EFFS FAT - Implementation Guide

HCC-Embedded

Embedded Flash File System
FAT12/16/32

| mplementation Guide

Version 2.62

All rights reserved. This document and the associated software are the sole property of HCC- Embedded K ft. Reproduction or
duplication by any means of any portion of thisdocument without the prior written consent of HCC-Embedded Kft. is expressy
forbidden.

HCC-Embedded Kft. reserves the right to make changes to this document and to the related software at any time and without notice.
The information in this document has been carefully checked for its accuracy; however, HCC-Embedded Kft. makes no warranty

relating to the correctness of this document.

©2003 HCC-Embedded Kft. 1 www.hcc-embedded.com

0 Contents

L0 O] 011 1| €=U 2
L SYSLEM OVEN VIBW.....eiteeiecieeie et eee sttt ste e et aesee e e s s e sseesseeseenseeneeeseessaesneessesaensenees 5
TARGET AUDIENCE ...cceiiietteteesteeeeeeesseaessteessaasssseessasasseseesssassseessssssssseesssasseseeessassseessreess 5
SYSTEM STRUCTURHSOURCE CODE........cccuvtttieeesseeieeeieeeeessssssssseesssssssasssesseessasesessanes 6
0 0] (@ = o [N1 R 6
SOURCE FILE LIST ittt ittt ettt e e e e e e s e s e s e e s s s s aab b bbb s s e e e e eseasaseessssrnassanes 7
GETTING STARTEDciiiieetttttt ettt e e e e e e ee e s s s s s s s aaabasareeeseaaaasessssssasssbssbsssseeeeseasassssssssnassanes 8
=5 81N 9

P2 o U1 USROS 11
SYSTEM REQUIREMENTS.uutttttttttiiiiieeeeesissesssssssssssssieesesassssssssssssssssssssssseeessssessssssssssnses 11
STACK REQUIREMENTS. ...uttttttttiiieiieeeeeeesssssssssssssssseessassassssssssssssssssssssssseessssessssssssssssssssns 11
REAL TIME REQUIREMENTS ...cciiittieiiteieisiteissbesessstesssbessssssesssbessssssessssssessssssessssssensssnnes 11
S N 7Y L 11
MAXIMUM NUMBER OF VOLUMESuuutttittiiiiiieeeeeeeeiesssssssssssseseresssssseessssssssssssssssssssssens 12
YT L8 O = = N I =S 12
LONG FILENAMES ...ctttttteieee et ee e e e e e e e eeeeeeeeeesessssssssassssssssssssassseeesrerrssssssssssssssssssssssssesernnnes 12

L 11 =R 14
(= I 7N 1 =S 14
RANDOM NUMBER.....ucttttiiiiiiieeeiiiiiessitbreesssereeaaaesesssasssssssbssssssreeeasasessessssssssssssssssssssneens 14
MEMGCPY AND IMEM SET ... ettt e e e ettt ee e e s sttt e e e e s s et s e e e s s seabaeesesssessaeeesssssbeneesessnreeees 15
CACHE SETUP AND OPTIONS . 1.ttttttttettttttsiissssissssssseeeestesseesesssmmsisssssssseeeetesessssseessssmnnnnn 16
FAT CaChiNG ..ottt 16

WIHEE CaCNINGeiiiici e 16

R BTV <Y =lo 1 1T AT 17
COMPLETELY UNFORMATTED ..utvtieeiiietreeeessessesteessssssssessssssssessesssssssssessssssssssessssssssssesssans 17
MASTER BOOT RECORD......uuviiiiiiitieiieiiiitteeie s ssrteesssssabeeessssssssesesssssbesessssssessssssssnsssnes 18
MBSEEr BOOt RECOIoeeiiveieieieie ettt ettt e st str e e s sbe s s sabe e s s s abee s s sabeeessareeas 18

Partition ENtry DESCIIPLION.cccviieiiesee e et see s saeesse e 18

BOOT SECTOR INFORMATION.iiiieetttetreeiiiiiesseeessssssssssssssssssseeessassssesssssssssssssssssssssens 19
Boot Sector INfOrmMation TaADIEoiceeeeeee ettt ettt e e e e e eee s 19

TS S CT 2V (= R S R 19

L TSN IR 21
FILE SYSTEM FUNCTIONSuuuiitiiisiaisssrsssis s ssssssssssssssssssssssssssassssssssssssssssssssssssneens 21
FUNCTION ERROR CODESuiiiiuuiisssssssssssinsssssssssssssssssssssssssssmassssssssssesssssssssssseeeen 22
= IV = S T N SR 23

F INITVOLUME. ... tttiiiteeeeitieeesteeessteeesteeesssteeesasteessaseeesasseeesseeessnsaeesanseeesnseessansesesansnenns 24

F DELVOLUME . . tttiutieitttestteesteessseessesssessssesssseesseessseeeasessaseesnsessssessnsessnseesssessssnsnsessnsessnns 26

F GET_VOLUME COUNT ..eetietieteeutesseesseesseesseessessseasssssessseesseessesssssnsssnssssssssesssesssesssesnses 27
F_GET_VOLUME _LIST ciiitteteeeteesreesseesseesseeesseessseesseesseessessnseesssesssseesssessnnssnsesssessnnens 28
o Ny SR 29

F HARDFORMAT ...ttittttstteetesstesssseessseessteesssessseessseessessaseesabeessbeessbesnaseeseeenbeesbeeennseeennes 31

F GETFREESPACE ...ccutieiuttesureesieeesseeasseesseesseessseesaneeaseeesmeesamesemeesaseesaneesaneesnneeanneesnneeennes 3
S 1 I = PRSP A

©2003 HCC-Embedded Kft. 2 www.hcc-embedded.com

EFFS FAT - Implementation Guide

F UGETLABEL 1eutttetteesteeeteesteesteesteessseesseeesseeeseesseesaneesaseesas e e smn e e sae e e ase e e neeeaneeeaneeennreennns 35
FUIMKDIR 1.ttt etttk eh e e e b b e bt e s e R e e Rt e Re e e e e e Rt e Re et e R e R e e e e nennenne e 36
O] = PR 37
F U RMIDIR 1eeetteeteeestee et e et e st s st e sme e e s e e se e e ame e s s e e e st e e ae e e emn e e e Rn e e e Rn e e Re e e ne e e ne e e neenne e e 3
F GETDRIVE ..uttteuteesuteesuseessseessseessseesseesseesaseasmsessaseassseesseesaseeeseeaabessaneesnseesaneesneeennneennns 39
F U CHDRIVE ...ttt e e s s s s e s et e e m e e ae £ esesse e st e bt ab e e b e e Rt aneeseene s £enenneenrennnenne e 40
1= 11V o PSS 11
=1 1Y, o SR 42
F U RENAME ..ttt sttt ettt st et e s st e e se e s e e e s e e s mee et eaneeameeease e Reeamneeneeen £ ennn e e nnreeeneeennes 43
] = I TP PSPPSR 44
o T = N 1 SR 45
L TN) TSR 46
F FINDNEXT ..ttueeutetesteeseeseaseessesseessassessesseaseasesseeaeaaeaseeshesbeaseeseaeesheemeensenbeseeensasseensenaens 47
F SETTIMEDATE c.ttitieiuteeteesteesseestes seesaseasseesseesaseesseesnseeas 2aseesnseeneesseeanseenseesnne eeenneennes 48
F_GETTIMEDATE .eeiutetistesteeseesessessesse e s ssesse e e ensassessesss e s e sbesbeese e e e nbesbeene e s e nnenneeneenneenne e 49
= 17 1 TSRS 50
€13 . = SO SUT TR PRURRP 51
@ = = N PP EPR PRSP 52
O I @ TP UR PSP 54
e I = USSR 55
= OSSP 56
S == GRS PR RPR 57
= PO RRP PRSP 58
=0 USROS PPT SRR 59
F UREWIND .ttt etteeeuteeestteessteeesseeeesssseessseesssseessseeasseeesasseesssseeeseeeanseeeseeesnse st e nnteeenseennneeennns 60
o U OO P RSP 61
o PSPPSR 62
S5 DIIVEN TNEEITACE ..ottt bttt 63
DRIVER INTERFACE FUNCTIONS ...ttt sttt 63
XXX INTITFUNC . ¢ttt sttt et e s asee e e me e s ne e e ne e s ane e smneeamn e e ameeeaneeeneeeneenareens 65
XXX _GETPHY eiuteeeuteesureesuseesseeesseeesseesseesaseesaseessseesaseeameeaaseeeaneesaneesmneeanneesnneeanneesnneennneens 67
XXX _READSECTOR.ceuteteeueessessessesseesessessessesssessessessesssessessessessssnsesssssessesnsessessessesnsesnens 68
XXX _READMULTIPLESECTORutveeeitieeesteeesureeesseeesssseessassesssssssssnsesssassesssassneesnsseeesnnes 69
XXX _WRITESECTOR ..veeuteeiureesseeessesasessssessssessssessssssssessasesssessnsesssessssssssessssessnsessnsessnsenss 70
XXX _WRITEMULTIPLESECTOR. ...cutteutesutesseesueesseesseensesssesssesssesssesssssseessesssesssesssesnsesnsesnsens 71
XXX _GETSTATUS ...tieiuteesiteesireesieessseessseassessaseesaseesseeessseeaseeeseesaseesnneesnneesnreensneennnessnnneens 72
XXX DELFUNCttttteeueesse st sse e ssesse st sss e s s ssesse e s e ssesbesme e s e sesnesaesse e s e aseameennenennenneeneas 73
6 CoMPACt FIASh Card.......ccciiiicieciesie et e e sreenreeens 74
OVERVIEW ...ttt sttt et se et e st e b e ae e b e st e emeeebeeaseshe e st eaeenbeane e £ esneeaneesnneenneenes 74
PORTING TRUE IDEIMODE ..ottt st 74
LS bbb n e ne s 74
Har OWar€ POITING......ccveiieieiieie e sttt e ste et saesneesreen s e s 74
SEttiNg IDE MOE ..ot ettt et et esreeaesne eeen 75
FURTHER INFORMATIONciutitesteeseestestessesseeseesaessesseesessessessesssessessessesnssssassessessesnsessesses 76
7MultiMediaCard/Secure Digital Card DIiVEr.......ccocooeeeriieneneninie e see s 7
OVERVIEW ...ttt sttt ettt me £ ehe e st e st e st e seese e e eaeese e e e st nnnenneennenne e 7

