

Application Note

How to Increase User Flash Storage

1. Introduction

All NetBurner hardware platforms provide a default value of 8Kbytes of on-chip flash
storage space for user/application use. This number is based on the sector size of some
flash memory components. One method to obtain more flash storage space is to use the
area of flash memory beyond the point where the application is stored.

Other methods of flash storage include the Embedded Flash File System (EFFS) external
SD card interface.

2. Flash Memory Usage for 512kb Devices

The NetBurner Mod5270, Mod5282, SB70, and SB72 (not the SB72EX) have a total of
512k byte of flash memory allocated as follows:

Description Size in Bytes Starting Address
Boot Monitor 16k 0xFFC0 0000
System Parameters 8k 0xFFC0 4000
User Parameters 8k 0xFFC0 6000
Application 480k 0xFFC0 8000

To add more user storage space, we can use some of the application space. The
application created by the NetBurner tools is a compressed image, and is typically less
than 200k bytes in size. Each time you compile your project, the compiler output will
display the compressed size of your application.

In this example we will reserve an additional 64k of flash for user storage. The flash
sector size on the devices listed above are 4k, so you can use any multiple of 4k bytes.

Description Size in Bytes
Boot Monitor 16k
System Parameters 8k
User Parameters 8k
Application 416k
User Storage 64k

To implement this new storage area, we need to:

1. Identify the start address of the user storage area
2. Create functions to read/write the data
3. Modify the application linker script so it knows the new ending address

Page 2

2.1 Flash Memory Usage on 2MB Flash Platforms

The Mod5234, Mod5272 and SB72EX each have 2MB of flash memory. These flash
chips have a boot block providing the same size flash sectors for the monitor, system
parameters and user parameters. The major difference is that the flash chip sector size is
64k instead of 4k, so any area you allocate must be in 64k blocks.

Description Size in Bytes Starting Address
Boot Monitor 16k 0xFFC0 0000
System Parameters 8k 0xFFC0 4000
User Parameters 8k 0xFFC0 6000
Application 1968k 0xFFCE 0000

Page 3

3. Implementation

The user storage area is used in the following manor:

1. Read the current stored data (you may want to use a structure)
2. Make any modifications
3. Erase the user flash area
4. Write the modified data to flash

3.1 Define the Start of the User Storage Area

The functions to read/write data need to know the address in flash where the data is
located. 512k is equivalent to 0x80000 hexadecimal. Our starting flash memory address
is 0xFFC00000, which means that the end of the 512k is:
0xFFC00000 + 0x80000 = 0xFFC80000.

If we subtract 64k from that number we have: 0xFFC80000 – 0x10000 = 0xFFC70000.
This is the starting address of our new user storage area. In this application note we refer
to the starting address of the user storage area as “BigParamBase”.

The name and value of BigParamBase is passed to the application through the sys.ld
linker script. The location of sys.ld depends on what platform you are using. The path is
c:\nburn\<platform>\lib\sys.ld. The sys.ld file for the Mod5270 is shown below, with the
addition of the BigParamBase as the last line:

vector_base =0x20000000;
sim = 0x40000000;
gConfigRec = 0xffc04000;
UserParamBase = 0xffc06000;
_RESET_ADDR = 0xffc00008;
BigParamBase = 0xffc70000;

Page 4

3.2 Function to Read the Stored Data

Since any type of data can be stored in this area, the function to retrieve the data simply
returns a pointer to the data location in flash memory. Once your application has the
pointer, you format it as appropriate (eg. in a structure).

void * Get64KUserParameters()
{
 return (void *)BigParamBase;
}

3.3 Function to Write the Data to Flash

Before using this function, make sure you have read the previous stored data and made
your modifications to it! The function will erase the flash sectors of the user storage area,
then do a byte copy of the data array pointed to by the *pCopyFrom void pointer. The
critical sections ensure the data is not modified during the writing process.

extern char BigParamBase[65536];

int Save64KUserParameters(void * pCopyFrom,int len)
{
 if (len > 0xFFFF) return 0;
 if (len < 0) return 0;
 USER_ENTER_CRITICAL()
 FlashErase((void *)&BigParamBase, len);
 FlashProgram((void *)&BigParamBase, pCopyFrom, len);
 USER_EXIT_CRITICAL();
 return 1;
}

3.4 Specify the End of Application Storage Space

The final step is to tell the NetBurner tools where the flash application space ends. The
default value is the end of flash, which we specified above to be 0xffc8000. Since we are
using the last 64k as user storage space, the application now must end at 0xffc7000.

To make this change in NBEclipse:

1. Right-click on your project and select Properties
2. Select NetBurner from the Properties dialog box
3. Click and enable the checkbox for “Use custom platform settings”

Page 5

4. Modify the “Compcode Memory Range” to specify the new end address for the
application. In this case, 0xffc70000.

5. Rebuild your application.

A screen shot of the modified properties dialog box is shown below:

If you are using the command-line tools, you would modify the
c:\nburn\<platform>\make\ldflags.mk file COMPCODE entry as shown below:

COMPCODEFLAGS = 0xffc08000 0xffc70000

Note that changes to ldflags.mk will affect all your <platform> projects.

Page 6

	1. Introduction
	2. Flash Memory Usage for 512kb Devices
	2.1 Flash Memory Usage on 2MB Flash Platforms

	3. Implementation
	3.1 Define the Start of the User Storage Area
	3.2 Function to Read the Stored Data
	3.3 Function to Write the Data to Flash
	3.4 Specify the End of Application Storage Space

