

NetBurner Development Kit

Mod5213 Programming Guide

Mod5213 Programming Guide Page 2

Table of Contents

1 INTRODUCTION .. 4

1.1 DEVELOPMENT KIT CONTENTS .. 4
1.2 THE MOD5213 ... 5

1.2.1 ColdFire 5213 Processor Block Diagram ... 5
1.2.2 Mod5213 Features ... 5

1.3 APPLYING POWER TO THE MOD5213 ... 6

2 DEVELOPMENT KIT SETUP .. 6

3 RUNNING THE FACTORY DEMO ... 7

3.1 SETUP .. 7
3.2 DESCRIPTION OF THE FACTORY DEMO ... 8
3.3 FACTORY DEMO COMMANDS ... 8
3.4 APPLICATION SOURCE CODE .. 9

4 COMPILING, DOWNLOADING AND RUNNING AN EXAMPLE PROGRAM ...15

4.1 HARDWARE SETUP ...15
4.2 USING THE .CPP SOURCE CODE FILE EXTENSION ...15

5 UPDATING FLASH MEMORY USING A SERIAL PORT ..16

6 POLLED AND INTERRUPT-DRIVEN SERIAL PORT DRIVERS ...17

6.1 POLLED VS. INTERRUPT-DRIVEN ..17
6.2 SERIAL POLLING AND INTERRUPT-DRIVEN EXAMPLE PROGRAMS ..17
6.3 MODIFYING INTERRUPT SERIAL BUFFER VALUES ..20
6.4 THE NETBURNER SERIAL API ..20

6.4.1 Open a Serial Port ..20
6.4.2 Check if a Character is Available to be Read ...21
6.4.3 Get a Character ...21
6.4.4 Write a Character or String ..21
6.4.5 Close a Serial Port ..22
6.4.6 Disable Serial Update on a Specific Port ..22
6.4.7 Assign a Serial Port as stdio ...22
6.4.8 Assign a Serial Port as stderr ..22
6.4.9 Create a Serial File Pointer ...22

7 GENERAL PURPOSE I/O AND THE NETBURNER PIN CLASS ..24

7.1 WHICH PINS CAN BE USED AS GPIO? ..25
7.2 WHAT IS THE NETBURNER PIN CLASS? ...25
7.3 PIN CLASS API SUMMARY ..26
7.4 A SIMPLE PIN CLASS GPIO EXAMPLE ...26
7.5 A SIMPLE PIN CLASS SPECIAL FUNCTION EXAMPLE ...27

8 ANALOG-TO-DIGITAL FUNCTIONS ..28

8.1 MOD5213 A/D CAPABILITIES ...28
8.2 THE NETBURNER MOD5213 A/D API ...28
8.3 DEFAULT SAMPLE RATE ...29
8.4 API FUNCTIONS ..29
8.5 MOD5213 HARDWARE CONFIGURATION ..29
8.6 A/D EXAMPLE ...30
8.7 A/D EXAMPLE SOURCE CODE LISTING ..31

9 NETBURNER µC/OS RTOS ...33

Mod5213 Programming Guide Page 3

9.1 RTOS SYSTEM RESOURCE USAGE ...33
9.1.1 Task Stack Size ...33
9.1.2 System Clock Tick ..34
9.1.3 Maximum Number of Tasks ..34
9.1.4 Task Priorities ..34
9.1.5 Interrupt-Driven Serial Ports ..35
9.1.6 Building Applications Without the RTOS ...35

10 REVISION HISTORY ..36

Mod5213 Programming Guide Page 4

1 Introduction

The idea behind the Mod5213 development kit is to provide an embedded developer everything he or

she needs to develop 32-bit embedded applications. The Mod5213 is pre-programmed with a factory

demo application you can run right out of the box. The tools installation is quick and easy; just follow

the prompts and the IDE, compiler and software will be installed. No configuration is required.

For those developers that are not familiar with the µC/OS real-time operating system (RTOS), do not

worry. Use of the RTOS is not required. However, once you see firsthand how easy it is to use in the

NetBurner environment, you may see things differently.

1.1 Development Kit Contents

The NetBurner Mod5213 development kit (NDK) includes:

 A Freescale 5213 microprocessor-based module (NetBurner Mod5213)

 A development carrier board for the Mod5213 that includes a power regulator, 4 LEDs, reset

switch, RS-232 level shifter, DB9 connectors, CAN transceiver and real-time clock

 Integrated development environment (IDE)

 Real-time operating system (RTOS)

 C/C++ compiler and linker

 Serial cable

 12 VDC power supply

Mod5213 Programming Guide Page 5

1.2 The Mod5213

1.2.1 ColdFire 5213 Processor Block Diagram

The NetBurner Mod5213 is based on the Freescale ColdFire 5213 microcontroller. A block diagram

of the 5213 is shown below. The signal pins exposed on the Mod5213 come directly from the

processor.

1.2.2 Mod5213 Features

The Mod5213 is based on a 32-bit 66 MHz Freescale ColdFire 5213 processor. Features of this chip

include:

 ColdFire® V2 Core

 Temperature range: -40ºC to 85ºC

 63 MIPS @ 66 MHz

 MAC module and HW divide

 Low-power optimization

 Standard 40-pin DIP

 32 kB SRAM

 256 kB flash

 CAN 2.0B controller with 16 message buffers

 Three UARTs with DMA capability

 Queued serial peripheral interface (QSPI)

 Inter-integrated circuit (I2C) bus controller

 Four 32-bit timer channels with DMA capability

 Four 16-bit timer channels with capture/compare/PWM

256K

FLASH

System

Integration

Queued
SPI

BDM PLL

JTAG

GPIO

I2C

4-ch 32-
bit

Timer

4-ch
DMA

2-ch
PIT

M
A

C

V2
ColdFire®

Core

 8/4-ch
PWM

8-channel
12bit ADC

ADC

 4-ch
16-bit
Timer

CAN 2.0B

UART

UART

UART

256K

FLASH

32K SRAM

Mod5213 Programming Guide Page 6

 4-channel/16-bit or 8-channel/8-bit pulse-width modulation (PWM) generator

 Two programmable interrupt timers (PIT)

 4-channel DMA controller

 8-channel/12-bit ADC

 Up to 33 general-purpose I/O

 System integration [phase-locked loop (PLL), software watchdog]

 PIN Dimensions: 1.9" x 0.6"

 PCB Dimensions: 2.3" x 0.7"

 4.5V to 7.5V input to integrated 3.3V regulator

 3.3V I/O (not 5V tolerant)

1.3 Applying Power to the Mod5213

The Mod5213 has two power pins: one is a regulated 3.3 VDC input, and the other is a 4.5–7.5 VDC

input. You can power the Mod5213 using either pin, but do not connect power to both at the same

time. The development kit carrier board has its own voltage regulator that supplies regulated 3.3

VDC to the 3.3 VDC input power pin.