©2003 HCC-Embedded Kft. 3 www.hcc-embedded.com

[T 78

Har AWar€ POMTING.......cceiieieiieiesieis st see e esee st esreeaesseesesseessesnaesseen s ennns 78
IMACROS. ...ttt e ettt e e e e e et e e e e e et a et e esea s baeeessssesbeeeessessaeeeeessesaranenees 78
[0 Tox (0 TSR 79
Waiting and Real-time BENAVIOTccccviieiiiieisieee e 80
PORTING SOFTWARE SPI DRIVERcuutttiiiiiiiiiiiiie e eecisrrrsrre e s s e s s s s e e s s sssssssbassssssssseeees 81

[T [T 81
Waiting and Realtime BENaVIOU ..o 81
HarAWare POMiNG.cvoueieieiieieiesis et s se st s eeneens nree s 83

BIt RALESeeeiie it e e e e e e e e e e s e e e e s e e —a e e e e e e rr e e e e e e e e aabrarereas 83
PORTING MULTIM EDIACARD DRIVER ..ccciiiiiiiiiie e eeeectteereiee e e e e s s e s s ssassssssss e e e e e e e eeeees &4
PORTING SD CARD DRIVER.........ccttttiiiiiiiiiieee e e e s s sesesssssasssessseessssssssssssssssssssssssssssssssnsens &4
FURTHER INFORMATION ...tttete et eeeseeee et eeseeeeasssaseeeesssaasseeesssaasssesessaaessereessssseeeesssssnsees 84

ol = (o [B IE= I B A/ 85
L@ V4= Y1 = T 85

[T [T 85

Har AWare POMING.ccoieieieieiesieris e et e s e neens nree s 85

O RAM DI IVEL oottt ettt e sttt s st e s s bt s s s e e s s bt e e s aabesssabtesssbeeesaabesssasbesssasbenesas 87
10 USING CRECKDISK. ...cueiiiieiiieiiieieeieee sttt
o TS
10T D O 1= (0] = 88
O =] 1 89
MEMORY REQUIREMENTS......ciiiutttiiieeiiisststeeiiseteeesssssssesssssssssassssssssessssssssssssssssessssssssens 0
[l o I = N = TR a1

©2003 HCC-Embedded Kft. 4 www.hcc-embedded.com

EFFS FAT - Implementation Guide

1 System Overview

Target Audience

This guide is intended for use by embedded software engineers who have should have a
knowledge of the C programming language, standard file API's who wish to implement a
FAT12, FAT16 or FAT32 file system in any combination of RAM, Compact Flash Card,

MultiMediaCard, Hard Disk Drive or other device type.

Although every attempt has been made to make the system as smple to use as possible
the developer must understand the requirements of the system they are designing to get
the best practical benefit from the system.

HCC-Embedded offers hardware and firmware development consultancy to assist
developers with the implementation of a flash file system.

©2003 HCC-Embedded Kft. 5 www.hcc-embedded.com

System Structure/Source Code

The following diagram illustrates the structure of the file system software.

User Applications
y A
Standard File API
f_initvolume f_getdrive f_rename f_open
f format f chdrive f delete f close
f _hardformat f_getcwd f_filelength f write
f_getfreespace f_getdcwd f_findfirst f read
f_setlabel f_mkdir f_findnext f_seek
f_getlabel f_chdir f_settimedate f_tell
f_getversion f rmdir f_gettimedate f eof
f_delvolume f_setattr f rewind
f_get_volume_count f_getattr f_putc
f_get_volume list f_getc
f_checkdisk
FAT File System
fat.c, fat_Ifn.c, fat_m.c,
port.c, chkask.c
A A y A
v y A A
GetPhy() GetPhy() GetPhy() GetPhy()
ReadSector() GetStatus() GetStatus() GetStatus()
WriteSector() ReadSector() ReadSector() ReadSector()
WriteSector() WriteSector() WriteSector()
RAM Drive
ramdrv.c Compact MultiMedia Hard Disk Drive
Flash Card Card
cfc idec mmc_mcf.c/ hdd_ide.c
mmc_mcfs.c

©2003 HCC-Embedded Kft.

www.hcc-embedded.com

EFFS FAT - Implementation Guide

Source File List

The following isalist of al the source code files included in the file system.

Isrcl

fat.c - fat file system

fat.h - fat file header

fat_lfn.c - dternative source file to fat.c for long filenames
fat_m.c - fat file system reentrancy wrapper

fat_m.h - fat file header reentrancy header

port.c - routines that require OS specific modifications
port.h - header for port routines.

/src/chkdsk/

chkdsk.c - check disk utility C source code

chkdsk.h - header file for checkdisk utility

[srclram/

ramdrv.c - RAM driver implementation

ramdrv.h - RAM driver header file

[srcicfc/

cfc_ide.c - Compact Flash Card True IDE Driver

cfc_ide.h - Compact Flash Card True IDE Header
/src/mmc/

mmc_mcf.c - MultiMediaCard SPI driver (based on Motorola Coldfire)
mmc_mcfs.h - MultiMediaCard driver with software driven SPI
mmc.h - MultiMediaCard header

/src/hdd/

hdd_ide.c - Hard Disk Drive IDE driver

hdd_ide.h - Hard Disk Driver header file

[srcltest/

test.c - Test source code for exercising the file system
test.h - Header file for test source code

The developer should not normally modify the fat source files. These files contain al the
file system handling and maintenance including FATS, directories, formatting etc.

The port.c and port.h files need to be modified to conform to the target system the
developer is working with. The tasks required of the developer are straightforward and

©2003 HCC-Embedded Kft. 7 www.hcc-embedded.com

ensure easy integration with any operating environment. Full guidance to thisisgivenin
the Section 2.

The driver files are fully tested working driver examples. For any particular
implementation key parts of these must be changed to conform to the devel opment
environment. In particular address mapping and 10 port mapping must be done to
configure the driver to work with the developer’s hardware. The driver interface
functions are documented in Section 5. The sample drivers are documented in Sections 6,
7,8and 9.

To implement a customized driver is straightforward. The developer should base any new
driver on the RAM driver as the smplest possible starting point.

Getting Started

To get your development started as efficiently as possible we recommend that the
developer follow the instructions in Section 9 to set up a RAM drive on their target. This
enables the developer to become familiar with the system and develop test code without
the need to worry about a new hardware interface.

©2003 HCC-Embedded Kft. 8 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Testing

Supplied with the system is test code for exercising the system and ensuring that the file
system is working correctly. Most functionality of the file system is exercised with this
program including file read/write/append/seek/file content, directories and file
manipulation functions. To use the test program include test.c and test.h in your test
project.

void f_dotest(void) iscaledtoexecutethetest code.

The test program requires the following four functions to be implemented by the
developer - they are host system dependent - sample code below demonstrates the
required functionality:

int _f_poweron(void)
/*
* Ths function which should call f_initvolunme for the drive to be
* tested - which nust be drive 0 ("A"). If the RAMdrive is being
* tested then the volume nust be both initialized and formatted.
* f_poweron is called by the test code during the test operation.
* This routine should return non-zero if any error is detected.
*/
int _f_poweron(void)
{
#i f RAM_TEST /* testing RAM drive */
int ret;
ret=f_initvolume(O,f_ranmdrvinit, F_AUTO _ASSI GN);
if (ret) return ret;

return f_format (0, F_FAT12_MEDI A)

#else [* if testing conpact flash drive */

return f_initvolunme(0,f_cfcdrvinit, F_AUTO ASSI GN);
#endi f
}

int _f_poweroff(void)
/*
* This function should call f_delvolume for the drive being tested.
* f_poweroff is called by the test code during the test operation.
* This routine should return non-zero if any error is detected.
* The routine nay al so be used to free allocated resources

*/

int _f_poweroff(void)

{
}

return f_del vol une(0)

©2003 HCC-Embedded Kft. 9 www.hcc-embedded.com

/* _f _dunp() displays text output fromthe tests */

void _f_dunmp (char *s)
{

}

printf("%\n",s);

/* f _result() displays errors detected during the test */

long _f _result(long testnum |ong error)

{

printf("test nunber % failed with error %d\n", testnum error);
return(testnum

©2003 HCC-Embedded Kft. 10 www.hcc-embedded.com

EFFS FAT - Implementation Guide

2 Porting

System Requirements

The system is designed to be as open and portable as possible. No assumptions are made
about the functionality or behavior of the underlying operating system. For the system to
work at its best certain porting work should be done as outlined below. Thisisa
straightforward task for an experienced engineer.

