2

etBurner

Mod5282 Programmable Interrupt Timer

Application Note

Revision 2.1
November 16, 2011

Table of Contents

Introduction

PIT Registers
PIT Control and Status Register (PCSR)
PIT Modulus Register (PMR)
PIT Count Register (PCNTR)

Program Example

Introduction

The Mod5282 has four programmable interrupt timesdaies, PITO-PIT3 (PITO is
reserved for the uCOS timer). Each PIT is a 1GHwier that provides precise interrupts
at regular intervals with minimal processor intemven. The timer can either count
down from the value written in the modulus registarit can be a free-running down-
counter.

This application note will describe the use of timers, as well as provide an example
program that uses one of the timers to createruyés at a regular interval. The example
is useful both for learning how to use interrupgsagell as the PIT functions. Additional
information concerning the PITs is available in MEF5282 Reference Manual, Chapter
19 (Revision 2.3).

PIT Registers

The PIT modules involve the use of three types@bit registers: the PIT Control and

Status Register (PCSR), PIT Modulus Register (PMBR)Y the PIT Count Register

(PCNTR). Each PIT module has its own set of regist The PCSR and PMR registers
have read and write access while the PCNTR regmtdy has read access. The
following subsections describe these registers.

PIT Control and Status Register (PCSR)

The PCSR registers configure the corresponding rmeperation. You can
enable/disable interrupts and the PITs, set thetirgiavalue for down-counting,
determine when to reload a new starting value, rmnde with this register. Additional
information about the use of this register candasil in section 19.5.2.1 of the reference
manual.

An important note that requires attention is thefiguration of the prescalar on bits 11-8
of the PSCR register. Configuring and generatheg RIT clock requires knowing the
system clock, PIT modulus value, and prescalareviduthe desired timeout period. The
following equation is used to calculate the timepeitiod for the PIT clock:

T = PIT Timeout Period [Seconds (s)]
P = PIT Prescalar

M = PIT Modulus Value

F = PIT Frequency [Hertz (Hz)]

S = System Clock [Hertz (Hz)]

To determine desired timeout period:
T=(2xPx(M+1))/S

To determine PIT modulus value using desired PIT f requency
M=[S/(2xPxF)]-1

For example, let's say that a timeout period ofual®o001 second (1000 Hz) is needed.
The system clock of the Mod5282 is 66.3552 MHzwsohave a value of 66,355,200 Hz
for s. Using a system clock divisor value (prescaldue&pof 8 is sufficient for 0.001
second. Knowing what prescalar value is neededrdipon the desired timeout period.
The PIT Modulus Register is only 16 bits, so thghlsst starting value it will count down
from is OXFFFF, or 65,535. If a larger time int@rwas used, such as 1 second (1 Hz),
then a system clock divisor of 8 would not be ermube divisor would need to be larger
in order to keep the value of the modulus registater the maximum value. All that's
left now is determining the modulus value, whiclmes out to be about 4146 (truncated).
With the prescalar bit configuration set to “001(from the prescalar table for system
clock divisor of 8 of table 19-3), PIT Modulus Rsigir written with the value 4146, and
PCSR[1:0] written with “11” (reloads the down-coenfrom PMR once it reaches zero
and enables the PIT), you get a PIT clock cycle.001 second.

PIT Modulus Register (PMR)

The 16-bit read/write PMR contains the timer moduwhalue that is loaded into the PIT
counter when the count reaches 0x0000 and the HRIER][(reload) bit is set.
Additional information on how to calculate the mbadu value can be found in the
previous section on the PIT Control and Status fegi

When the PSCR[OVW] (overwrite) bit is set, PMR niansparent, and the value written
to PMR is immediately loaded into the PIT countefhe prescalar counter is reset
(OXFFFF) anytime a new value is loaded into the Bdlnter and also during reset.
Reading the PMR returns the value written in theduhas latch. Reset initializes the
PMR to OxFFFF.

PIT Count Register (PCNTR)
The 16-bit read-only PCNTR contains the counteu@alReading the 16-bit counter with

two 8-bit reads is not guaranteed to be coher#titing to PCNTR has no effect, and
write cycles are terminated normally.

Program Example

The general procedure for setting up a PIT typycadl/olves three steps: 1) Define an
interrupt service routine, 2) Configure the PITdas) Start the PIT. The following
example program will configure an interrupt to ¢y one PIT request event
approximately every 1/1080second (1000 Hz) via the PIT1 module.