2 Development Kit Setup

This programming guide uses examples based on the Mod5213 and the development kit carrier board.

To run the examples, you will need to set up your development hardware by connecting power, the

serial port and Mod5213 module, if it isn't mounted already. The diagram below shows the proper

connections. The serial cable is connected to serial port 0. The other DB9 is serial port 1. The

Mod5213 must be inserted into the socket with the card edge connector facing the center of the board.

There is a reset button at the top of the carrier board to the left of the Mod5213.

Mod5213 Programming Guide Page 7

3 Running the Factory Demo

3.1 Setup

The Mod5213 factory demo is pre-programmed into your Mod5213. The demo uses serial port 0 and

the LED display. To run the demo:

 Connect power and the serial port as described in the previous section

 Connect the other end of the serial cable to a serial port on your computer

 Run the NetBurner MTTTY program, which can be started from Start → All Programs →

NetBurner NNDK → Mttty Serial Terminal, or from NBEclipse → Mttty of the NBEclipse

IDE.

 Click on the "Flow Control..." button and verify that the checkboxes for "XON/XOFF Output

Control" and "XON/XOFF Input Control" are checked.

 Select the COM port, 115,200 baud, no parity, 8 data bits and 1 stop bit, then click on the

"Connect" button in MTTTY

 Press the reset button on the carrier board and verify that you see the Mod5213 boot message

in the MTTTY window. An example of the message is shown below.

 If you do not see the boot message, then check the setup and repeat until the boot message

appears.

Mod5213 Programming Guide Page 8

3.2 Description of the Factory Demo

The factory demo is an example of a simple application that uses the RTOS and GPIO. The GPIO

functions are based on the NetBurner Pin Class described later in this document. The application will

run two tasks at the same time: one for the carrier board LED display, and the other to process user

commands via the serial port. When the application runs, it will display the command menu and the

LEDs will begin their display sequence. The source code is well documented, and is an excellent

example to illustrate programming of the Mod5213.

3.3 Factory Demo Commands

The main menu in the MTTTY terminal window shows the valid commands:

 C to toggle enable/disable LED counting sequence

+/- to select the Mod5213 pin number

H/L to set the selected pin High/Low

 Z to set the selected pin to high impedance

 D to enable the drive of the selected pin (opposite of Hiz)

 R to read the selected pin state

The ‘C’ command tells the LED display task whether or not to update the LEDs. Pressing the ‘C’ key

will toggle between enabling and disabling LED writes.

The remaining commands let you experiment with the GPIO functions of the Mod5213. Use the '+' /

'-' keys to select a pin, then set the pin state to high, low, high impedance (disable drive), enable drive

or read the state of the pin as an input. If you disable LED writes with the ‘C’ command, you can

write the GPIO states of pins 25, 26, 27 and 28 high and low, which will turn the LEDs on and off.

Mod5213 Programming Guide Page 9

3.4 Application Source Code

/***

 Mod5213 Factory Demo Program

 This program will illustrate how to implement multiple RTOS tasks, use the

 NetBurner Pin Class to control GPIO pins, initialize serial ports, and

 control the LEDs on the Mod5213 development kit carrier board.

***/

#include "predef.h"

#include <basictypes.h> // Include for variable types

#include <bsp.h> // 5213 board support package interface

#include <..\MOD5213\system\sim5213.h> // 5213 structure

#include <ucos.h> // Include for RTOS functions

#include <smarttrap.h> // NetBurner Smart Trap utility

#include <serialirq.h> // Use serial interrupt driver

#include <utils.h> // Include for LED writes on carrier board

#include <SerialUpdate.h> // Update flash via serial port

#include <constants.h> // Include for constants like MAIN_PRIO

#include <system.h> // Include for system functions

#include <stdio.h>

#include <pins.h> // NetBurner Pin Class

#include <gdbstub.h>

BOOL bLedSequenceEnable = TRUE; // Enable LED display sequence by default

/*

 This declaration will tell the C++ compiler not to "mangle" the function name

 so it can be used in a C program. We recommend you make all your file

 extensions .cpp to take advantage of better error and type checking, even if

 you write only C code.

*/

extern "C"

{

 void UserMain(void *pd);

}

/*--

 This will make the LEDs on the carrier board scan in a back-and-forth

 motion.

--*/

void LedScan()

{

 static unsigned char position = 0;

 const unsigned char pattern_array[] = { 0x01, 0x02, 0x04, 0x08, 0x04,

 0x02 };

 if (position > 5)

 position = 0;

 putleds(pattern_array[position++]);

}

Mod5213 Programming Guide Page 10

/*--

 This will make the LEDs on the carrier board count in binary.

--*/

void LedCount()

{

 static int n = 0; // Init count value to 0

 putleds(n++); // Write new value to LEDs

}

/*--

 This is a RTOS task that writes to the LEDs on the carrier board. It will

 switch between two different light sequences.

--*/

void LedTask(void *p)

{

 static int SequenceCount = 0; // Counts iterations for each LED seq

 static BOOL CountSequence = TRUE; // Selects Count or Scan sequence

 while (1) // Loop forever

 {

 /*

 Use the RTOS OSTimeDly() to delay between LED writes. This function

 is a "blocking function", which means it lets lower priority

 tasks run while it is delaying. This is extremely important in a

 preemptive OS. Since this task is higher priority than UserMain(),

 it must block, otherwise UserMain() would never run.

 */

 OSTimeDly(TICKS_PER_SECOND / 8); // There are 20 ticks per second

 if (bLedSequenceEnable) // Check enable flag

 {

 if (SequenceCount > 128) // Switch to other seq after 128 iterations

 {

 SequenceCount = 0;

 CountSequence = !CountSequence;

 }

 SequenceCount++;

 if (CountSequence)

 LedCount();

 else

 LedScan();

 }

 }

}

/*--

 Display the command menu for user commands.