Stack Requirements

The file system functions are always called in the context of the calling thread or task.
Naturally the functions require stack space and the developer should allow for thisin
applications calling file system functions. Typically calls to the file system will use
<2Kbytes of stack. However, if long filenames are used then the stack size should be
increased to 4K but see Long Filenames section below.

Real Time Requirements

The bulk of the file system is code that executes witho ut delay. There are exceptions at
the driver level where delays in writing to the physical media and in the communication
cause the system to wait on external events. The points at which this occur are
documented in the applicable driver sections and the devel oper should modify them to
meet the system requirements - either by implementing interrupt control of that event or
scheduling other parts of the system. Read the relevant driver section for details.

Reentrancy

If more than one user is going to access the file system at one time then reentrancy must
be considered.

A reentrancy wrapper is included in fat_m.c. To enable reentrancy you must first set the
define F_REENTRANCY to anonzero value. This causes all the API functions to be
caled via the reertrancy wrapper functionsin fat_m.c.

The reentrancy wrapper routines call semaphore routines contained in port.c. These are
general functions and should be replaced by the routines provided by your operating
system.

Nb. The semaphoreroutines supplied with the system are vulnerableto the classic
priority inversion problem which can only be resolved by the use of routines specific
to thetarget’'sRTOS.

©2003 HCC-Embedded Kft. 11 www.hcc-embedded.com

It isonly necessary to protect a volume from certain accesses simultaneously. Therefore
it is practical to provide a separate semaphore for each volume in use. It is up to the
developer to provide the management or wrapper functions to handle this.

Maximum Number of Volumes

The maximum number of volumes alowed by your system should be set in the
F MAXVOLUME definition in fat.h. Set this value to the maximum volumes that will
be available on the target system (E.g. if only RAM drive is used set the value to 1, if
RAM drive and CF card drive then set this value to 2, etc).

Volumesaregiven drive letters as specified in the f_initvolume function.

Maximum Open Files

The maximum number of ssmultaneously open files allowed must be specified in the
fat.hfile. Thisis set in the F_ MAXFILES definition. Thisis the total across all volumes.

Long Filenames

The system includes two main source files to choose between:

fat.c - contains file system without long filename support. If long filenames exist on the
media the system will ignore the long name part and use only the short name.

fat_lfn.c- contains file system with complete long filename support.

The long filename is optional because of the increase in system resources required to do
long filenames. In particular the stack sizes of applications which call the file system
must be increased and the amount of checking required is increased.

To choose between using the long filename version and the short use the
F_LONGFILENAME definition in fat.h.

The maximum long filename space required by the standard is 260 bytes. Asa
consequence each time a long filename is processed large areas of memory must be
available. The developer may, depending on their application reduce the size of

F MAXPATH and F MAXLNAME (in fat.h) to reduce the resource usage of the
system. The structure F_LFNINT must NOT be modified as this is used to process the
files on the media which may be created by other systems.

©2003 HCC-Embedded Kft. 12 www.hcc-embedded.com

EFFS FAT - Implementation Guide

The most critical function for long filenames is the fn_rename function which must keep
two long filenames on the stack and additiona structures for handling it. If thisfunction
is not required for your application it is sensible to comment it out and this can
significantly reduce the stack requirements (by approximately 1K).

NB. On December 3" 2003 Microsoft announced that it would exer cise its patent
rightsrelating to certain elements of how long filenames are implemented in FAT
file systems. Asa consequence it isup to the user to contact Microsoft to get the
required licenses should they use the long filename option.

©2003 HCC-Embedded Kft. 13 www.hcc-embedded.com

Get Time

For the system to be compatible with other systemsi it is necessary to provide area time
function so that files can be time-stamped.

An empty function (f_gettime) is provided in port.c which should be modified by the
developer to provide the time in standard format.

The required format for the time for PC compatibility is a short integer ‘t" (16 bit) such
that:

2-second increments (0-30vdid) (t & 001fH)

minute (0-59vaid) ((t & 07e0H) >>5)
hour (0-23valid) ((t & Of800H) >> 11)

Get Date

For the system to be compatib le with other systemsiit is necessary to provide areal time
function so that files can be date-stamped.

An empty function (f_getdate) is provided in port.c which should be modified by the
developer to provide the date in standard format.

The required format for the date for PC compatibility is a short integer *d’ (16 bit) such
that:

day (0-31) (d & 001fH)
month (1-12valid) ((d & 01e0H) >>5)
years since 1980 (0-119 valid) ((d & feO0H) >> 9)

Random Number

The port.c file contains a function (f_getrand) which the file system usesto get a
pseudo-random number to use as the volume serial number.

It is recommended that the devel oper replace this routine with a random function from
their base system or alternatively generate their own random number based on a
combination of the system time/date and a system constant such as a MAC address.

©2003 HCC-Embedded Kft. 14 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Memcpy and Memset

Supplied with the system are memcpy and memset functions.

It is recommended to re-define these to call versions of these functions that are optimized
for your target system. Aswith all embedded systems, these routines are used frequently
and take time and having a good memcpy routine can have a large impact on the overall
performance of your system.

The following has been defined in fat.h and should be modified to call target optimized
versions of these functions:

#ifdef INTERNAL_MEMFN
#define_memcpy(d,s|) _f_memcpy(d,s,|)
#define _memset(d,c,|) _f _memset(d,c,l)
#else

#define _memcpy(d,s,|) memcpy(d,s,!)
#define_memset(d,c,|) memset(d,c,l)
#Hendif

©2003 HCC-Embedded Kft. 15 www.hcc-embedded.com

Cache Setup and Options

The system includes two caching mechanisms to enhance the performance of the system;
these are FAT caching and write data caching.

FAT Caching

FAT caching enables the file system to read several sectors from the FAT in one access
so that when accessing the files the file system does not have to read new FAT sectors so
frequently. The FAT caching is arranged in blocks such that each block can cover
different areas of the FAT. The number of sectors that each block contains and the
number of blocksis configurable.

FAT caching requires additional RAM — 512 bytes per sector.

The following definitions are provided in fat.h

#define FATCACHE_ENABLE

#ifdef FATCACHE_ENABLE

#defineFATCACHE _BLOCKS4 [* number of different FAT cache blocks*/
#define FATCACHE_READAHEAD 8 /* number of FAT sectors to read to a block */
#define FATCACHE_SIZE (FATCACHE_BLOCKS*FATCACHE_READAHEAD)
#endif

Note: The additiona RAM required for FAT caching is:

FATCAHCE BLOCKS*FATCACHE_READAHEAD*512

This default setting requires 16K of additional RAM.

Write Caching

The amount of data that can be written ahead depends on the depth of the write cache.
The write cache requires an F_POS structure (24 bytes) for each entry in the write cache.
The main purpose of these structuresis to be able to wind back awrite in the event of an
error in writing.

The default setting for the write caching in fat.his:

#defineWR_DATACACHE_SIZE 32

Thiswill require 768 additiona bytes of RAM.

©2003 HCC-Embedded Kft. 16 www.hcc-embedded.com

EFFS FAT - Implementation Guide

3 Drive Format

This document does not describe a FAT file system in detail - there are many reference
works to choose from. This file system handles the majority of the features of a FAT file
system with no need for the developer to understand further. However, there are some
areas where an understanding may help - this section describes these features and
provides additional informationabout FAT formats.

There are three different forms in which your removable media maybe formatted with:
Completely Unformatted Media
Master Boot Record
Boot sector Information only

The sections below describe how the system handles these three situations.

Completely unformatted

If adrive is completely unformatted then it is not useable until it has been formatted.
Most flash cards are pre-formatted whereas hard disk drives tend to be unformatted when
delivered.

When the f_format functionis called the drive will be formatted with Boot Sector
Information. Thisis exactly the same asif the f_hardformat function had been called.
Please see Boot Sector Information section below for further information.

The format of the card is determined by the number of sectors on it. Information about

the connected device is given to the system from the xxx_getphy cal to the driver from
which the number of available clusters on the device is calculated.

Refer to the f_hardformat and f_format commands for description of how to choose the
format type (FAT12/16/32).

©2003 HCC-Embedded Kft. 17 www.hcc-embedded.com

Master Boot Record

If acard contains a Master Boot Record it is formatted as in the tables below.

As standard the file system does not hard format a card with an MBR but with Boot
Sector Information as described in the next section. A hard format will remove the MBR
information.

When a device isinserted with an MBR it will be treated asiif it just has one partition (the
first in the partition table.

