etBurner

2

Mod5213 Interrupt Controller

Application Note

Revision 1.0
February 22, 2006
Document Status: Initial Release

Table of Contents

Introduction

General Procedure
Peripheral Module Configuration
Interrupt Controller
The INTERRUPT () Macro
Level 7 ISR Example

Program Example

Introduction

The interrupt controller of the 5213 supports up 57 interrupt sources. The 50 fully-
programmable and 7 fixed-level interrupt sources for the interrupt controller handle the
complete set of interrupt sources from all the modules on the device. Each of the sources
has a unique interrupt control register to define the software-assigned levels and priorities
within the level. This application note will help explain how to use the interrupt
controller as well as provide an example program. Please refer to Chapter 12: Interrupt
Controller Module of the MCF5213 Reference Manual for a thorough and detailed
description of the 5213 interrupt controller.

General Procedure

There are two parts to setting up an interrupt on the 5213. The first part of the the setup
involves configuring the hardware module that generates the interrupt (PIT, DMA
Timers, PWM, GPT, etcetera). The documentation for this part of the process is defined
in the MCF5213 Reference Manual chapters that are specific to the processor peripherals
being used in the application. The second part of the setup involves configuring the
interrupt controller for that specific interrupt source.

In general, the following procedure is used to enable interrupt handling in an application:

e Review the system architecture and determine which interrupt level (1-7) is
appropriate. Level 1 is the lowest, and level 7 is the highest. Use caution with
level 7, since it is unique in that it is a non-maskable interrupt. If level 7 is used,
then the interrupt service routine (ISR) cannot call any uCOS functions or use the
INTERRUPT () macro.

e Write an interrupt service routine. If IRQ levels 1 through 6 are being used, then
use the INTERRUPT () macro to make coding the ISR easier. If the unmaskable
level 7 IRQ is being used, then program code must be written to save and restore
the CPU registers.

e (Call the SetIntc () function to set up the interrupt vector, level, and priority.
The function should be called prior to any interrupts occurring.

Peripheral Module Configuration

Each peripheral module that has an interrupt source vector listed in Table 12-13 of the
MCF5213 Reference Manual has its own set of registers for interrupt configuration. For
example, if you plan on using the PWM (Pulse Width Modulation) Module to generate
interrupts, then you will need to refer to Chapter 24 of the manual to set that up, as well
as what registers to configure. The Edge Port peripheral module is used to configure
IRQ1 for interrupt generation as an example in this application note.

The IRQ pins for external interrupts [IRQ1 (Pin 6), IRQ4 (Pin 7), and IRQ7 (Pin 8)] on
the 5213 run through a hardware module called the Edge Port Module. The module
allows configuration of the IRQn pins as inputs, outputs, and interrupt generators. They
can be configured to be edge or level sensitive. See Chapter 13 of the MCF5213
Reference Manual for a discussion of these functions. It is very important to perform the
specific action required by the hardware module to clear the interrupt. The program
example found at the end of this application note demonstrates the generation of
interrupts by IRQ1 as a result of signal inputs triggering edge sensitivity.

Interrupt Controller

All interrupts on the 5213 go through the interrupt controller. It is organized around
vectors, and the first step in using the interrupt controller is to identify the vector
associated with the peripheral generating the interrupt request. This is shown in Section
12.3.6.1, Table 12-13 of the MCF5213 Reference Manual. Once the vector is identified,
the vector destination, level, and priority needs to be set up. A helper function that does
this is provided for the MOD5213:

extern “C”

{
// This function sets up the 5213 interrupt controller
void SetIntc(long func, int vector, int level, int prio);

Parameter | Type | Usage

func long The address of the interrupt service routine function.

vector int The vector number to use. This depends on the peripheral module used.
Please refer to Table 12-13 of the MCF5213 Reference Manual.

level int The interrupt level to assign this function. Levels available are 1-7. Level 7 is
non-maskable.

prio int The priority to assign this function. Priority is used to differentiate between
multiple interrupts requesting the same level. Values available are 0-7.