--*/

void DisplayCommandMenu()

{

 iprintf("\r\n----- Main Menu -----\r\n");

 iprintf(" C to toggle enable/disable LED counting sequence\r\n");

 iprintf("Pin Class Commands:\r\n");

 iprintf(" +/- to select the Mod5213 pin number\r\n");

 iprintf(" H/L to set the selected pin High/Low\r\n");

Mod5213 Programming Guide Page 11

 iprintf(" Z to set the selected pin to high impediance\r\n");

 iprintf(" D to enable the drive of the selected pin ");

 iprintf("(opposite of Hiz)\r\n");

 iprintf(" R to read the selected pin state\r\n");

 iprintf("Note: The LED pins are 25, 26, 27 and 28\r\n\r\n");

}

/*--

 Process user serial command input

 The command processor has the following functions:

 C = Toggle LED counting task enable/disable. You may want to disable LED

 counting so you can toggle pins 25, 26, 27 and 28 with the GPIO output

 commands and see the LEDs change state.

 +/- = Increment/decrement the selected pin number. The selected pin number

 will respond to the other Pin Class commands such as High, Low, Hiz

 and Drive.

 D = Enable selected pin's output drive. The pin will output the state

 previously selected by High, Low or Read.

 H = Set the selected pin's output to High.

 L = Set the selected pin's output to Low.

 R = Configure the selected pin to be an input and return the value (high

 or low).

 Z = Put the selected pin in high impedance mode by disabling its output

 drive.

--*/

void ProcessCommand(char c)

{

 static int pinn = 4; // Set initial selected pin value at 4

 iprintf("Pin[%d]>", pinn); // Display selected pin

 switch(c)

 {

 case '+': // Increment the selected pin number

 pinn++;

 if(pinn > 38) pinn = 4;

 iprintf("pin# = %d\r\n", pinn);

 break;

 case '-': // Decrement the selected pin number

 pinn--;

 if(pinn < 4) pinn = 38;

 iprintf("pin# = %d\r\n", pinn);

 break;

 case 'C':

 case 'c':

 bLedSequenceEnable = !bLedSequenceEnable;

 if (bLedSequenceEnable)

 iprintf("\r\nLED sequence display enabled\r\n");

 else

 iprintf("\r\nLED sequence display disabled\r\n");

Mod5213 Programming Guide Page 12

 break;

 case 'D':

 case 'd':

 Pins[pinn].function(pinx_GPIO);

 Pins[pinn].drive();

 iprintf("Pin[%d] = Drive Enabled\r\n", pinn);

 break;

 case 'H':

 case 'h':

 Pins[pinn].function(pinx_GPIO);

 Pins[pinn] = 1;

 iprintf("Pin[%d] = Hi\r\n", pinn);

 break;

 case 'L':

 case 'l':

 Pins[pinn].function(pinx_GPIO);

 Pins[pinn] = 0;

 iprintf("Pin[%d] = Low\r\n", pinn);

 break;

 case 'R':

 case 'r':

 {

 Pins[pinn].function(pinx_GPIO);

 BOOL b = Pins[pinn];

 if (b)

 iprintf("Pin[%d] = reads Hi\r\n", pinn);

 else

 iprintf("Pin[%d] = reads Low\r\n", pinn);

 }

 break;

 case 'Z':

 case 'z':

 Pins[pinn].function(pinx_GPIO);

 Pins[pinn].hiz();

 iprintf("Pin[%d] = Hiz\r\n", pinn);

 break;

 default:

 DisplayCommandMenu();

 }

}

/*--

 This is the RTOS main task called UserMain(). If you do not want to use

 the RTOS, then you could just write all your code in UserMain(), and treat

 it just like a standard C main().

--*/

void UserMain(void *pd)

{

 /*

 The following function calls will initialize two of the three UARTs to

 a default baud rate of 115,200 bps, 8 data bits, 1 stop bit and no

 parity. There are other serial functions to call to specify additional

 parameters. Serial ports are numbered 0, 1 and 2.

 */

 SimpleUart(0, SystemBaud);

Mod5213 Programming Guide Page 13

 EnableSmartTraps(); // Enable NetBurner Smart Traps utility

 /*

 This section of code will check for a DEBUG build and initialize

 the GDB stub for serial debugging. The default serial port number on

 the module is 1, and the baud rate is 115,200. You will need to set

 the baud rate in the debugger to match this value.

 */

 #ifdef _DEBUG

 InitGDBStubNoBreak(1, 115200);

 #endif

 /*

 When UserMain() starts, it is a very high priority. Once running,

 it is standard practice to reduce it to something lower. MAIN_PRIO

 is equal to a priority of 50. This will enable you to add tasks at

 higher and lower priorities if you wish.

 */

 OSChangePrio(MAIN_PRIO);

 /*

 Create and start the LED counting task. A task is basically just a

 function with a priority. In this case, the function/task name is

 LedTask, and its priority is set to one level higher than UserMain().

 Note that a lower number is a higher priority. By making the LEDs a

 higher priority than UserMain(), the LEDs will blink at a constant

 rate even during user input and character echo in UserMain().

 */

 OSSimpleTaskCreate(LedTask, MAIN_PRIO - 1);

 /*

 Calling this function enables the flash memory updates via the serial

 port. Serial updates will work at any time when you are using the

 serial interrupt driver, but in polled mode updates can only occur if

 the application is reading from the serial port [e.g., getchar(),

 read()].

 */

 EnableSerialUpdate();

 // Assign UART 0 to stdio so printf() and getchar() are routed there

 assign_stdio(0);

 // Write boot message to stdio, which is serial port 0

 iprintf("Starting MOD5213 Factory Demo Program\r\n");

 /*

 Write boot message to serial port 1 using writestring() function,

 since this port is not assigned to stdio.

 */

 writestring(1, "Greetings from serial port 1!\r\n");

 /*

 Loop forever. This is like a C main loop. You do not ever want to

 return from UserMain().

 */

 DisplayCommandMenu();

Mod5213 Programming Guide Page 14

 while (1)

 {

 char c = sgetchar(0);

 ProcessCommand(c);

 }

}

Mod5213 Programming Guide Page 15

4 Compiling, Downloading and Running an
Example Program

Please refer to section four, "Creating a Project for a NetBurner Example Application" and section

five, "Downloading Applications to NetBurner Hardware – Creating 'Run' and 'Debug'

Configurations" in the "NBEclipse Getting Started Guide" on how to successfully run a Mod5213

example program. This PDF document can be accessed from the Windows Start menu (assuming a

Windows XP environment): Start → All Programs → NetBurner NNDK → NBEclipse →

NBEclipse Getting Started, or by directly accessing the file in \Nburn\docs\Eclipse.

The NBEclipse guide provides a full introduction to the NBEclipse IDE, and describes the steps of

creating a project and importing existing example program source files to configuring your Run

settings before finally downloading and running an application on the module. The NBEclipse guide

is tailored to help users on how to program any NetBurner device, especially the non-networked

Mod5213 module (the Mod5270 prime example in the guide section is used as a reference point for

any device). Since the Mod5213 has no support for Ethernet networks, pay attention to parts of the

section that draw attention to different options for the Mod5213.