Offset Bytes Entry Description Value/Range
0x0 446 Consistency check routine

Ox1be 16 Partition table entry (table below)
Ox1ce 16 Partition table entry (table below)
Ox1de 16 Partition table entry (table below)
Oxlee 16 Partition table entry (table below)
Ox1fe 1 Signature 0x55

Ox1fe 1 Signature Oxaa

Master Boot Record

Offset | Bytes | Entry Description Value/Range

0x0 1 Boot descriptor 0x00 (nortbootable device)
0x80 (bootable device)

Ox1 3 First partition sector Address of first sector

Ox4 1 File system descriptor 0 = empty
1=FATI12

4=FAT16<32MB
5 = Extended DOS
6 = FAT16 >= 32MB

OxB=FAT32
0x10-0xff free
Ox5 3 Last partition sector Address of last sector
0x8 4 First sector position relativeto | First sector number
device start
Oxc 4 Number of sectorsin partition | Between 1 and max number
ondevice

Partition Entry Description

Nb. Should a developer requireto use multiple partitions on a single card please
contact support@hcc-embedded.com

©2003 HCC-Embedded Kft. 18 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Boot Sector information

This is the system used as standard by the file system. If a hard format command is issued
the card is always formatted with this table in the first sector. The first 36 bytes of the
boot sector are the same for FAT12/16/32 as in the first table. The second table shows the
format for the rest of the boot sector for FAT12/16. The third table shows the format of

the boot sector for FAT32.

Offset Bytes | Entry Description Value/Range

0x0 3 Jump Command Oxeb OxXX 0x90

0x3 8 OEM Name XXX

Oxb 2 Bytes/Sector 512

Oxd 1 Sectors/Cluster XXX(1-64)

Oxe 2 Reserved Sectors 1

0x10 1 Number of FATs 2

Ox11 2 Number of root directory entries 512

ox13 2 Number of sectors on media XXX (dependent on card size, if
greater than 65535 then 0 and number
of total sectorsis used)

ox15 1 Media Descriptor Oxf8 (hard disk)
OxfO (removable media)

ox16 2 Sectors/FAT16 XXX (normally 2). This must be zero
for FAT32.

0x18 2 Sectors/Track 32 (not relevant)

Oxla 2 Number of heads 2 (not relevant)

Oxlc 4 Number of hidden sectors 0 or if MBR present number relative
sector offset of this sector.

0x20 4 Number of total sectors XXX (depends on card size) or 0

Boot Sector Information Table
First 36 Bytes
©2003 HCC-Embedded Kft. 19 www.hcc-embedded.com

Offset Bytes | Entry Description Value/Range

0x24 1 Drive Number 0

x5 1 Reserved 0

0x26 1 Extended boot signature 0x29

ox27 4 Volume ID or Serial Number Random number generated at hard
format

ox2b 11 Volume Label "NO LABEL" is put here by a format

0x36 8 File System type “FAT16" or "FAT12"

Ox3e 448 Load Program Code Filled with zeroes.

Oxlfe 1 Signature 0x55

Ox1ff 1 Signature Oxaa

Boot Sector Information Table
FAT12/16 After byte 36

Nb. The serial number field is generated by the random number function — see porting
section for information about its generation.

[Offset Bytes | Entry Description ValuegRange

0x24 4 Sectors/FAT32 The number of sectorsin one FAT

0x28 2 ExtFlags Always zero.

Ox2a 2 File System Version 00

Ox2c 4 Root Cluster Cluster number of the first cluster of
the root directory

0x30 2 File System Info Sector number of FSINFO structure in
the reserved area of the FAT32.
Usudly 1.

0x32 2 Backup Boot Sector If non-zero it indicates the sector
number in the reserved area of the
volume of a copy of the boot record.
Usudly 6.

0x34 12 Reserved All bytes aways zero

x40 1 Drive Number 0

ox41 1 Reserved 0

ox42 1 Boot Signature 0x29

x43 4 VolumeID Random number generated at hard
format.

ox47 11 Volume Label "NO LABEL" is put here by a formet

0x52 8 File System Type Always set to string "FAT32 ".

Boot Sector Information Table
FAT32 After byte 36

©2003 HCC-Embedded Kft. 20

www.hcc-embedded.com

EFFS FAT - Implementation Guide

4 File AP

File System Functions

f_getversion
f_initvolume

f _delvolume
f_get_volume_count
f_get volume list

Volume functions

f _format
f_hardformat
f_getfreespace
f_setlabel
f_getlabel

Drive\Directory handler functions

f_getdrive
f _chdrive
f _getcwd

f_getdewd

f _rename

f delete
f_filelength
f_findfirst
f_findnext

f_open
f close
f_write
f read
f_seek

File functions

f mkdir
f chdir
f_rmdir

f_settimedate
f_gettimedate

f_getattr
f_setattr

Read/Write functions

f_tell
f_eof
f_rewind
f_putc
f_getc

©2003 HCC-Embedded Kft.

21

www.hcc-embedded.com

Function Error Codes

Error Code Literal Meaning

F NO_ERROR 0 No Error - function was successful

F ERR_INVALIDDRIVE 1 The specified drive does not exist

F ERR_NOTFORMATTED 2 The specified volume has not been
formatted

F_ ERR_INVALIDDIR 3 The specified directory isinvalid

F ERR _INVALIDNAME 4 The specified file name is invaid

F_ERR_NOTFOUND 5 The file or directory could not be found

F_ERR _DUPLICATED 6 The file or directory aready exists

F ERR_NOMOREENTRY 7 The volume is full

F ERR_NOTOPEN 8 A function to access afile has been called
which requires the file to be open.

F_ERR_EOF 9 End of file

F ERR_RESERVED 10 | Notusd

F ERR_NOTUSEABLE, 11 | Invalid parametersfor f seek

F ERR_LOCKED 12 | Thefile has aready been opened for
writing/appending.

F ERR_ACCESSDENIED 13 | The necessary physical read and/or write
functions are not present for this volume

F ERR_NOTEMPTY 14 | Thedirectory tobe renamed or deleted is
not empty.

F ERR_INITFUNC 15 If no init function available for a driver or
the function generates an error.

F ERR_CARDREMOVED 16 | The card has been removed.

F ERR_ONDRIVE 17 Non-recoverable error on drive

F_ERR_INVALIDSECTOR 18 | A sector has developed an error.

F ERR_READ 19 Error reading the volume

F ERR_ WRITE 20 Error writing file to volume

F ERR_INVALIDMEDIA 21 | The mediais not recognized

F ERR_BUSY 22 | Thecaller could not obtain the semaphore
within the expiry time

F ERR WRITEPROTECT 23 | The physical mediais write protected

F_ ERR_INVFATTYPE 24 | Thetypeof FAT isnot recognized

F ERR_MEDIATOOSMALL 25 | Mediaistoo smdl for the format type
requested

F ERR_MEDIATOOLARGE 26 Mediaistoo large for the format type
requested

F ERR_NOTSUPPSECTORSIZE | 27 | The sector sizeis not supported. The only
supported sector sizeis 512 bytes.

F ERR_DELFUNC 28 | The delete drive driver function failed

F ERR_MOUNTED 29 | Thedriveis aready mounted

©2003 HCC-Embedded Kft. 22 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f_getversion

This function is used to retrieve file system version information.

Format
char * f_getversion(void)

Arguments
None

Return values

Return vaue Description
Any pointer to null terminated ASCII string
Exanpl e:

voi d display_fs_version(void) {

printf("File System Version: %",f _getversion());

©2003 HCC-Embedded Kft. 23 www.hcc-embedded.com

f_initvolume

This function is used to initialize a volume. The function is called with a
pointer to the function that must be called to retrieve drive configuration

information from the relevant driver. This function works independently of
the status of the hardware i.e. it does not matter if a card is inserted or not.

Format

int f_initvolume(int drivenum F_I Nl TFUNC *pf unc,
void *user_ptr)

Arguments
Argument Description
drivenum drive to be initialized (0:A, 1:B...)
pfunc pointer to initialization function for drive
user_ptr pointer to user information (see below)

Return values

Return value Description
F NO_ERROR drive successfully initialized
else falled - see error codes

Not e: Theuser_ptr may be used to pass information to the low-level driver.

When the xxx_initfunc of the driver is called this parameter will be passed to
the driver. The usage of this parameter is optional and driver dependent. One
use is to specify which device associated with the specified driver will be
initialized. For convenience adefinition F AUTO_ASSIGN has been
predefined to mean that the driver should assign devices as it wishes —this
convention is optional and has no affect on the file system.

For more information about its usage please see Section 5.

©2003 HCC-Embedded Kft. 24 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Exanpl e:

void nyinitfs(void) {
int ret;

/* Make a RAM vol unme on Drive A */
f _initvolunme(O0, f_ramdrvinit, F_AUTO ASSIGN);

/| *Make a Conpact Fl ash Vol une on Drive B */
f_initvolume(l, f_cfcinit, F_AUTO ASSICN);

/ *Make an MMC Vol unme on Dri ve C */
f _initvolunme(2, f_mcinit, F_AUTO _ASSI &N);

}

Seealso
f _format, f_hardformat

©2003 HCC-Embedded Kft. 25 www.hcc-embedded.com

f delvolume

This function is used to delete an existing volume. The link between the file
system and the driver will be broken i.e. an xxx_delfunc call will be made to
the driver and afterwards the user _ptr will be cleared. Any open files on the
media will be marked as closed so that subsequent APl accessesto a
previously opened file handle will return with an error.