With this type of interrupt controller structure, an application can have multiple interrupt
sources at the same level. For example, if the uCOS timer uses IRQ5 and a custom
application uses external interrupt IRQ5 from the Edge Port Module, then they will not
conflict with each other since both have their own ISR vectors. If two or more interrupt
sources are at the same level, then the IRQ that occurs first will be processed first. If two
IRQ sources at the same level occur simultaneously, priority will be determined as
follows:

e The source with the highest priority is specified in the interrupt control register.
Note that this is a different setting from the interrupt level.

e If priorities are identical, then the source with the lowest vector number gets
processed first.

Please note that while interrupt sources 8 through 63 are fully programmable, interrupt
sources 1 through 7 are fixed. The seven interrupt sources correspond to external
interrupts IRQ1-IRQ7 on the Edge Port Module. Each external interrupt stays fixed at
their designated level (level 1 for IRQI, level 2 for IRQ2, etcetera), and all seven stays
fixed at a midpoint priority between 3 and 4, where priority is any number between 0
(lowest) and 7 (highest). Any value assigned to the level and priority parameters of the
SetIntc () function when using IRQ1-IRQ7 will be ignored. On the MOD5213, only
IRQ1, IRQ4, and IRQ7 of the Edge Port Module are made available for use.

The INTERRUPT () Macro

When you create an interrupt service routine, it must save the state of the processor
registers upon entry into the ISR, and restore them before exiting. In addition, interrupt
levels 1-6 interface with the uCOS. The INTERRUPT () macro is provided to handle all
these issues. Note that a level 7 unmaskable interrupt cannot call any uCOS functions,
and therefore cannot use the macro.

Level 7 ISR Example

The following example of a level 7 non-maskable interrupt service routine consists of
two parts: a section written in assembly language to save and restore CPU registers, and a
section written in C/C++ that does the actual work.

//
// The extern directive is only needed if you are creating this code 1in
// a *.cpp file; it prevents name mangling. If you are creating a *.c
// file, then do not include the extern section.
//
extern "C"
{
void NMI C Part(); // The part of the ISR written in C/C++
void NMI ASM Part(); // The part of the ISR written in assembly
}

LSS S S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSS S
// Function Holder - This is just a place holder so we can create some
// inline assembly language code. It will never be called. Note that in
// the asm statements, you need a leading space between (" and the
// instruction. However, a space 1s not used for labels.
//
void Function Holder ()
{

// Export the label for ASM part

__asm__ (" .global NMI ASM Part ");
// Label for the C part of the ISR
_asm__ (" .extern NMI C Part ");
// Label for the assembly part of the ISR
__asm__ ("NMI ASM Part:");
// Set the IRQ mask to mask all
__asm__ (" move.w #0x2700,%sr ");
// Make space on the system stack
_asm__ (" lea -60(%a7),%a7l ");
// Save all registers
__asm__ (" movem.l %d0-%d7/%a0-%a6, (3a7) ");
__asm__ (" Jjsr NMI C Part ");
__asm__ (" movem.l (%a7),%d0-%d7/%a0-%a6 ");
_asm__ (" lea 60 (%a7),%a7 ");
asm (" rte "),

A A A A A A S V4
// NMI C Part - This is the C/C++ part of the ISR that is called from

// the assembly code.

//
void NMI C Part()

{

// Your C/C++ application code goes here

}

Inthe SetIntc () function call, use the name “NMI_ASM Part” to set the function
address for the “vector” parameter.

Program Example

LSS S S SS SS

/7
/7
/7
/7
//
/7
/7
/7
/7
/7
/7
//
/7
/7
/7
/7
/7
/7
/7

This program demonstrates the use of interrupts via IRQ1 of the

edge port module. For this program to properly work, pins 6 and 7
of the MOD5213 must be jumpered, and that the MOD-DEV-40 carrier

board be used in order to utilize the LEDs.