4.1 Hardware Setup

Before following the NBEclipse guide, you must make sure that the Mod5213 is connected properly

to your computer and have RS-232 serial communications. For example, you can run MTTTY and

verify that you see the boot message when you press the reset button on the Mod5213 carrier board.

To start the MTTTY serial terminal program, select Start → All Programs → NetBurner NNDK →

Mttty Serial Terminal.

4.2 Using the .cpp Source Code File Extension

Even if you do not intend to use any C++ source code, it is recommended that you use the .cpp file

extensions to take advantage of the enhanced compiler error and type checking. It will also enable

you to use NetBurner APIs that do rely on C++.

Mod5213 Programming Guide Page 16

5 Updating Flash Memory Using a Serial Port

The serial flash download to the Mod5213 is a very useful tool. Your application must include the

following line:

 #include <SerialUpdate.h>

and call the function EnableSerialUpdate() in order to enable this capability. The NetBurner

application code will listen on any initialized serial ports for incoming updates, and process the update

if the proper command sequence is sent. This is a preemptive feature, so a custom application is free

to use the serial ports for any purpose.

The SerialLoad application tool or NBEclipse IDE (which in turn calls SerialLoad) will attempt to

gain access to a serial port on your PC when executing a serial update. If no running applications are

actively utilizing the serial ports, then the serial update process will perform an application download.

MTTTY has been written to work with the serial update utility, which is also known as "Serial Update

Tool" or "SerialLoad". If MTTTY is running on a serial port, then the serial update utility will run the

update through MTTTY, provided that software flow control is enabled. However, if you are using

another program or serial terminal (e.g., Microsoft Windows HyperTerminal) to interface with the

serial port, then the serial update utility will not be able to use that port.

If polled serial I/O is being used in the custom application, then you need to remember that the serial

update will only work if there is a blocking call to a serial input, such as getchar() or read(). If

you are using interrupt-driven I/O, then this is not an issue.

The Mod5213's boot monitor also supports serial downloads, so if you are developing an application

that is repeatedly crashing, then you can abort to the monitor prompt after reset by typing <Shift> +

'A' (or just 'A' if caps lock is enabled), followed by performing a serial update in the normal manner

(by using the "Serial Update Tool" standalone application or by using the NBEclipse IDE).

IMPORTANT: In any cases when sending/receiving binary data on a serial port be sure to call the

function: IRQ_SerialLoad_On_Channel(int port, bool enable); to disable serial updates on

that channel (set the enable parameter to FALSE). Failure to do so can cause a problem if the serial

update initiate sequence occurs in the binary data stream.

Mod5213 Programming Guide Page 17

6 Polled and Interrupt-Driven Serial Port Drivers

6.1 Polled vs. Interrupt-Driven

The NetBurner API provides two types of serial interfaces for the Mod5213 onboard UARTs: polled

and interrupt-driven. You can switch between either mode easily just by changing an include file in

your application; the application function calls are identical.

Polling means that any time your application attempts a serial read or write, the underlying code will

block until a character can be read or written. This is accomplished by polling a status bit in the

UART registers. The advantage of polling is that it takes up less SRAM resources than an interrupt-

driven scheme since the serial I/O is not buffered.

Interrupt-driven means that the serial I/O is buffered so your application does not have to wait for the

actual I/O to occur. It also means the application will not miss any incoming characters when it is

busy elsewhere. Unless you are constrained on SRAM space, interrupt-driven serial I/O is

recommended.

6.2 Serial Polling and Interrupt-Driven Example Programs

In the AppWizard-generated application below, we can see that it uses interrupt-driven serial I/O, as

indicated by the included serialirq.h header file:

/***

 Application generated by AppWizard

***/

#include "predef.h"

#include <stdio.h>

#include <ctype.h>

#include <basictypes.h>

#include <serialirq.h>

#include <system.h>

#include <constants.h>

#include <ucos.h>

#include <SerialUpdate.h>

// Instruct the C++ compiler not to mangle the function name

extern "C"

{

 void UserMain(void *pd);

}

// Name for development tools to identify this application

Mod5213 Programming Guide Page 18

const char *AppName = "NewApp5213";

// Main task

void UserMain(void *pd)

{

 OSChangePrio(MAIN_PRIO);

 EnableSerialUpdate();

 SimpleUart(0, SystemBaud);

 assign_stdio(0);

 iprintf("Application started\r\n");

 while (1)

 {

 OSTimeDly(TICKS_PER_SECOND);

 }

}

We can convert this to polled serial I/O just by changing the include file. However, if we want the

serial flash update utility to work, we need to look (poll) for any incoming characters. The code to do

this has been added to the while loop in UserMain() and highlighted in italics:

/***

 Application generated by AppWizard

***/

#include "predef.h"

#include <stdio.h>

#include <ctype.h>

#include <basictypes.h>

#include <serialirq.h>

#include <system.h>

#include <constants.h>

#include <ucos.h>

#include <SerialUpdate.h>

// Instruct the C++ compiler not to mangle the function name

extern "C"

{

 void UserMain(void *pd);

}

// Name for development tools to identify this application

const char *AppName = "NewApp5213";

// Main task

void UserMain(void *pd)

{

 OSChangePrio(MAIN_PRIO);

 EnableSerialUpdate();

 SimpleUart(0, SystemBaud);

 assign_stdio(0);

 iprintf("Application started\r\n");

Mod5213 Programming Guide Page 19

 while (1)

 {

 // Check for I/O on UART 0

 if (charavail(0))

 char c = getchar();

 OSTimeDly(TICKS_PER_SECOND);

 }

}

Mod5213 Programming Guide Page 20

6.3 Modifying Interrupt Serial Buffer Values

The serial I/O buffer sizes for the Mod5213 are located in \Nburn\include_nn\constants.h, and are

shown below (in bytes):

/**

 * Maximum UART buffer sizes.

 */

#define SERIAL0_RX_BUFFER_SIZE (256)

#define SERIAL0_TX_BUFFER_SIZE (256)

#define SERIAL1_RX_BUFFER_SIZE (256)

#define SERIAL1_TX_BUFFER_SIZE (256)

#define SERIAL2_RX_BUFFER_SIZE (256)

#define SERIAL2_TX_BUFFER_SIZE (256)

The default transmit and receive buffer size for each of the three UARTs is 256 bytes. The total

memory used is: 256 bytes * 6 = 1536 bytes of SRAM. You can change these values to increase or

decrease the overall memory usage. After making the modifications, the system library needs to be

recompiled in order for the new changes to take effect. This can easily be done in the NBEclipse IDE

by going to the top main menu and selecting: NBEclipse → Rebuild system files, followed by

recompiling your custom application.