This function works independently of the status of the hardware i.e. it does
not matter if a card isinserted or not.

Format

int f_delvolune(int drivenunm

Arguments
Argument Description
drivenum driveto be deleted (O:A, 1.B...)

Return values

Return value Description

F NO _ERROR drive successfully deleted

else failed - see error codes
Exanpl e:

voi d nydel fs(int num ({
int ret;

[*Del ete volume 1 =/

i f(f_del vol une(nunj)
printf(“Unable to delete volunme %, num;

}

See also
f_initvolume

©2003 HCC-Embedded Kft. 26 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f get _volume_count

This function returns the number of volumes currently available to the user.

Format

int f_get_vol une_count (voi d)

Arguments

Argument Description

none

Return values

Return value Description
num number of active volumes
Exanpl e:

voi d nygetvol s(void) {

printf(“there are % active volunes\n”,

f _get _vol une_count());

See also

©2003 HCC-Embedded Kft. 27

www.hcc-embedded.com

f get_volume_list

This function returnsa list of volumes currently available to the user.

Format
int f_get_volune_list(int *buffer)

Arguments

Argument Description
none

Return values

Return value Description
number number of active volumes
Exanpl e:

voi d nygetvol s(void) {
int i,j;
i nt buffer[F_MAXVOLUVE]
i1 f(i=f_get_volume_list(buffer));
for(j=0;j<i;j++)

printf(“Volune % is active\n”, buffer[j]);

}

See also
f _get _vol une_count

©2003 HCC-Embedded Kft. 28 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f format
Formats the specified drive. If the mediais not present this routine will fail. If

successful all data on the specified volume will be destroyed. Any open files
will be closed.

Any existing Master Boot Record will be unaffected by this command. The
boot sector information will be re-created from the information provided by
f_getphy() (see Section 3).

The caller must specify the required format:
F FAT12 MEDIA for FAT12
F FAT16 MEDIA for FAT16
F_FAT32 MEDIA for FAT32

The format will fail if the specified format type is incompatible with the size
of the physical media

Format
int f_format(int drivenum |ong fattype)

Arguments
Argument Description
drivenum drive to be formatted (0="A"...)
fattype type of format: FAT12, FAT16 or FAT32

Return values

Return value Description
F NO ERROR drive successfully formatted
else format failed - see error codes

©2003 HCC-Embedded Kft. 29 www.hcc-embedded.com

Note: The number of sectors per cluster on a FAT32 drive isset by a hard
format and is determined by the table below which is included in the fat.c and
fat_Ifn.c files. The table specifies the number of sectors on the target device
below which the second number gives the number of sectors per cluster. This
table may be modified if required.

statict_FAT32 CSFAT32 CS[]={
{ 0x00020000, 1}, /* ->64MB */
{ 0x00040000, 2}, /* ->128MB */
{ 000080000, 4}, /* ->256MB */
{ 0x01000000, 8}, /* ->8GB */
{ 0x02000000, 16}, /* ->16GB */
{ OXOFfffff0, 32} /¥ ->..*/

b

Exanpl e:

void nyinitfs(void) {
int ret;

f _initvolume(O,f_cfcinit, F_AUTO _ASSI GN ;
ret=f _format (0, F_FAT16_MEDI A);
if(ret)
printf(“Unable to format CFC. Error %”,ret);

el se
printf(“CFC formatted”);

}

Seealso f _initvolune, f_hardfornmat

©2003 HCC-Embedded Kft. 30 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f _hardformat

Re-formats a drive ignoring current format information. All open files will be
closed. This command will destroy any existing Master Boot Record or Boot

Sector information. The new drive will be formatted without a Master Boot
Record. The new drive will start with Boot Sector Information created from
the information retrieved from the f_getphy() routine and use the whole
available physical space for the volume. All data will be destroyed on the
drive. (see Section 3 for further information)

The caller must specify the required format:
F FAT12 MEDIA for FAT12
F FAT16 MEDIA for FAT16
F_FAT32 MEDIA for FAT32

The format will fail if the specified format type is incompatible with the size
of the physical media

Format
int f_hardformat(int drivenum |ong fattype)

Arguments
Argument Description
drivenum which drive need to be hard formatted
fattype type of format: FAT12, FAT16 or FAT32

Return values

Return value Description
F NO ERROR drive successfully formatted
else (see error codes)

©2003 HCC-Embedded Kft. 31 www.hcc-embedded.com

Note: The number of sectors per cluster on a FAT32 drive isset by a hard
format and is determined by the table below which isincluded in the fat.c and
fat_Ifn.c files. The table specifies the number of sectors on the target device
below which the second number gives the number of sectors per cluster. This
table may be modified if required.

statict FAT32_CSFAT32 CY]={
{ 0x00020000, 1}, /* ->64MB */
{ 0x00040000, 2}, /* ->128MB */
{ 0x00080000, 4}, /* ->256MB */
{ 0x01000000, 8}, /* ->8GB */
{ 0x02000000, 16}, /* ->16GB */
{ OxOffffffo, 32} /x> .. %/

1

Example

void nyinitfs(void) {
int ret;

f _initvolume(O,f_cfcinit, F_AUTO _ASSI GN ;
ret=f _hardf ormat (0, F_FAT16_MED A);
if(ret)

printf(“Format CFC Error: %", ret);

el se
printf(“CFC formatted”);

}

Seealso f _initvolune, f_fornmat

©2003 HCC-Embedded Kft. 32 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f _getfreespace

This function fills a structure with information about the drive space usage -
total space, free space, used space and bad (damaged) size.

Note: If adrive size of greater than 4GB is being used then the high elements
of the returned structure should also be read to get the upper 32 bits of each of
the numbers i.e pspace.total_high etc.

Format
int f_getfreespace(int drivenum F_SPACE
*pspace)
Arguments
Argument Description
drivenum drive number
pspace pointer to F_SPACE structure

Return values

Return value Description

F NO_ERROR no error

else error code
Example

void info(void) {
F_SPACE space;
int ret;
/* get free space on current drive */

int ret = f_getfreespace(f_getcurrdrive(), space);

if('ret)
printf("There are %l bytes total, %l bytes free, \
%l bytes used, %l bytes bad.",
space.total, space.free, space.used,
space. bad) ;
el se
printf("\nError % reading drive\n", ret);

©2003 HCC-Embedded Kft. 33 www.hcc-embedded.com

f _setlabel

This function sets a volume label. The volume label should be an ASCII
string with a maximum length of 11 characters. Non-printable characters will
be padded out as space characters.

Format

int f_setlabel (int drivenum const char *plLabel)

Arguments
Argument Description
drivenum drive number
pLabel pointer to null terminated string to use

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

voi d setl abel (void) {
int result = f_setlabel (f_getcurrdrive(), "DRI VE
1");

if (result)
printf("Error on Drive");

©2003 HCC-Embedded Kft. 34 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f _getlabel

This returns the label to a function. The pointer passed for storage should be
capable of holding an 11 character string.

Format
int f_getlabel (int drivenum
char *plLabel, long | en)

Arguments

Argument Description

drivenum drive number

pLabel pointer to copy label to

len length of storage area
Return values

Return value Description

F_NOERROR success

else (see error codes table)

Example

voi d getl abel (void) {
char | abel [12];
int result;

result =
f _getlabel (f_getcurrdrive(), | abel);

if (result)
printf("Error on Drive");
el se
printf("Drive is %", |abel);

©2003 HCC-Embedded Kft. 35 www.hcc-embedded.com

f _mkdir
Makes a new directory.

Format

int f_nkdir(const char *dirnane)

Arguments
Argument Description
dirname new directory name to create

Return values

Return value Description
F NO_ERROR new directory name created successfully
else (see error codes table)

Example

voi d nyfunc(void) {

f _nkdir(“subfol der”); /*creating directory */
f _nkdir(“subfol der/subl”);

f _nkdir (“subfol der/sub2”);

f _nmkdir(“a:/subfol der/sub3”

}

Seealso
f chdir, f_rndir

©2003 HCC-Embedded Kft. 36 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f_chdir

Change directory

Format

int f_chdir(const char *dirnane)

Arguments
Argument Description
dirname directory to changeto

Return values

Return vaue Description
F NO_ERROR directory has been change successfully
else (see error codes table)

Example

voi d myfunc(void) {

f _nkdir(“subfol der”);

f_chdir(“subfolder”); /*change directory */
f_nkdir(“sub2”);

f_chdir(“..”); /*go to upward */

f _chdir (“subfol der/sub2”); /*goto into sub2 dir */

Seealso
f _nkdir, f_rndir, f_getcwd, f_getdcwd

©2003 HCC-Embedded Kft. 37 www.hcc-embedded.com

f _rmdir

Remove a directory. The target directory must be empty when thisis caled;
otherwise it returns an error code.

If adirectory isread-only then this function returns an error code.