With pin 7 (IRQ4) configured as GPIO, it outputs an alternating
low and high signal every second. Pin 6 (IRQ1) is configured as
IRQ1, its primary function. Set to be an input pin, it receives
the alternating signals from pin 7. Since IRQ1 is configured to
trigger an interrupt on rising and falling edge sensitivity, it
generates an interrupt every second. If it was configured to
trigger an interrupt only on a rising or falling edge, then it
would interrupt every two seconds.

As a simplified explanation, when an interrupt occurs, the
interrupt flag becomes set, and then the ISR function irqg led
runs. Within the ISR function, the interrupt flag is reset and

the LED count 1is incremented. The incrementing LEDs help signify

when an interrupt is occurring.

/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)
/)

LSS S S SS SS

#include "predef.h"
#include <stdio.h>
#include <ctype.h>
#include <basictypes.h>
#finclude <serialirqg.h>
#include <system.h>
#include <constants.h>
#include <ucos.h>
#include <serialupdate.h>
#include <..\MOD5213\system\sim5213.h>
finclude <cfinter.h>

#include <utils.h> // For use of the putleds () function
#include <pins.h> // For use of the Pins class

//

// Instruct the C++ compiler not to mangle the function name

/7

extern "C"

{

}

void UserMain (wvoid *pd);

// This function sets up the 5213 interrupt controller
void SetIntc(long func, int vector, int level, int prio);

//

// Name for development tools to identify this application
//

const char *AppName = "Mod5213IRQDemo";

int count = 0; // Initialize the interrupt counter for LEDs

LSS S S SS SS

/7
//
/7
/7
/7
/7
/7
/7
//
/7
//
/7
/7
/7

INTERRUPT - Declare the interrupt procedure. Note that the mask
value of 0x2100 will disable IRQOs of level 1 and higher. Use a
different mask if a different interrupt is used. Other mask values
are:

IRQI = 0x2100 IRQ4 = 0x2400 IRQ7 = 0x2700
IRQZ2 = 0x2200 IRQ5 = 0x2500
IRQ3 = 0x2300 IRQ6 = 0x2600

Warning: Only a very limited set of RTOS functions can be called
from within an interrupt service routine. Basically, only OS POST
functions and LED functions should be used. No I/0 may be called
(i.e., read, write, or printf), since they can block.

INTERRUPT (irg led, 0x2100)

{

}

//

// When an interrupt occurs, this ISR clears the IRQ1 flag and
// increments the binary value representation of the LEDs on the
// MOD-DEV-40 carrier board.

//
sim.eport.epfr |= 0x02; // Clear IRQ1 flag
putleds (count++); // Increment value of LEDs

LSS S S S SS SS

/7
/7

UserMain

void UserMain (wvoid *pd)

{

//

// Default initialization functions
//

OSChangePrio(MAIN PRIO);
EnableSerialUpdate () ;

SimpleUart (0, SystemBaud);

assign stdio(0);

Pins[6].function(PIN6 IRQ1); // Configure pin 6 as IRQI1
Pins[7].function(PIN7 GPIO); // Configure pin 7 for GPIO
sim.eport.eppar |= 0x000C; // Configure IRQ1 to trigger an

// interrupt on rising and
// falling edge sensitivity

sim.eport.epddr &= ~0x02; // Configure IRQI1 as input
sim.eport.epier = 0x02; // Enable IRQI1
//

// Now enable the actual interrupt controller. See Chapter 12 of the
// MCF5213 Reference Manual for more information. We are going to

// use the BSP helper function declared above and implemented in

// bsp.c

//

// 1st input parameter: Interrupt service routine

// 2nd input parameter: Vector number

// 3rd input parameter: Interrupt level
// 4th input parameter: Interrupt priority

//

SetIntc((long) &irqg led, 1, 1, 1);

while (1)

{
OSTimeDly(TICKS PER SECOND) ; // l-second delay
Pins[7] = 0; // Set pin 7 as output low
OSTimeDly(TICKS PER SECOND) ; // l-second delay

Pins[7] = 1; // Set pin 7 as output high