6.4 The NetBurner Serial API

The following sections describe the NetBurner serial API function calls. All the functions can be run

in polled or interrupt-driven mode by changing the include file as described earlier in this chapter.

Each API function call has the underlying polled and interrupt-driven functions defined.

6.4.1 Open a Serial Port

The following function calls are used to initialize a serial port. The SimpleUart() call assumes

default values for the most common parameters (used 1 stop bit, 8 data bits and no parity).

int InitUart(int portnum, // UART port number: 0, 1 or 2

 unsigned int baudrate, // Baud rate: 1200-115,200 bps

 int stop_bits, // Valid values: 1 or 2

 int data_bits, // Valid values: 5, 6, 7 or 8

 parity_mode parity); // Valid values: eParityNone,

 // eParityOdd, eParityEven or

 // eParityMulti

int SimpleUart(int portnum, // UART port number: 0, 1 or 2

 unsigned int baudrate); // Baud rate: 1200-115,200 bps

Mod5213 Programming Guide Page 21

Return Values:

 Success (0)

 SERIAL_ERR_NOSUCH_PORT (-1)

 SERIAL_ERR_PORT_NOTOPEN (-2)

 SERIAL_ERR_PORT_ALREADYOPEN (-3)

 SERIAL_ERR_PARAM_ERROR (-4)

When serialpoll.h is included: InitPolledUart() is called.

When serialirq.h is included: InitIRQUart() is called.

6.4.2 Check if a Character is Available to be Read

BOOL charavail(int portnum); // UART port number: 0, 1 or 2

When serialpoll.h is included: polled_charavail() is called.

When serialirq.h is included: IRQ_charavail() is called.

6.4.3 Get a Character

This function will block until a character is available to be read.

char sgetchar(int portnum); // UART port number: 0, 1 or 2

When serialpoll.h is included: polled_getchar() is called.

When serialirq.h is included: IRQ_getchar() is called.

Note: The polled version does not yield to the RTOS, so no lower priority task can run. The IRQ

version will yield to the RTOS until a character is available to be read.

6.4.4 Write a Character or String

Both of these functions will block until at least one character can be written.

void writechar(int portnum, // UART port number: 0, 1 or 2

 char c); // Character to write

void writestring(int portnum, // UART port number: 0, 1 or 2

 const char *s); // Pointer to a constant string to write

When serialpoll.h is included: polled_writechar() / polled_writestring() is called.

When serialirq.h is included: IRQ_writechar() / IRQ_writestring() is called.

Mod5213 Programming Guide Page 22

6.4.5 Close a Serial Port

void close(int portnum); // UART port number: 0, 1 or 2

When serialpoll.h is included: polled_close() is called.

When serialirq.h is included: IRQ_close() is called.

6.4.6 Disable Serial Update on a Specific Port

void IRQ_SerialLoad_On_Channel(int portnum, BOOL enable)

If a serial port will be receiving binary data you must disable the serial update feature to avoid the

possibility of the serial update initiation code appearing in the binary data stream.

For example: IRQ_SerialLoad_On_Channel(1, FALSE);

6.4.7 Assign a Serial Port as stdio

This function will enable you to use stdio function calls with the specified serial port, such as

iprintf(), printf(), iscanf() and scanf().

void assign_stdio(int portnum); // UART port number: 0, 1 or 2

When serialpoll.h is included: polled_assign_stdio() is called.

When serialirq.h is included: IRQ_assign_stdio() is called.

6.4.8 Assign a Serial Port as stderr

This function allows you to use standard error I/O with the specified serial port, such as fprintf(

stderr, ...), fscanf(stderr, ...), etcetera.

void assign_sterr(int portnum); // UART port number: 0, 1 or 2

When serialpoll.h is included: polled_assign_err() is called.

When serialirq.h is included: IRQ_assign_err() is called.

6.4.9 Create a Serial File Pointer

Mod5213 Programming Guide Page 23

This creates a FILE-type pointer that can be used to read and write to a serial port with functions that

take file pointers as parameters, such as fprintf(), fscanf(), etcetera.

FILE *fp = create_file(int portnum); // UART port number: 0, 1 or 2

For example:

 FILE *fp = create_file(1); // Create a FILE pointer for

 // UART 1

 fprintf(fp, "This goes out port 1\r\n"); // Write string

 fclose(fp);

When serialpoll.h is included: polled_create_file() is called.

When serialirq.h is included: IRQ_create_file() is called.

Mod5213 Programming Guide Page 24

7 General Purpose I/O and the NetBurner Pin Class

The pins on the two 20-pin headers on the Mod5213 consist mostly of signal pins that can be set to a

special function or GPIO, two power pins and a ground pin. Each signal pin can be set to a special

function or GPIO. For example, pin 4 can be set to GPIO, I2C Clock, CAN transmit or UART 2

transmit. When using a pin as GPIO, you can configure it as an input, or an output that can be low,

high or high impedance. The table below summarizes the functions of each pin.

Connector
Pin

Support
GPIO?