Format
int f_rmdir(const char *dirnane)

Arguments
Argument Description
dirname name of directory to remove

Return values

Return value Description
F NO_ERROR directory name is removed successfully
else (see error codes table)

Example

void nyfunc(void) {
f_nkdir(“subfolder”); /*creating directories */
f _nkdir (“subfol der/subl”);
. doi ng sonme work

f rmdir(“subfol der/subl”):
f _rndir(“subfolder”); / *renoves directory */

}

See also
f nkdir, f _chdir

©2003 HCC-Embedded Kft. 38 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f _getdrive

Get current drive number

Format
int f_getdrive(void)

Arguments
none

Return values

Return value Description
Current Drive 0-A, 1-B, 2-Cetc
Example

voi d nyfunc(void) {
int currentdrive;

éur rentdrive=f_getdrive();

See also
f _chdrive

©2003 HCC-Embedded Kft. 39 www.hcc-embedded.com

f chdrive

Change to anew current drive.

Format
int f_chdrive(int drivenum

Arguments
Argument Description
drivenum drive number to changeto (0-A,1-B,2-C,...)

Return values

Return vaue Description

F NO ERROR success

else (see error codes table)
Example

voi d nyfunc(void) {

f_chdrive(0);/*select drive A */

Seealso
f_getdrive

©2003 HCC-Embedded Kft. 40 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f getcwd

Get current working directory on current drive.

Format
int f_getcwd(char *buffer, int maxlen)

Arguments
Argument Description
buffer where to store current working directory string
maxlen length of the buffer

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

#def i ne BUFFLEN F_NMAXPATH+F_MAXNANVE

voi d nyfunc(void) {
char buffer[BUFFLEN] ;

if (!f_getcwd(buffer, BUFFLEN)) {
printf (“current directory is %", buffer);

el se {
printf (“Drive Error”)
}

}

Seealso
f _chdir, f_getdcwd

©2003 HCC-Embedded Kft. 41 www.hcc-embedded.com

f getdcwd

Get current working folder on selected drive.

Format

int f_getdcwd(int drivenum char *buffer,
int maxlen)

Arguments
Argument Description
drivenum specify drive (0-A, 1-B, 2-C)
buffer where to store current working directory string
maxl|en length of the buffer

Return values

Return vaue Description

F NO_ERROR success

else (see error codes table)
Example

#def i ne BUFFLEN F_MAXPATH+F_MAXNANVE

voi d nyfunc(long drivenum ({
char buffer[BUFFLEN] ;

if ('f_getcwd(drivenum buffer, BUFFLEN)) {
printf (“current directory is %", buffer);
printf (“on drive %", drivenum:’ A');

}

el se {
printf (“Drive Error”)
}

}

See also
f chdir, f_getcwd

©2003 HCC-Embedded Kft. 42 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f rename

Renames afile or directory.

If afile or directory isread-only it cannot be renamed. If afileis aready open
it cannot be renamed.

Format

int f_renane(const char *filenane,
const char *newnane)

Arguments
Argument Description
filename file or directory narre with/without path
newname new name of target file or directory (without path)

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

voi d myfunc(void) {

f _rename (“oldfile.txt”,”newfile.txt”);
f _rename (“A'\subdir\oldfile.txt”,”"newfile.txt”);

}

See also
f _nkdir, f_open

©2003 HCC-Embedded Kft. 43 www.hcc-embedded.com

f_delete

Deletes afile.
A read-only or open file cannot be deleted.

Format
int f_delete(const char *fil enane)

Arguments
Argument Description
filename file name withor without path to be deleted

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

voi d nyfunc(void) {
f delete ("ol dfile. txt”):;

f delete (“A:\subdir\oldfile.txt”);

See also
f _open

©2003 HCC-Embedded Kft. 44 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f_filelength

Get the length of afile. If the requested file does not exist this function
returns with zero.

Format
long f_filelength (const char *fil enane)

Arguments
Argument Description
filename file name withor without path

Return values

Return value Description
filelength length of file
Example

i nt nyreadfunc(char *filenanme, char *buffer, |ong
buf fsize) {
F FILE *file=f_open(fil enane,”r”);
| ong size=f_filelength(filename);
if ('file) {
printf (“% Cannot be opened!”,fil enane);
return 1,

i f (size>buffsize) {
printf (“Not enough nmenory!”);
return 2;

}

f read(buffer,size,1,file);
f _close(file);

return O;

}

Seealso
f _open

©2003 HCC-Embedded Kft. 45 www.hcc-embedded.com

f findfirst

Find first file or subdirectory in specified directory. First call f_findfirst
function and if file was found get the next filewith f_findnext function.
Files with the system attribute set will be ignored.

Note: If thisis caled with "*.*" and this is not the root directory the first
entry found will be"." - the current directory.

Format

int f_findfirst(const char *fil enane,
F_FIND *find)

Arguments
Argument Description
filename name of file to find
find where to store find information

Return values

Return value Description
F NO_ERROR success
else (see error codes table)
Example
void nydir(void) {
F_FIND find;
i f ('f _findfirst("A:/subdir.*", & ind)) {
do {

printf (“filenane:9%”,find.filenane);
if (find.attr&_ATTR DIR) {

printf (“ directory\n”);
}

el se {
printf (“ size %\n”,find.len);
}
} while (!f_findnext(&ind));

}
}

See also
f _findnext

©2003 HCC-Embedded Kft. 46 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f_findnext

Finds the next file or subdirectory in a specified directory after a previous call
to f_findfirst or f_findnext. First cal f_findfirst function and if file was
found get the rest of the matching files by repeated calls to the f_findnext
function.

Files with the system attribute set will be ignored.

Note: If thisis caled with "*.*" and it is not the root directory the first file

found will be".." - the parent directory.

Format
int f_findnext(F_FIND *find)

Arguments
Argument Description
find find information (created by f_findfirst call)

Return values

Return value Description
F NO_ERROR success
else (see error codes table)
Example
void mydir(void) {
F_FIND find;
if (!'f _findfirst("A:/subdir.*", & ind)) {
do {

printf (“filenane:9%”,find.filenane);
if (find.attr&_ATTR DIR) {
printf (“ directory\n”);

el se {
printf (“ size %\n”,find.len);
}
} while (!'f_findnext(& ind));
}
}
See also
f_findfirst

©2003 HCC-Embedded Kft. 47 www.hcc-embedded.com

f _settimedate

Set the time and date of afile or directory. (See Section 2 for further
information about porting).

Format

int f_settinedate(const char *fil enane,
unsi gned short ctine,
unsi gned short cdate)

Arguments
Argument Description
filename file
ctime creation time of file or directory
cdate creation date of file or directory

Return values

Return value Description

F NO_ERROR SUCCESS

else (see error codes table)
Example

void nyfunc(void) {
f _nkdir(“subfolder”); /*creating directory */
f settinedate(“subfolder”,f gettine(),f_getdate());

}

See also
f _gettinedate

©2003 HCC-Embedded Kft. 48 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f _gettimedate

Get time and date information from afile or directory. (See Section 2 for
more information about porting).

Format

int f_gettimedate(const char *fil enane,
unsi gned short *pctine,
unsi gned short *pcdate)

Arguments
Argument Description
filename target file
pctime pointer to where to store creation time
pcdate pointer to where to store creation date

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

void nyfunc(void) {

unsi gned short t,d;

if (!f_gettinmedate(“subfolder”, &, &d)) {
unsi gned short sec=(t & 001fH) << 1;
unsi gned short mnute=((t & 07e0H) >> 5);
unsi gned short hour=((t & O0f800H) >> 11);
unsi gned short day= (d & 001fH);
unsi gned short nonth= ((d & 01eOH) >> 5);
unsi gned short year=1980+ ((d & f800H) >> 9)
printf (“Tinme: %: %l: %d”, hour, m nut e, sec) ;
printf (“Date: %.%l. %", year, nont h, day) ;

el se {
printf (“File time cannot retrieved!”
}

}

See also
f_settinedate

©2003 HCC-Embedded Kft. 49 www.hcc-embedded.com

f setattr

This routine is used to set the attributes of afile. Possible file attribute
settings are defined by the FAT file system:

F ATTR_ARC Archive

F ATTR DIR Directory
F ATTR VOLUME Volume
F ATTR_SYSTEM System
F_ATTR_HIDDEN Hidden
F ATTR_READONLY Read Only

Note: The directory and volume attributes cannot be set by this function.

Format

int f_setattr(const char *fil enane, unsigned
char attr)

Arguments
Argument Description
filename target file
attr new attribute setting

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

voi d myfunc(void) {
/* make nyfile read only and hi dden */

f_setattr("nyfile.txt",
F_ATTR_READONLY | F_ATTR_HI DDEN);
}

©2003 HCC-Embedded Kft. 50 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f_getattr

This routine is used to get the attributes of a specified file. Possible file
attribute settings are defined by the FAT file system:

F ATTR_ARC Archive

F ATTR DIR Directory
F ATTR_ VOLUME Volume

F ATTR_SYSTEM System

F ATTR HIDDEN Hidden

F ATTR READONLY Read Only
Format

int f_getattr(const char *fil enane, unsigned
char *attr)

Arguments
Argument Description
filename target file
attr pointer to place attribute setting

Return values

Return value Description

F NO_ERROR SUCCESS

else (seeerror codes table)
Example

voi d nyfunc(void) {
unsi gned char attr;

[* find if nyfile is read only */

if(!f_getattr("nyfile.txt", &ttr)

{
if(attr & F_ATTR_READONLY)
printf("myfile.txt is read only");
el se
printf("nyfile.txt is witable");
}
el se
printf("file not found");
}

©2003 HCC-Embedded Kft. 51 www.hcc-embedded.com

f_open

Opens afile. The following modes are alowed to open:

||r.||

Ilr+ll

l|a+ll

Open exigting file for reading. The stream is positioned at the
beginning of the file.

