case 'l': // Display runtime IP values
DisplayRuntimeIPSettings (FirstInterface);
break;

case '2': // Display Flash IP values
// This example uses only 1 Configuration Record, 0
DisplayFlashIPSettings (0);

break;
case '3': // Change the runtime IP address and mask
// After this function, the device will respond to the new IP settings
ChangeRuntimeIPSettings (FirstInterface, // Interface Block
AsciiToIp("10.1.1.24"), // New IP address
AsciiToIp ("255.255.255.0"), // New IP mask
AsciiToIp("10.1.1.1"), // New IP gateway
AsciiToIp("10.1.1.2")); // New IP dns
break;
case '4': // Change the Flash IP address and mask
// If the device reboots, the new values will be in effect
ChangeFlashIPSettings (0, // Use first Config Record, O
AsciiToIp("10.1.1.24"), // New IP address
AsciiToIp("255.255.255.0"), // New IP mask
AsciiToIp("10.1.1.1"), // New IP gateway
AsciiToIp("10.1.1.2")); // New IP dns
break;
case '5': // Set all flash values to 0.0.0.0
ChangeFlashIPSettings (0, // Use first Config Record, O
AsciiToIp("0.0.0.0™), // New IP address
AsciiToIp("0.0.0.0"™), // New IP mask
AsciiToIp("0.0.0.0™), // New IP gateway
AsciiToIp("0.0.0.0")); // New IP dns
ChangeRuntimeIPSettings (FirstInterface, // Interface Block
AsciiToIp("0.0.0.0™), // New IP address
AsciiToIp("0.0.0.0"), // New IP mask
AsciiToIp("0.0.0.0"), // New IP gateway
AsciiToIp("0.0.0.0")); // New IP dns
break;
case '6': // Start DHCP Client service
if (!'AssignedDHCP)

Page 29

NetBurner Programmers Guide

iprintf ("Contacting DHCP Server ...\r\n");
MyStartDHCP(ib);
}

else

{

iprintf ("\r\n*** Error: DHCP Client service is alredy running\r\n");

}

break;
case '7': // Stop DHCP Client service
if (AssignedDHCP)
{
pDhcpObj->StopDHCP () ; // Stop DHCP
AssignedDHCP = FALSE; // Flag for this application

iprintf ("\r\nDHCP Release sent and DHCP Client service has been

stopped\r\n") ;
DisplayRuntimeIPSettings (FirstInterface);

}

else

{

iprintf ("\r\n*** Error: DHCP Client service is not running\r\n");

}

break;

default: DisplayUserMenu();

Page 30

NetBurner Programmers Guide

8 Basic Web Server Functions

8.1 Introduction

The NetBurner tools handle HTML pages, JAVA applets, Flash and images automatically. Any project that makes
use of the Web Server features must have a subdirectory immediately under the project directory named “html”. Just
put all HTML files, JAVA applets, images, etc. in this html subdirectory and the NetBurner tools will automatically
compile and link them into the application image that you download into your NetBurner device.

The Template program is now at the point where it will boot up, display its IP address (static or acquired by DHCP),
and loop forever printing messages to stdout (the debug serial port). In this chapter, we will use the web server to
display some very simple static content. The NetBurner Web Server excels at providing dynamic content as well,
which will be discussed in the next chapter.

A web server is a specialized case of a generic TCP server that listens on the “well known port number” 80. The
web server operates as a task that waits for incoming TCP connections on port 80, then delivers the requested
content to the client - which is usually a web browser.

To initiate the transfer, the web browser sends a GET request. If no file name is specified in the GET request, a
default file named index.htm or index.html is returned. The NetBurner Web Server assumes a default of index.htm
(you can change this to html if you desire). Once the web server sends the requested data, it terminates the TCP
connection.

To enable the web server and serve up pages to a web browser an application needs the following:
1. Addthe startHTTP () function call to start the Web Server
2. A directory named “html” in the project directory

3. Create a web page called index.htm.

All of the above steps are done automatically by the AppWizard if you select the appropriate checkbox items. Since
we did this with the initial template program, all we need to do now is edit the HTML content in the index.htm file.

Page 31

NetBurner Programmers Guide

8.2 Edit the index.htm Web Page

Next we will edit the index.htm file created by the AppWizard. The page will contain some text and an image.

Using HTML Tools

You can use HTML tools such as Dreamweaver to create your web content. However, remember
that EVERYTHING in the html directory is included in the application image. Some HTML
tools can leave large project files in the html directory that will take up a large portion of your
application space. You should remove any such files before building your project.

Edit the index.htm file as shown below:

<HTML>

<BODY>

<H1>Thank you for NetBurning!</H1>

</BODY>

</HTML>

The <HTML> and <BODY> tags define the file as containing HTML content and provide delimiters for the body of
the web page. The tags are used to display the logo and board pictures. The text message “Thank you for
NetBurning” is then displayed. The <H1> tags specify that the text be displayed as a header in larger bold font.

Note: The images are available with the project files as a download from www.netburner.com. If you do not have
these files, you can simply delete the two lines with the tags and display only the text.