GPIO
Function

Primary Function
1st Alternate

Function
2nd Alternate

Function

1 No - Reset Input - -

2 Yes PIN2_GPIO PIN2_UART0_RX - -

3 Yes PIN3_GPIO PIN3_UART0_TX - -

4 Yes PIN4_GPIO PIN4_SDA PIN4_CANRX PIN4_UART2_RX

5 Yes PIN5_GPIO PIN5_SCL PIN5_CANTX PIN5_UART2_TX

6 Yes PIN6_GPIO PIN6_IRQ1 PIN6_SYNCA PIN6_PWM1

7 Yes PIN7_GPIO PIN7_IRQ4 - -

8 Yes PIN8_GPIO PIN8_IRQ7 - -

9 No - VDDA - -

10 No - VRH - -

11 Yes PIN11_GPIO PIN11_AN2 - -

12 Yes PIN12_GPIO PIN12_AN1 - -

13 Yes PIN13_GPIO PIN13_AN0 - -

14 Yes PIN14_GPIO PIN14_AN3 - -

15 Yes PIN15_GPIO PIN15_AN7 - -

16 Yes PIN16_GPIO PIN16_AN6 - -

17 Yes PIN17_GPIO PIN17_AN5 - -

18 Yes PIN18_GPIO PIN18_AN4 - -

19 No - VSSA/VRL - -

20 No - Ground - -

21 Yes PIN21_GPIO PIN21_DTIN3 PIN21_DTOUT3 PIN21_PWM6

22 Yes PIN22_GPIO PIN22_DTIN2 PIN22_DTOUT2 PIN22_PWM4

23 Yes PIN23_GPIO PIN23_DTIN1 PIN23_DTOUT1 PIN23_PWM2

24 Yes PIN24_GPIO PIN24_DTIN0 PIN24_DTOUT0 PIN24_PWM0

25 Yes PIN25_GPIO PIN25_GPT3 - PIN25_PWM7

26 Yes PIN26_GPIO PIN26_GPT2 - PIN26_PWM5

27 Yes PIN27_GPIO PIN27_GPT1 - PIN27_PWM3

Mod5213 Programming Guide Page 25

28 Yes PIN28_GPIO PIN28_GPT0 - PIN28_PWM1

29 Yes PIN29_GPIO PIN29_UART1_RX - -

30 Yes PIN30_GPIO PIN30_UART1_TX - -

31 Yes PIN31_GPIO PIN31_UART1_CTS PIN31_SYNCA PIN31_UART2_RX

32 Yes PIN32_GPIO PIN32_UART1_RTS PIN32_SYNCB PIN32_UART2_TX

33 Yes PIN33_GPIO PIN33_QSPI_CS2 - -

34 Yes PIN34_GPIO PIN34_QSPI_CS1 - -

35 Yes PIN35_GPIO PIN35_QSPI_CS0 PIN35_SDA PIN35_UART1_CTS

36 Yes PIN36_GPIO PIN36_QSPI_DOUT PIN36_CANTX PIN36_UART1_TX

37 Yes PIN37_GPIO PIN37_QSPI_DIN PIN37_CANRX PIN37_UART1_RX

38 Yes PIN38_GPIO PIN38_QSPI_CLK PIN38_SCL PIN38_UART1_RTS

39 No - VDD (3.3VDC) - -

40 No -
Unregulated Input
Power, 4VDC –

7VDC
- -

Note the supported function names for each pin. They represent the actual definition names that can

be used to configure each pin if you choose to use the NetBurner Pin Class. These definitions are

located in the header file \Nburn\MOD5213\include\pinconstant.h.

7.1 Which Pins Can Be Used as GPIO?

The signal pin description chart above specifies in the "Support GPIO?" column whether a pin can be

used as GPIO. One exception to this case are the UART 0 receive and transmit signals; despite being

configurable for GPIO, you will need these to interface with the Mod5213 system monitor.

7.2 What is the NetBurner Pin Class?

As you can see from the signal pin chart, each pin can be used for a variety of functions. However,

before it can be made useful, one needs to know what module register needs to be written to and what

bits need to be set in the MCF5213 processor in order to configure the signal pin. Rather than make

the user read the extensive Freescale ColdFire 5213 reference manual, the Pin Class was created to

make configuration and operation much easier. Although the Pin Class is written in C++, you do not

need to know much C++ to use it; your application can be written using only C syntax.

Note that you do not need to use the Pin Class. If you prefer to handle the configuration and

management yourself, then you are free to do so. If you do not include any Pin Class function calls,

then none of the Pin Class code will be linked to your application. The Pin Class is a very efficient

implementation with performance that will meet most requirements. It is simple to use – you may

want to give it a try for a quick benchmark before writing your own configuration code.

Mod5213 Programming Guide Page 26

7.3 Pin Class API Summary

To read, write or configure a pin where ‘x’ is the pin number:

 Pins[x] = 0; // Set GPIO output low
 Pins[x] = 1; // Set GPIO output high

 Pins[x].hiz(); // Set GPIO to high impedance (tri-state)
 Pins[x].drive(); // Turn on GPIO output

 int n = Pins[x]; // Read GPIO input and return an int-type value

 BOOL b = Pins[x]; // Read GPIO input and return a boolean-type value

 Pins[x].function(FUNCTION); // Configure pin for special function

The value of "FUNCTION" in the Pins[x].function() call above represents any definition name in

the primary or alternate function columns of the signal description chart above. For example, to

configure pins 4 and 5 for the CAN interface:

Pins[4].function(PIN4_CANTX);

Pins[5].function(PIN5_CANRX);

7.4 A Simple Pin Class GPIO Example

The following example illustrates how to read and write signal pins that can be used as GPIO. In this

example, pin 25 is used as GPIO output since it is connected to a LED on the MOD-DEV-40

development board. This way, we can see the state of the pin as the LED turns on and off. Pin 4 is

used as GPIO input – we cannot automatically change the state of the input pin, so it will always read

low (0). The program runs in a loop that toggles the output state each ½ second, and reads the input

pin once every second.

void UserMain(void *pd)

{

 SimpleUart(0, SystemBaud); // Initialize UART 0

 EnableSmartTraps(); // Enable SmartTrap utility

 OSChangePrio(MAIN_PRIO); // Set standard main task priority

 EnableSerialUpdate(); // Enable Serial Update utility

 assign_stdio(0); // Use UART 0 for stdio

 iprintf("Starting SimpleGPIO Example\r\n");

 while (1)

 {

 // Configure pin 25 as an output and set it to 0. This pin is connected

 // to a LED on the Mod5213 carrier board, so you can watch it blink.

 Pins[25] = 0;

 OSTimeDly(TICKS_PER_SECOND / 2);

 // Setting pin 25 high (1) lights up the LED

 Pins[25] = 1;

Mod5213 Programming Guide Page 27

 OSTimeDly(TICKS_PER_SECOND / 2);

 int n = Pins[4]; // Read the current value of pin 4 as an input

 iprintf("Pin[4] input value = %d\r\n", n);

 }

}

7.5 A Simple Pin Class Special Function Example

The following code illustrates how to configure a pin for a special function: I2C. However, this only

demonstrates how to handle the pin configuration. The application would still need to implement the

I2C driver.

void UserMain(void *pd)

{

 SimpleUart(0, SystemBaud); // Initialize UART 0

 EnableSmartTraps(); // Enable SmartTrap utility

 OSChangePrio(MAIN_PRIO); // Set standard main task priority

 EnableSerialUpdate(); // Enable Serial Update utility

 assign_stdio(0); // Use UART 0 for stdio

 iprintf("Starting SimplePinFunction Example\r\n");

 Pins[4].function(PIN4_SCL);

 Pins[5].function(PIN5_SDA);

 while (1)

 {

 // Application code goes here

 }

}

Mod5213 Programming Guide Page 28

8 Analog-to-Digital Functions

8.1 Mod5213 A/D Capabilities

The Mod5213 has two separate 12-bit A/D converters, each with their own sample-and-hold circuit.