Open existing file for reading and writing. The stream is positioned
at the beginning of the file.

Truncate file to zero length or create file for writing. The stream is
positioned at the beginning of the file.

Open afile for reading and writing. The file is created if it does not
exist, otherwise it istruncated. The stream is positioned at the
beginning of thefile.

Open for appending (writing to end of file). The file is created if it
does not exist. The stream is positioned at the end of thefile.

Open for reading and appending (writing to end of file). Thefileis
created if it does not exist. The stream is positioned at the end of
the file.

Note: There is no text mode. The system assumes all files to be accessed in
binary mode only.

Format
F FILE *f _open(const char *fil enane,

const char *node);

Arguments
Argument Description
filename file to be opened
mode mode to open file with

Return values

Return value Description
F FILE* pointer to the associated opened file handle or zero

if it could not be opened

©2003 HCC-Embedded Kft. 52 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Example

voi d nyfunc(void) {
F FILE *file;

char c;

file=f_open(“nyfile.bin”,”r");

if ('file) {
printf (“File cannot be opened!”);
return;

}

f_read(&c,1,1,file); /*read 1 byte */
printf ("% is read fromfile”,c);
f_close(file);

}

See also
f read, f_wite, f_close,

©2003 HCC-Embedded Kft. 53 www.hcc-embedded.com

f close
Close a previously opened file.

Format
int f_close(F_FILE *fil ehandl e)

Arguments
Argument Description
filehandle handle of target file

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

void nyfunc(void) {
F FILE *file;
char *string="ABC’;
file=f_open(“nyfile.bin”,”w);

if ('file) {
printf (“File cannot be opened!”);
return;
}
f_ wite(string,3,1,file); /*wite 3 bytes */
[

f (!f_close(file)) {
printf (“file stored”);

else printf (“file close error”);

}

Seealso
f_open, f_read, f_wite

©2003 HCC-Embedded Kft. 54 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f_write
Write datato file at current stream position. File has to be opened with “w”,
“W+”’ II&'_II, Ilr+ll Or ila” .

Format

long f_wite(const void *buf,
| ong size,long size_st,
F_FILE *fil ehandl e)

Arguments
Argument Description
buf pointer to data to be written
sze size of items to be written
size st number of items to be written
filehandle handle of target file

Return values

Return value Description
number number of bytes written
Example

voi d nyfunc(void) {
F_FILE *file,
char *string="ABC’;
file=f_open(“nyfile.bin”,”w);
if ('file) {
printf (“File cannot be opened!”);
return;

}
/* wite 3 bytes */

if(f_wite(string,3,1,file)!=3)

{
printf (“Error: wite inconplete”);
}
f_close(file);
}
Seealso

f read, f_open, f_close

©2003 HCC-Embedded Kft. 55 www.hcc-embedded.com

f read

Read bytes from the current position in the target file. File has to be opened
With [13 r”’ Ilr+ll’ IIW+II Or lla_'_ll.

Format

long f_read(void *buf,
| ong size,long size_st,
F_FILE *fil ehandl e)

Arguments
Argument Description
buf buffer where to store data
sze size of items to be read
size st number of itemsto be read
filehandle handle of target file

Return values

Return value Description
number number of read bytes
Example

i nt nyreadfunc(char *filenanme, char *buffer, |ong
buf fsize) {
F FILE *fil e=f_open(filenane,”r”);
| ong size=f _filelength(filename);
if ('file) {
printf (“% Cannot be opened!”,fil enane);
return 1,

i f (f_read(buffer,size,1,file)l=size) {
printf (“different nunber of bytes are
read”);

}
f _close(file);
return O;

}
See also

f _seek, f_tell, f_open, f_close, f_wite

©2003 HCC-Embedded Kft. 56 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f seek
Move stream position in the target file. The file must be open.

The Whence parameter could be one of:
F_SEEK_CUR - Current position of file pointer
F_SEEK_END - End of file
F SEEK_SET - Beginning of file

offset position is relative to whence.

Format

|l ong f_seek(F_FILE *fil ehandl e, | ong of fset,
| ong whence)

Arguments
Argument Description
filehandle handle of open target file
offset relative byte position according to whence
whence where to calculate offset from

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

i nt nmyreadfunc(char *filenane, char *buffer, |ong
buf fsi ze) {
F FILE *fil e=f_open(filenane,”r”);
f read(buffer,1,1,file); /* read 1lst byte */
f _seek(file, 0, SEEK SET);
f read(buffer,1,1,file); /* read the sanme byte */
f_seek(file,-1, SEEK END);
f read(buffer,1,1,file); /* read |last byte */
f_close(file);
return O;

}
See also

f read, f_tell

©2003 HCC-Embedded Kft. 57 www.hcc-embedded.com

f tell

Tells the current read-write position in the open target file.

Format
long f_tell (F_FILE *fil ehandl e)

Arguments
Argument Description
filehandle handle of open target file

Return values

Return vaue Description
filepos current read or write file position
Example

i nt nyreadfunc(char *filenanme, char *buffer, |ong
buf fsi ze) {

F FILE *fil e=f_open(filenane,”r”);

printf (“Current position %" ,f _tell(file));

/* position O */

f _read(buffer,1,1,file); /* read 1 byte
printf (“Current position %”,f _tell(file));
/* positin 1 */

f read(buffer,1,1,file); /* read 1 byte
printf (“Current position %" ,f tell(file));
[* position 2 */

f_close(file);

return O;

}

Seealso
f _seek, f_read, f_wite, f_open

©2003 HCC-Embedded Kft. 58 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f eof

Check whether the current position in the open target file is the end of the

file
Format
int f_eof (F_FILE *fil ehandle)
Arguments
Argument Description
filehandle handle of open target file

Return values

Return value Description

0 not at end of file

else end of file or any error
Example

int nmyreadfunc(char *filenane, char *buffer, |ong
buffsize) {
F FILE *fil e=f_open(filenane,”r”);
while (!'f_eof()) {
if (!buffsize) break;
buf f si ze- -;
f read(buffer++,1,1,file);

f close(file);
return O;
}
Seealso
f seek, f read, f _wite, f_open

©2003 HCC-Embedded Kft. 59 www.hcc-embedded.com

f rewind
Sets the file position in the open target file to the start of thefile.

Format
int f_rew nd(F_FILE *filehandle)

Arguments
Argument Description
filehandle handle of open target file

Return values

Return value Description

F NO_ERROR success

else (see error codes table)
Example

voi d nyfunc(void) {
char buffer[4];
char buffer2[4];
F FILE *file=f_open("nyfile.bin",”r”);
if (file) {
f _read(buffer,4,1,file);

[*rewind file pointer */
f _rewind(file);

/*read from begi nning */
f _read(buffer2,4,1,file);

f _close(file);

}

return O;

}

Seealso
f seek, f _read, f_wite, f_open

©2003 HCC-Embedded Kft. 60 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f_putc

Writes a character to the specified open file at the current file position. The
current file position is incremented.

Format
int f_putc(char ch, F_FILE *fil ehandl e)

Arguments
Argument Description
ch character to be written
filehandle handle of open target file

Return values

Return value Description

-1 Write failed

value Successfully written character
Example

void nyfunc (char *filenanme, |ong num {
F FILE *file=f_open(fil enane,”w);
while (num-) {
int ch="A";
i f(ch!'=(f_putc(ch))
{

printf("f_putc error!");

br eak;
}
f_close(file);
return O;
}
See also

f _seek, f_read, f_wite, f_open

©2003 HCC-Embedded Kft. 61 www.hcc-embedded.com

f _getc
Reads a character from the current position in the target open file.

Format
int f_getc(F_FILE *fil ehandl e)

Arguments
Argument Description
filehandle handle of open target file

Return values

Return value Description
Read failed
value character read from the file
Example

i nt nyreadfunc(char *filenanme, char *buffer, |ong
buf fsize) {
F FILE *file=f_open(filename,”r”);
whil e (buffsize--) {
int ch;
if((ch=f_getc(file))== -1)
br eak;
*puf f er ++=ch;
buf f si ze- -;

}

f_close(file);
return O;
}
Seealso
f _seek, f_read, f_wite, f_open, f_eof

©2003 HCC-Embedded Kft. 62 www.hcc-embedded.com

EFFS FAT - Implementation Guide

5 Driver Interface

This section documents the required interface functions to provide a media driver for the
file system.

Reference should also be made to the sample device drivers supplied with the code when
developing a new driver. The easiest starting point isthe RAM driver.

Driver Interface Functions

xxx_initfunc
XXX_getphy
XXX_readsector
xxX_readmultiplesector
XXX_Writesector
XXX_writemultiplesector
XXX_getstatus
xxx_delfunc

These are the routines that may be supplied by any driver.

The xxx is areference to the particular driver being developed e.g. xxx=cfc for compact
flash card driver.