/******************7\'**************7\'**************** kkkkkhkkkhkhkkkhhkhhkkkk

* This example program exercises the programmable interrupt timer *
* the MCF5282 CPU. *

/

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <smarttrap.h>
#include <taskmon.h>
#include <..\MOD5282\system\sim5282.h>
#include <cfinter.h>
#include <utils.h>
#include <pins.h>

1l

/I Function prototypes - Instruct the C++ compiler not to mangle the
/I function names

I

extern "C"
{
voi d UserMain(voi d *pd);
1
/I This function sets up the 5282 interrupt cont roller
1
voi d Setintc(i nt intc, | ong func, i nt vector, i nt level,
i nt prio);
}
const char *AppName = "MOD5282 PIT Example" ; /I App name for IPSetup
vol ati | e DWORD pitr_count; /I Global count variable
T T inn§n M
/I INTERRUPT - PIT interrupt service routine
1
INTERRUPT(my_pitr_func, 0x2200)
{
stati c WORD led_count; /I For incrementing carrier board LEDs
WORD tmp = sim.pit[1].pcsr; /I Get PIT1 Control & Status Register
/Il data
1
/I Clear PIT1 - Refer to table 19-3 for more inf ormation on what

/I bits are being cleared and set

1

tmp &= OXFFOF; /I Bits 4-7 cleared
tmp |= OxO0F; /I Bits 0-3 set
sim.pit[1].pcsr = tmp;
1
/I ' You can add you ISR code here
/I - Do not call any RTOS function with pend or init in the function
/I name
/I - Do not call any functions that perform a sy stem I/O read,
/I write, printf, iprintf, etc.
1
putleds(led_count++); /I Increment carrier board LEDs
pitr_count++; /I Increment when an interrupt occurs
1
/I Toggle MOD5282 pin J2-48 to view the interrup ts on an
/I oscilloscope. One cycle will be twice the tim e period. This
/I feature uses the NetBurner Pins Class, so you need to include
/Il pins.h.
1
(J2[48]) ? J2[48]= 0:J2[48]= 1;
}
T T inn§n M
/I SetUpPITR - PIT setup function. See chapter 19 o f the 5282 user's
/[l manual for details
1
voi d SetUpPITR(i nt pitr_ch, WORD clock_interval, BYTE pcsr_pre [* See
table 19-3 in the reference manual for bits 8-11 */)
{
WORD tmp;
if ((pitr_ch< 1)]| (pitr_ch > 3))
{
iprintf("*** ERROR - PIT channel out of range ***\r\n");
return;
}
1
/I Populate the interrupt vector in the interrup t controller. The
/I Setintc() function is supplied by the NetBurn er API to make the
/I interrupt control register configuration easi er
1
Setintc(0, (| ong) &my_pitr_func, 55 + pitr_ch, 2 [*IRQ2* , 3);
1
/I Configure the PIT for the specified time valu es
1
sim.pit[pitr_ch].pmr = clock_interval; /I Set PIT modulus value
tmp = pcsr_pre;
tmp = (tmp << 8)| OxOF;
sim.pit[pitr_ch].pcsr = tmp; /I Set system clock divisor to 8 and
/I set bits [3:0] in PCSR
}

T T M

/I UserMain
1
voi d UserMain(voi d *pd)

{
InitializeStack();
i f (EthernetlP == 0) GetDHCPAddress();
OSChangePrio(MAIN_PRIO);
EnableAutoUpdate();
EnableSmartTraps();
EnableTaskMonitor();
1
/I Let us make PIT happen at 1000 Hz. The base ¢ lock is
/1 66,355,200 Hz, so the equation is:
1
1 System_Clock_Frequency
/I PMR Value = - -1
I 2 * Prescalar * Desired_Freque ncy
1l
1 66355200
/I PMR Value = ------------ -1
1 2*8*1000
1l
/I PMR Value = 4146
1
/I Note that the PIT Count Register is a 16-bit counter, so the
/I clock count maximum is 65,535
1l
SetUpPITR(1 /*UsePIT1* , 4146 [* Wait 4146 clocks */ , 3 I*
Divide by 8 from table 19-3 */);
iprintf("Application started\r\n");
pitr_count = 0;
while(1)

OSTimeDly(TICKS_PER_SECOND);
iprintf("PITR Count = %ld\r\n" , pitr_count);