Each converter has four multiplexed analog inputs, providing eight channels of analog input.

The ColdFire 5213 processor's onboard A/D features include:

 12-bit resolution

 Maximum ADC clock frequency of 5.33 MHz (period of 187.5 ns)

 Sampling rate up to 1.78 million samples per second (see Footnote 1)

 Single conversion time of 8.5 ADC clock cycles (8.5 * 187.5 ns = 1.595 µs)

 Additional conversion time of 6 ADC clock cycles (6 * 187.5 ns = 1.126 µs)

 Eight conversions in 26.5 ADC clocks (26.5 * 187.5 ns = 4.972 µs) using simultaneous mode

 Ability to simultaneously sample and hold two inputs

 Ability to sequentially scan and store up to eight measurements

 Internal multiplex to select two of eight inputs

 Power saving modes allow automatic shutdown/startup of all or part of ADC

 Inputs that are not selected can tolerate injected/sourced current without affecting ADC

performance, supporting operation in noisy industrial environments

 Optional interrupts at the end of a scan if an out-of-range limit is exceeded (high or low), or at

zero crossing

 Optional sample correction by subtracting a preprogrammed offset value

 Signed or unsigned result

 Single-ended or differential inputs for all input pins with support for an arbitrary mix of input

types

Footnote 1: Once in loop mode, the time between each conversion is six ADC Clock cycles (1.125 μs). Using

simultaneous conversion, two samples are captured in 1.126μs, providing an overall sample rate of 1,776,667

samples per second.

8.2 The NetBurner Mod5213 A/D API

The Mod5213 API supports automatic continuous sampling of all eight input channels, and a function

to read the last sampled value for a particular analog input channel. If you need precise interrupt-

driven sampling and control, then you will need to create an A/D driver specific to your application.

The Freescale ColdFire 5213 Reference Manual is a good reference on how to configure the A/D

system to meet your application requirements.

Mod5213 Programming Guide Page 29

8.3 Default Sample Rate

The A/D sample rate for a single, active A/D channel is: 33,177,600 Hz / (clock_div * 6). The

sample rate for any one channel must be divided by the number of active channels. For example, if all

eight A/D channels are active, and the default value of "clock_div = 7" is used, then the sample rate

per channel is: 33,177,600 Hz / (clock_div * 6 * 8 active channels) = 98,742 samples per second.

8.4 API Functions

Using the A/D functions with the Mod5213 API is very simple: call the function EnableAD() to

activate the A/D background sampling, and then call ReadA2DResult() to read the latest sample. The

functions are shown below:

void EnableAD(BYTE clock_div = 7); // Default clock divider value is 7

WORD ReadA2DResult(int ch); // Valid channel numbers: 0 to 7

Note that the MCF5213 A/D hardware reports the 12-bit value in a 16-bit format to accommodate the

many A/D operating modes. For a single-ended measurement, the count value is stored in the upper

12 bits of a 16-bit word.

8.5 Mod5213 Hardware Configuration

The Mod5213 provides the following connections on the 40-pin header:

 VDDA : A/D voltage input

 VRH : A/D voltage reference high

 VRL/VSSA : A/D voltage reference low and voltage power ground

The A/D on the Mod5213 has its own power and ground connections, as well as a separate A/D

voltage reference input in case you want to use a precision voltage reference. The Mod5213

development kit carrier board has two jumpers that can be used for development purposes:

 JP3 : Connect VDDA to 3.3 VDC

 JP4 : Connect VRH to 3.3 VDC

Mod5213 Programming Guide Page 30

8.6 A/D Example

The Mod5213 A/D example is located in \Nburn\examples\MOD5213\a2d. You can view the A/D

readings via the serial port in the MTTTY terminal window when you run the example. A MTTTY

screenshot is shown below:

Mod5213 Programming Guide Page 31

8.7 A/D Example Source Code Listing

#include "predef.h"

#include <basictypes.h>

#include <bsp.h>

#include <..\MOD5213\system\sim5213.h>

#include <ucos.h>

#include <smarttrap.h>

#include <serialirq.h>

#include <utils.h>

#include <SerialUpdate.h>

#include <constants.h>

#include <system.h>

#include <stdio.h>

#include <a2d.h>

#include <Pins.h>

extern "C"

{

 void UserMain(void *pd);

}

void UserMain(void *pd)

{

 OSChangePrio(MAIN_PRIO);

 EnableSmartTraps();

 EnableSerialUpdate();

 SimpleUart(0, SystemBaud);

 assign_stdio(0);

 // Configure the A2D pins as analog inputs

 Pins[11].function(PIN11_AN2);

 Pins[12].function(PIN12_AN1);

 Pins[13].function(PIN13_AN0);

 Pins[14].function(PIN14_AN3);

 Pins[15].function(PIN15_AN7);

 Pins[16].function(PIN16_AN6);

 Pins[17].function(PIN17_AN5);

 Pins[18].function(PIN18_AN4);

 /*

 Enable the A2D. The A2D subsystem will run in the background

 doing samples at 98.742 KHz per channel. This is all done in

 hardware with no CPU overhead.

 */

 EnableAD();

 while (1)

 {

 iprintf("Hit any key to display A2D readings\r\n");

 char c = sgetchar(0); // Direct call to serial driver, not stdio

 for (int i = 0; i < 8; i++)

 {

Mod5213 Programming Guide Page 32

 /*

 The count value returned by ReadA2DResult() is the value

 stored from the previous sample, at the 98.742KHz sample

 rate. The number of sample counts is stored as a 16-bit

 value to accomodate the varioius configurations of the

 A/D channels. Since we are doing a simple single ended

 measurement between 0 and 3.3V, we will left shift the

 count value so it falls within the 12-bit 4096 count range.

 */

 int counts = ReadA2DResult(i) >> 3;

 float volts = ((float) counts / (4095.0)) * 3.3;

 printf("AD[%d] = %d counts, %f volts\r\n", i, counts, volts);

 }

 iprintf("\r\n");

 }

}

Mod5213 Programming Guide Page 33

9 NetBurner µC/OS RTOS

The µC/OS is a very stable, fast and reliable operating system. The NetBurner implementation takes

up very little memory, and it can make applications much easier to code and maintain. In most cases,

applications will simply create a few tasks and pass messages between tasks, as in the case with the

Mod5213 factory demo application. Even if you only need a single UserMain() task, some of the

RTOS functions such as OSTimeDly() and the interrupt-driven serial I/O can come in handy.

The UserMain() function in the application code is equivalent to a standard C-type main() function.