Now compile and download the application. When you view the web page the output should look like the screen
shot below:

2N http://10.1.1.114/INDEX.HTM - Microsoft Internet Explorer
x

: FEile Edit ¥iew Favorites Tools Help =

‘ A) N ~ , —\ >
: @ Back ~ @ - |1¢] (2] €2 >) Search 5 7 Favorites @ Media @? R~ &

: Address |&] http://10.1.1.114/INDEX.HTM ",‘ Go

: GODSIG -l LI @B search web G- i Norton Antivirus B3 ~ I Links >

MetBurner

Metworking in 1 Day!

Thank you for NetBurning!

I.éj Done # Internet

Page 32

http://www.netburner.com/

NetBurner Programmers Guide

9 Interactive Web Form Example

9.1 Introduction

Dynamic HTML is generated at run-time on your NetBurner device; it is not a static web page. For example, if you
wanted to create a front panel for an instrument in which the HTML page would change depending on the current
operating parameters and measurements - that would be Dynamic HTML. This can be as simple as putting values
into predefined slots, or generating whole pages from scratch at run time. For more information about Dynamic
HTML, see the flashform and tictactoe example projects (in C:\Nburn\examples).

The short version of Dynamic HTML: Dynamic HTML works just like normal HTML. It just requires a special
TAG within the HTML files. Anywhere you want to include Dynamic HTML in your HTML files, you would add
the TAG:

<!--FUNCTIONCALL YourFunctionName -->

Then, in your project source code, you must include this C function:

volid YourFunctionName (int sock, PCSTR url)

{ writestring(sock, buffer // Data to output goes here);

}

Your function name is assumed to be a C function by the linker. Therefore, if you are using C++, you must include
the following before your function definition:

extern "C"
{
void YourFunctionName (int sock, PCSTR url);

}

This directive tells the C++ compiler to leave the function names intact by disabling C++“name mangling”.

Page 33

NetBurner Programmers Guide

In the previous chapter, our basic web page example demonstrated static web content. Your NetBurner platform can
easily do dynamic content as well. In this example we will create a configuration web page interface that will
provide submission and recall of changeable data by using HTML forms. Below is a screen shot of this application:

<A Interactive Configuration Example - Microsoft Internet Explorer ['._|['E|[‘S__(|
 File Edt Miew Favoribes Tools Help ;'f

: " — n - 53
e Back ~ ([|£| |EL| _I\J P) Search ‘i‘\? Favarites @ Media @3 < - =
 Address |:g"| http:/f10.1, 1, 103/ INDEX, HTM 4 | -

- Google - | ﬂ % Search Web : Morton Antivieus 51 -+ Links

Interactive Configuration Example

1te il set: ous
® UTC Time O Local Off |D H

[] Leap Second Dalel

® add O Subtract

DST: (%) Enahle:) Disahle

[Submit New Setlings H Cancel Changes]

&] Done & Internet

9.2 How to Use HTML Forms

You have probably encountered forms many times on the web, especially for ecommerce and feedback forms. The
format is typically some number of text fields, checkboxes, radio buttons, combo boxes and a submit button. When
you click on the submit button, the data from the form is sent to the web server as a HTTP POST. The web server
then parses the data and takes appropriate action. If you have ever purchased anything on the web, filled out the
order information, and clicked on a button like “confirm order” or “buy”, you most likely submitted form
information and were then redirected to a page confirming the order.

A form is defined in HTML by the <FORM></FORM> tags. User input is accomplished using the <INPUT> tag,
representing text fields, checkboxes, radio buttons, etc.. For example,

<FORM ACTION="name.htm" METHOD="POST">

<INPUT TYPE="radio" VALUE="UTC" NAME="RadioGroupl" CHECKED="1"> UTC Time
<INPUT TYPE="radio" VALUE="Local" NAME="RadioGroupl">Local Offset:
<INPUT NAME="tfHours" VALUE="”9” TYPE="text" SIZE="20"> Hours

<INPUT TYPE="submit" VALUE="Submit”>

</FORM>

The above HTML source code shows the first few form items of the example explained in this chapter. The above
form has two mutually exclusive radio buttons, one text field and the form submit button. The web browser will

Page 34

NetBurner Programmers Guide

identify the input types and create the respective graphics on the web page. Note: The items in bold text will be
created dynamically by the application source code in our example program. The user will select a radio button,
enter text in the text field, and finally click on the submit button. The user form values will then be sent to the web
server as a POST.

9.3 Collecting User Input: Web Forms vs. URL’s

There are two common methods for moving data from the client web browser to the web server on an embedded
platform: HTML Forms using POST, and storing the data in the URL. The previous section described form
operation. You have probably seen the URL method many times in e-commerce applications.

For example, the URL - http://www.store.com/orderform?type=order123 is storing the data type=order123 in the
URL. Basically, everything following the ?’ character is ignored by the browser, so your application can store
whatever data it needs after the character. A big advantage of this method is that the application is stateful, meaning
multiple users can access the same application and each user’s session maintains its specific data in the URL.

9.4 Application Objectives

We will create a web page interface using forms that can:

o Modify and recall text fields, checkboxes and radio buttons

e Store and recall settings in flash memory using the Get/Set API function calls
e Use the Submit web page feature to modify settings

e Parse web form data submissions

e Use the FUNCTIONCALL HTML tag to link HTML 1/O to C/C++ code

9.5 Application Files

Our application is divided up into the following files:

File Name Description

main.cpp This is the same as in the basic web example with one modification