etBurner

2

Mod5213 Programmable Interrupt Timer

Application Note

Revision 1.0
January 23, 2006
Document Status: Initial Release

Table of Contents

Introduction

PIT Registers
PIT Control and Status Register (PCSR)
PIT Modulus Register (PMR)
PIT Count Register (PCNTR)

Program Example

Introduction

The Mod5213 has two programmable interrupt timer modules, PITO and PIT1. Each PIT
is a 16-bit timer that provides precise interrupts at regular intervals with minimal
processor intervention. The timer can either count down from the value written in the
modulus register, or it can be a free-running down-counter.

This application note will describe the use of the timers, as well as provide an example
program that uses one of the timers to create interrupts at a regular interval. The example
is useful both for learning how to use interrupts as well as the PIT functions. Additional
information concerning the PITs are available in the MCF5213 Reference Manual,
Chapter 17 (Revision 1.1).

PIT Registers

The PIT modules involve the use of three types of 16-bit registers: the PIT Control and
Status Register (PCSR), PIT Modulus Register (PMR), and the PIT Count Register
(PCNTR). Each PIT module has its own set of registers. The PCSR and PMR registers
have read and write access while the PCNTR register only has read access. The
following subsections describe these registers.

PIT Control and Status Register (PCSR)

The PCSR registers configure the corresponding timer’s operation. You can
enable/disable interrupts and the PITs, set the starting value for down-counting,
determine when to reload a new starting value, and more with this register. Additional
information about the use of this register can be found in section 17.2.1 of the reference
manual.

An important note that requires attention is the configuration of the prescalar on bits 11-8
of the PSCR register. Configuring and generating the PIT clock requires knowing the
system clock, PIT modulus value, and prescalar value for the desired timeout period. The
following equation is used to calculate the timeout period for the PIT clock:

T = Timeout Period

P = Prescalar

M = PIT Modulus Value

S = System Clock

T=(Px (M+1) x2) /S

For example, lets say that a timeout period of about 0.001 second is needed. The system
clock of the Mod5213 is 66.3552 Mhz, so we have a value of 66,355,200 Hz for s. Using
a system clock divisor value of 2 is sufficient for 0.001 second. Knowing what prescalar
value is needed depends on the desired timeout period. The PIT Modulus Register is

only 16 bits, so the highest starting value it will count down from is OXFFFF, or 65,535.
If a larger time interval is used, such as 1 second, then a system clock divisor of 2 is not
enough. The divisor would need to be larger, such as 32,768 (a bit configuration value of
“1111” for the PCSR register from table 17-3) in order to keep the value of the modulus
register under the maximum value. All that’s left now is determining the modulus value,
which comes out to be about 16588. With the prescalar bit configuration set to “0001”
(from the prescalar table for system clock divisor of 2 of table 17-3), PIT Modulus
Register written with the value 16588, and PCSR[1:0] written with “11” (reloads the
down-counter from PMR once it reaches zero and enables the PIT), you get a PIT clock
cycle 0f0.001 second.

PIT Modulus Register (PMR)

The 16-bit read/write PMR contains the timer modulus value that is loaded into the PIT
counter when the count reaches 0x0000 and the PCSR[RLD] (reload) bit is set.
Additional information on how to calculate the modulus value can be found in the
previous section on the PIT Control and Status Register.

When the PSCR[OVW] (overwrite) bit is set, PMR is transparent, and the value written
to PMR is immediately loaded into the PIT counter. The prescalar counter is reset
(OxFFFF) anytime a new value is loaded into the PIT counter and also during reset.
Reading the PMR returns the value written in the modulus latch. Reset initializes the
PMR to OxFFFF.

PIT Count Register (PCNTR)

The 16-bit read-only PCNTR contains the counter value. Reading the 16-bit counter with
two 8-bit reads is not guaranteed to be coherent. Writing to PCNTR has no effect, and
write cycles are terminated normally.

Program Example

The general procedure for setting up a PIT typically involves three steps: 1) Define an
interrupt service routine, 2) Configure the PIT, and 3) Start the PIT. The following
example program will configure IRQ2 to interrupt one PIT request event approximately
every 1/1000™ second via the PIT1 module.

/************************~)<**/

/* This example program exercises the programmable interval timer in */
/* the MCF5213 CPU. */

/************************~)<**/

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <basictypes.h>
#include <serialirqg.h>
#include <system.h>
#include <constants.h>
#include <ucos.h>
#include <serialupdate.h>
#include <cfinter.h>
#include <utils.h>
#include <..\MOD5213\system\sim5213.h>

//

// Function prototypes - instruct the C++ compiler not to mangle the
// function name (s)

//

extern "C"

{

void UserMain (void *pd);

//

// This function sets up the 5213 interrupt controller

//

void SetIntc(long func, int vector, int level, int prio);

}

//

// Global variables

//

volatile DWORD pitr count;

//
// Name for development tools to identify this application

//
const char *AppName = "Mod5213PITDemo";

L1177 07 7700777777777 7777777777777 7777777777777 777777777777 777777777777
// INTERRUPT - PIT interrupt service routine.

//

INTERRUPT (my pitr func, 0x2600)

{
WORD tmp = sim.pit[l].pcsr; // Use PIT 1

//

// Clear PIT 1 - refer to table 17-3 for more information on what
// bits are being cleared and set

//

tmp &= OxFFOF; // Bits 4-7 cleared

tmp |= O0x0F; // Bits 0-3 set

sim.pit[1l].pcsr = tmp;

//

// You can add your ISR code here

// - Do not call any RTOS function with pend or init in the function
// name

// = Do not call any functions that perform a system I/0 read,

// write, printf, iprint, etc.

//

pitr count++;

}

[IT1T7 7777777077777 7777777777777 7777777777777 7777
// SetUpPITR - PIT setup function. See chapter 17 of the 5213 reference
// manual for details.

//
void SetUpPITR(int pitr ch, WORD clock interval, BYTE pcsr pre /* See
table 17-3 in the users manual for bits 8-11 */)

{
WORD tmp;

if (pitr ch != 1)
{

return;

}
//

// Populate the interrupt vector in the interrupt controller

//
SetIntc((long) &my pitr func, 55 + pitr ch, 2 /* IRQO 2 */, 3);

sim.pit[pitr ch].pmr = clock interval; // Set the PIT modulus

// value
tmp = pcsr pre;
tmp = (tmp << 8) | 0x0F;
sim.pit[pitr ch].pcsr = tmp; // Set the system clock

// divisor to 2
}

L1177 7 7077777777777 77777 /7777777777777 7
// UserMain
//
void UserMain(void *pd)
{
OSChangePrio (MAIN PRIO) ;
EnableSerialUpdate () ;

SimpleUart(0, SystemBaud);
assign stdio(0);

//

// Waiting 16588 counts with an internal bus clock divisor of 2

// equals approximately one PITR event every 1/1000th second.

//

SetUpPITR(1 /* Use PITR 1 */, 16588 /* Wait 16588 clocks */, 1 /*
Divide by 2 from table 17-3 */);

iprintf ("Application started\r\n");

while (1)
{
0STimeDly (TICKS PER SECOND) ;
iprintf("Pitr count = $1ld\r\n", pitr count);