If that is all your application requires, then you may not need to use additional RTOS functions. But

if you do need advanced features, µC/OS has plenty to offer. For more in-depth information on

various RTOS functions, please refer to the "NetBurner's µC/OS RTOS Library" PDF document in

\Nburn\docs\NetBurnerRuntimeLibrary\uCOSLibrary.pdf.

9.1 RTOS System Resource Usage

Use of the RTOS will have an impact on system resources. The default values for these resources are

located in \Nburn\include_nn\constants.h. You have the option of specifying a non-default value

when you call an RTOS function, or you can change the default values in constants.h. Whenever you

make a change to a system file in \Nburn\include_nn (.h) or \Nburn\system_nn (.c, .cpp), be sure to

rebuild the system libraries – either via NBEclipse or in the Windows command prompt – for the

changes to take effect.

9.1.1 Task Stack Size

Each task has its own stack space. If you use the following function:

 OSSimpleTaskCreate(TaskName, Priority);

the default stack size will be used (1024 bytes). The system idle and UserMain() tasks are created at

boot and will use 256 bytes and 1024 bytes respectively. Their values are defined as:

#define IDLE_STK_SIZE (256) /* Idle task */

#define USER_TASK_STK_SIZE (1024) /* User-defined tasks */

Mod5213 Programming Guide Page 34

9.1.2 System Clock Tick

The RTOS system clock uses the MCF5213 Programmable Interrupt Timer (PIT) 0, which is

configured with at interrupt request level '1' and priority level '3'. The default number of ticks per

second is defined as:

#define TICKS_PER_SECOND (20) /* System clock tick */

If you need to change the ticks-per-second value, then the recommended values are between 20 and

200. For high resolution timing such a microsecond intervals, the best method is to use another

hardware timer in the MCF5213, such as a separate PIT timer channel, or one of the DMA timer

channels.

9.1.3 Maximum Number of Tasks

The maximum number of tasks is set at twenty by default. Allowing for reserved tasks, this number

can be increased to fifty-six.

#define OS_MAX_TASKS (20) /* Maximum number of system tasks */

9.1.4 Task Priorities

The convention in µC/OS is that the lower the number, the higher the priority. This means a priority

number of 50 is lower priority than 49. In a preemptive RTOS, the highest priority task (lowest

priority number) will always run unless a blocking function is called in the higher priority task.

Priorities range from 0 to 63, with 0-3 reserved for future system usage, and 63 reserved for the

system idle task. The system idle task is the lowest priority since it is designed to run only when

nothing else of higher priority is available. It is just a series of assembly "nop" (no operation)

instructions.

The recommended priority for UserMain() is 50. This number is arbitrarily selected so that

applications can easily pick lower or higher priorities for other tasks. It also originated from

NetBurner network-enabled platforms, where additional system-created tasks occupy priorities

between 20 and 30.

#define MAIN_PRIO (50) /* UserMain() */

Mod5213 Programming Guide Page 35

9.1.5 Interrupt-Driven Serial Ports

The interrupt-driven serial port drivers also use the RTOS library, specifically the OS semaphore

library functions for managing shared resources (i.e., serial receive and transmit buffers):

OSSemInit(), OSSemPend() and OSSemPost(). Details on how these functions work can be found in

the "NetBurner's µC/OS Library" PDF document. The interrupt-driven serial driver uses the buffers

to store receiving and sending data. The default size for both receive and transmit buffers for all

UARTs is 256 bytes. This value is defined in \Nburn\include_nn\constants.h, and is also mentioned

in section 6.3 of this document.

9.1.6 Building Applications Without the RTOS

You can build applications without using the µC/OS RTOS if you want total control of the hardware.

To do this, you create a main() function instead of a UserMain() function. An example is shown

below:

#include "predef.h"

#include <basictypes.h> // Include for user-defined types

#include <serialpoll.h> // Use polled serial driver

#include <SerialUpdate.h> // Enable support for serial flash update

/*

 The main() function is normally handled by the operating system. You can

 declare your own if you want to have complete control over the hardware

 and not use the RTOS.

*/

int main()

{

 SimpleUart(0, 115200);

 EnableSerialUpdate();

 writestring(0, "This application does not use the RTOS\r\n");

 while(1);

}

Mod5213 Programming Guide Page 36

10 Revision History

Revision Date Comments

1.2 9/14/2009

1.3 4/21/2014 Added IRQ_SerialLoad_On_Channel() function

	1 Introduction
	1.1 Development Kit Contents
	1.2 The Mod5213
	1.2.1 ColdFire 5213 Processor Block Diagram
	1.2.2 Mod5213 Features

	1.3 Applying Power to the Mod5213

	2 Development Kit Setup
	3 Running the Factory Demo
	3.1 Setup
	3.2 Description of the Factory Demo
	3.3 Factory Demo Commands
	3.4 Application Source Code

	4 Compiling, Downloading and Running an Example Program
	4.1 Hardware Setup
	4.2 Using the .cpp Source Code File Extension

	5 Updating Flash Memory Using a Serial Port
	6 Polled and Interrupt-Driven Serial Port Drivers
	6.1 Polled vs. Interrupt-Driven
	6.2 Serial Polling and Interrupt-Driven Example Programs
	6.3 Modifying Interrupt Serial Buffer Values
	6.4 The NetBurner Serial API
	6.4.1 Open a Serial Port
	6.4.2 Check if a Character is Available to be Read
	6.4.3 Get a Character
	6.4.4 Write a Character or String
	6.4.5 Close a Serial Port
	6.4.6 Disable Serial Update on a Specific Port
	6.4.7 Assign a Serial Port as stdio
	6.4.8 Assign a Serial Port as stderr
	6.4.9 Create a Serial File Pointer

	7 General Purpose I/O and the NetBurner Pin Class
	7.1 Which Pins Can Be Used as GPIO?
	7.2 What is the NetBurner Pin Class?
	7.3 Pin Class API Summary
	7.4 A Simple Pin Class GPIO Example
	7.5 A Simple Pin Class Special Function Example

	8 Analog-to-Digital Functions
	8.1 Mod5213 A/D Capabilities
	8.2 The NetBurner Mod5213 A/D API
	8.3 Default Sample Rate
	8.4 API Functions
	8.5 Mod5213 Hardware Configuration
	8.6 A/D Example
	8.7 A/D Example Source Code Listing

	9 NetBurner µC/OS RTOS
	9.1 RTOS System Resource Usage
	9.1.1 Task Stack Size
	9.1.2 System Clock Tick
	9.1.3 Maximum Number of Tasks
	9.1.4 Task Priorities
	9.1.5 Interrupt-Driven Serial Ports
	9.1.6 Building Applications Without the RTOS

	10 Revision History

