

Mod5282 Interrupts

Application Note

Revision 1.1
July 15, 2004
Document Status: Released

Table of Contents
Table of Contents.. 2
1. Introduction... 3
2. General Procedure .. 3

2.1 Hardware Configuration ... 3
2.2 Interrupt Controllers ... 4
2.3 The INTERRUPT() MACRO.. 5
2.4 Example of a Level 7 ISR... 5

3. Example Program ... 6

1. Introduction

The 5282 has a very flexible interrupt system. It is somewhat different than the traditional M68K or
5206 ColdFire interrupt system. On first inspection it is somewhat confusing, as the interrupt
documentation is split into multiple chapters of the 5282 User’s Manual, and it is not easy to identify
what is going on. This application note will attempt to clear up some of this confusion.

2. General Procedure
To configure an interrupt on the 5282, you must really configure it twice. The first part of the
configuration configures the hardware module that causes the interrupt. Timers, serial I/O, external
pins, CAN, Ethernet, etc... The documentation for this part of the process is defined in the ColdFire
5282 User’s Manual and is specific to the processor peripheral you will use in your application. The
second part of the configuration involves setting up the interrupt controller for that specific interrupt
source.

In general, the following procedure is used to enable interrupt handling in an application:

• Review your system architecture and determine which interrupt level (1-7) is appropriate.
Level 1 is the lowest priority, level 7 is the highest. Use caution with level 7, since it is
unique in that it is a non-maskable interrupt. If you use level 7, the ISR cannot call any
uCOS functions, or use the INTERRUPT() macro.

• Write an Interrupt Service Routine (ISR). If you are using IRQ1 – 6, use the INTERRUPT(
) macro to make coding the ISR easier. If you are using the level 7 unmaskable IRQ, then
you must write the program code to save and restore the CPU registers.

• Call the SetIntc() function to set up the interrupt vector, level and priority. The function
should be called prior to any interrupts occurring.

2.1 Hardware Configuration
The IRQ pins for external interrupts on the 5282 run through a hardware module called the Edge Port
Module. The Edge Port Module allows you to configure the IRQ1..7 pins as inputs, outputs and
interrupt generators. They can be configured to be edge or level sensitive. See chapter 12 of the 5282
User’s Manual for a discussion of these functions. It is very important to perform the specific action
required by the hardware module to clear the interrupt.

The IRQ button on the NetBurner Module Development Board is attached to the IRQ1 pin. The
example interrupt program at the end of this document configures IRQ1 as an interrupt source, and
enables you to generate an interrupt by pressing the button.

2.2 Interrupt Controllers

All interrupts in the 5282 go through the interrupt controllers described in chapter 10. Each of the two
interrupt controllers support 64 different interrupt sources. The first interrupt controller (numbered 0)
supports the vast majority of the CPU functionality. The second interrupt controller is used exclusively
for the CAN system. The Interrupt controller is organized around vectors and the first step in using the
interrupt controller is to identify the vector associated with the peripheral generating the interrupt
request. This is shown in chapter 10, table 10-13, in section 10.3.6.1 of the 5282 users manual. Once
you have identified the vector, you need to set up the vector destination and priority. In NetBurner
5282 based devices we have provided a helper function to do this:

extern "C"
{
/* This function sets up the 5282 interrupt controller */
void SetIntc(int intc,long func, int vector, int level, int prio);
}

Parameter Type Usage
intc int The number of the interrupt controller to use, normally 0 for

anything but CAN
func long The address of the ISR function
long vector The vector number to use. This depends on which processor

peripheral you use, per table 10-13 of the 5282 User’s Manual.
int level The interrupt level to assign this function 1..7, 7 being non-

maskable
int prio The priority to assign this function. Priority is used to

differentiate between multiple interrupts requesting at the same
level.

With this type of interrupt controller structure, your application can have multiple interrupt sources at
the same level. For example, on the Mod5282, IRQ 3 is used for the UARTs and IRQ5 is used for the
uCOS timer. You may also use external interrupts IRQ3 and IRQ5, and they will not conflict with the
timer and serial ports, because each has their own ISR vectors. If you have two or more interrupt
sources at the same level (eg. IRQ5), the IRQ that occurs first will be processed first. If two IRQ
sources at the same level occur simultaneously, priority is determined as follows:

• The source with the highest priority level as specified in the interrupt control register. Note
that this is a different setting than the interrupt level, which is 1-7.

• If priority levels are identical, then the source with the lowest vector number get processed
first.

2.3 The INTERRUPT() MACRO

When you create an Interrupt Service Routine (ISR), the ISR must save the state of processor registers
upon entry to the ISR, and restore them before exiting. In addition, interrupts 1-6 interface with the
uCOS operating system. The INTERRUPT () macro is provided to handle these all these issues. Note
that a level 7 unmaskable interrupt cannot call any uCOS functions, and therefore cannot use the
INTERRUPT() macro.

2.4 Example of a Level 7 ISR

The following example of a level 7 NMI ISR consists of two parts: a section written in assembly
language to save and restore the CPU registers, and s section written in C/C++ that does the actual
work.

/* The extern directive is only needed if you are creating this code in a .cpp
file; it prevents name mangling. If you are crating a .c file, do not include the
extern section.*/
extern "C" {
 void NMI_C_Part(); // The part of the ISR written in C/C++
 void NMI_ASM_Part(); // The part of the ISR written in Assembly
 }

/* The “Function_Holder()” is just a place holder so we can create some inline
assembly language code. It will never be called. Note that in the __asm__
statements, you need a leading space between the (“ and the instruction. However,
a space is not used for labels. */

void Function_Holder()
{
 __asm__ (" .global NMI_ASM_Part"); // export the label for ASM part
 __asm__ (" .extern NMI_C_Part"); // label for the C part of the ISR
 __asm__ (“NMI_ASM_Part:”); // label for the assembly part of the ISR
 __asm__ (" move.w #0x2700,%sr "); // set the IRQ mask to mask all
 __asm__ (" lea -60(%a7),%a7 "); // make space on the system stack
 __asm__ (" movem.l %d0-%d7/%a0-%a6,(%a7) "); // save all registers
 __asm__ (" jsr NMI_C_Part "); //
 __asm__ (" movem.l (%a7),%d0-%d7/%a0-%a6 ");
 __asm__ (" lea 60(%a7),%a7 ");
 __asm__ (" rte");
}

/* This is the C/C++ part of the ISR that is called from the assembly code */
void NMI_C_Part()
{
 // Your C/C++ application code goes here
}

In the SetIntc() call, use the name “NMI_ASM_Part” to set the function address for the “vector”
parameter..

3. Example Program

The following example program will configure IRQ1 to operate with the IRQ pushbutton on the
Mod5282 development board. Each time the button is pressed an interrupt will be counted.

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <startnet.h>
#include <autoupdate.h>
#include <dhcpclient.h>
#include <../mod5282/system/sim5282.h>
#include <cfinter.h>

/* An interrupt setup helper defined in bsp.c */
extern "C"
{
 /* This function sets up the 5282 interrupt controller */
 void SetIntc(int intc,long func, int vector, int level,
 int prio);
}

OS_SEM IrqPostSem; /* We are going to use a Semaphore to
communicate between the IRQ1 pin ISR and the main application */

/* Declare our interrupt procedure....
name: our_irq1_pin_isr
masking level (The value of the ColdFire SR during the interrupt:

use 0x2700 to mask all interrupts.
 0x2500 to mask levels 1-5 etc...
 0x2100 to mask level 1 */

INTERRUPT(out_irq1_pin_isr, 0x2100)
{
 /* WARNING WARNING WARNING
 Only a very limited set of RTOS functions can be called from
 within an interrupt service routine.

 Basically, only OS POST functions and LED functions should be used
 No I/O (read, write or printf may be called), since they can block. */

 sim.eport.epfr=0x02; /* Clear the interrupt edge 0 0 0 0 0 0 1 0 */
 OSSemPost(&IrqPostSem);
}

extern "C" {

void UserMain(void * pd);
void putdisp(unsigned short w);

}

/* Helper function to display a decimal number */
void PutDispDecimal(WORD val, BOOL blank_zero)
{
 WORD w;

 W = (val / 1000) * 0x1000;
 if ((w == 0) && (blank_zero)) w = 0xF000;
 w += ((val / 100)% 10) * 0x0100;
 if (w == 0xF000) w = 0xFF00;
 w += ((val / 10)% 10) * 0x0010;
 if (w == 0xFF00) w = 0xFFF0;
 w += ((val)% 10) * 0x0001;
 putdisp(w);
}

void UserMain(void * pd)
{
 InitializeStack();
 if (EthernetIP==0)GetDHCPAddress();
 OSChangePrio(MAIN_PRIO);
 EnableAutoUpdate();

 DWORD isr_count=0; /* Count how many times the switch was hit */

 /* Initialize the semaphore we are using */
 OSSemInit(&IrqPostSem,0);

 /* First set up the Eport module to use IRQ1 as a falling-edge active IRQ pin
 (See the 5282 UM chapter 11). Set the pin assignment register irq1 pin falling
 edge sensitive*/
 sim.eport.eppar=0x0008; /* 00 00 00 00 00 00 10 00 see table
 11-13 in UM */

 sim.eport.epddr=0x0; /* All edge port pins as inputs */
 sim.eport.epier = 0x0002; /* Enable IRQ1 only 0 0 0 0 0 0 1 0 */

 /* Now enable the actual interrupt controller. See users manual chapter 10 for
 more information. We are going to use the BSP helper function declared above and
 implemented in BSP.c */
 SetIntc(0,/* The first interrupt controller */
 (long)&out_irq1_pin_isr, /* Our interrupt function */
 1, /* The vector number from the users manual table 10-13 */
 1, /* Set this to priority 1 but any value from 1 to 6 would
 be valid.*/
 1 /* The priority within the gross levels; see chapter 10, any
 value from 0 to 7 is ok */
);

 iprintf("Application started\n");
 iprintf("Press the IRQ button on the development board.\n");
 while (1)
 {
 OSSemPend(&IrqPostSem,0 /* Wait forever */);
 PutDispDecimal(++isr_count,true);
 iprintf("The interrupt Switch was hit %ld times\r\n", isr_count);
 }
}