The xxx_initfunc routine is mandatory and is passed to the f_initvolumeroutine to
initialize avolume. This passes a set of pointers to the driver interface functions below to
the file system.

The xxx_getphy routine is mandatory and is called by the file system to find out the
physical properties of the device e.g. number of sectors.

The xxx_readsector routine is mandatory and is used to read a sector from the target
device.

The xxx_readmultiplesector routine is optiona and is used to read a series of sector from
the target device. If not available xxx_readsector will be used.

The xxx_writesector routine is optional and is required to write a sector to the target
device. It is mandatoryif format is required.

The xxx_writemultiplesector routineisoptional and is used to write a series of sectorsto
the target device. If not available xxx_writesector will be used.

©2003 HCC-Embedded Kft. 63 www.hcc-embedded.com

The xxx_getstatus routine is optional and is only used for removable media to discover
their status i.e. whether a card has been removed or changed.

The xxx_delfunc routine is optional and can be used to release any resources associated
with a drive when it is removed.

©2003 HCC-Embedded Kft. 64 www.hcc-embedded.com

EFFS FAT - Implementation Guide

XXX_initfunc

Passed to the f_initvolume routine to create a volume. The routine passes to
the file system a set of function pointers to access the volumeand an optional
user_ptr. These function pointers are to the other functions documented in
this section.

Format
I nt xxx_initfunc(F_FUNC *pfunc, void *user_ptr)

Arguments
Argument Description
pfunc function structure used by file system
user_ptr pointer to drive init information

Return values

Return vaue Description
0 Always successful

The F_FUNC structure is defined as:

typedef struct {
F_ WRITESECTOR writesector;
F WRITEMULTIPLESECTOR writemultiplesector;
F_READSECTOR readsector;
F_READMULTIPLESECTOR readmultiplesector;
F GETPHY getphy;
F GETSTATUS getstatus;
F_DELFUNC delfunc;
void *user_ptr;
} F_FUNC;

Except for the last field these are al function pointers to inform the file system which
functionsto call.

The user_ptr is assigned by the driver. The value stored in the user _ptr isincluded in all
driver function calls for that volume. The usage of this field is determined by the driver
but is typically used to identify one of a set of attached interfaces e.g. if there are multiple
Compact Flash card slots being controlled by asingle driver. A call to f_delvolume will
cause the file system to call the driver xxx_delfunc with the assigned user_ptr which

will then be removed when the driver function returns.

©2003 HCC-Embedded Kft. 65 www.hcc-embedded.com

Note: The user_ptr value passed to the xxx_initfuncisdetermined by thef _initvolume
cal. The driver may use this value in the user_ptr field of the returned structure or assign
another value as the driver requires. The file system will make all subsequent callsto
driver functions with the assigned value.

©2003 HCC-Embedded Kft. 66 www.hcc-embedded.com

EFFS FAT - Implementation Guide

XXX_getphy

Thisfunction is called by the file system to discover the physical properties of
the drive. The routine will set the number of cylinders, hreads and tracks and
the number of sectors per track.

Format

I nt xxx_get phy(F_PHY *pPhy, void *user_ptr)

Arguments
Argument Description
pPhy pointer to physical control structure
user_ptr pointer to drive information (see xxx_initfunc)

Return values

Return value Description
0 Success
else Error codes for this device e.g. device not present

The F_PHY dtructure is defined as follows:

typedef struct {
unsigned short number_of cylinders; F number of cylinders */
unsigned short sector_per_track; P sectors per track */
unsigned short number_of heads; F number of heads */
unsigned long number_of _sectors; F number of sectors */

} F_PHY;

Note: the number of cylindersis not required by the system. All other parameters must be
set correctly by the xxx_getphy function.

©2003 HCC-Embedded Kft. 67 www.hcc-embedded.com

XXX_readsector

This function is called by the file system to read a complete sector.

Format

I nt xxx_readsector(void *dat a,
unsi gned | ong sector, void *user_ptr)

Arguments
Argument Description
data pointer to write data to from specified sector
sector number of sector to be written
user_ptr pointer to driver information (see xxx_initfunc)

Return values

Return value Description
0 Success
else Sector out of range

©2003 HCC-Embedded Kft. 68 www.hcc-embedded.com

EFFS FAT - Implementation Guide

XXX_readmultiplesector

This function is called by the file system to read a series of consecutive
sectors. This function is optional — itsinclusion will enhance performance on
most devices and is particularly important with Hard Disk Drives.

Format

I nt xxx_readnul tipl esector(void *data,
unsi gned | ong sector, int cnt, void

*user _ptr)

Arguments

Argument Description

data pointer to write data to from specified sector

sector number of first sector to be written

cnt number of sectorsto write

user_ptr pointer to driver information(see xxx_initfunc)
Return values

Return vaue Description

0 Success

else Sector out of range

©2003 HCC-Embedded Kft. 69 www.hcc-embedded.com

XXX_Wwritesector

This function is called by the file system to write a complete sector.
Nb. This function maybe omitted if a read-only driveis required.

Format

I nt xxx_writesector(void *data,
unsi gned | ong sector, void *user_ptr)

Arguments
Argument Description
data pointer to data to write to specified sector
sector number of sector to be written
user_ptr pointer to drive information (see xxx_initfunc)

Return values

Return value Description
0 Success
else Sector out of range

©2003 HCC-Embedded Kft. 70 www.hcc-embedded.com

EFFS FAT - Implementation Guide

XXX_writemultiplesector

This function is called by the file system to write a series of consecutive
sectors. This function is optional — itsinclusion will enhance performance on
most devices and is particularly important with Hard Disk Drives.

Format

I nt xxx_writemultiplesector(void *data,
unsi gned | ong sector, int count, void

*user _ptr)
Arguments
Argument Description
data pointer to data to write to specified sector
sector number of first sector to be written
cnt number of sectorsto write
user_ptr pointer to drive information (see xxx_initfunc)

Return values

Return vaue Description
0 Success
else Sector out of range

©2003 HCC-Embedded Kft. 71 www.hcc-embedded.com

XXX__getstatus

This function is called by the file system to check the status of the media
This is used with removable media to check that a card has not been removed
or swapped. The function returns a bit field of new status information.

Nb. If thisdrive is for a permanent media (e.g. Hard disk or RAM drive), this
function may be omitted.

Format

i nt xxx_getstatus(void *user_ptr)

Arguments
Argument Description
user_ptr pointer to drive information (see xxx_initfunc)

Return values

Return value Description
0 All Ok

F_ST_MISSING Card has been removed (Bit field)
F ST CHANGED The card has been removed and replaced (Bit field)
F ST WRITEPROTECT The card is write protected (Bit field)

©2003 HCC-Embedded Kft. 72 www.hcc-embedded.com

EFFS FAT - Implementation Guide

xxx_delfunc

This function is called by the file system to remove a drive. The drive can use
this call to free any resources associated to that drive. Use of thisroutinein
the driver is optional.

Thisfunctioniscdled isan f_delvolume API cal is made. After thisis

completed the file system removes al record of this volume including the
current value of the user_ptr.

Format
i nt xxx_del func(void *user_ptr)

Arguments
Argument Description
user_ptr pointer to drive information (see xxx_initfunc)

Return values

Return value Description
0 Successful
Else Error Code

©2003 HCC-Embedded Kft. 73 www.hcc-embedded.com

6 Compact Flash Card

Overview

The Compact Flash Card (CFC) driver is designed to operate with all standard compact
flash cards types 1 and 2.

There are three methods for interfacing with a Compact Flash Card:

True IDE Mode
PC Memory Mode
PC 1/0 Mode

The package contains a sample driver for True IDE mode. For devel opers wishing to use

other modes they should contact HCC-Embedded for further information.

Porting True IDE Mode

Files
There are three files for using True IDE mode:

cfc_ideh - header file for ide source files
cfc_idec - source code for running IDE without interrupts

Hardwar e Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

The following are the header file definitions which must be modified

CFC_TOVALUE - this value is hardware dependent and is a counter for loop expiry.
The developer may replace this with a host OS timeout function.

©2003 HCC-Embedded Kft. 74 www.hcc-embedded.com

EFFS FAT - Implementation Guide

CFC_CSO - thisisfor accessing a chip select register and is hardware dependent. The
code assumes a chip select is used to access the card and is removed after access. The
developer must modify this and all accesses to meet the host system design. It should also
be noted that the chip select needs to be set for arelatively long access time (>300ns).
Developers should check the timing in the CFC Specification.

Compact Flash Registers:
The following definitions are used to access the compact flash registers:

CFC_BASE - Base address of the compact flash card

CFC DATA - Macro to access the data register
CFC_SECTORCOU - Macro to access the sector count register
CFC_SECTORNO - Macro to access the sector number register
CFC_CYLINDERLO - Macro to access the cylinder low word register
CFC_CYLINDERHI - Macro to access the cylinder high word register

CFC SELC - Macro to access the select card register

CFC_COMMAND - Macro to access the command register

CFC_STATE - Macro to access the state register (same address as command)
CPLD Logic:

HCC uses CPLD logic in most of its reference designs for CFCards. The following
definitions are used to read from HCC CPLD logic state changes in the card.

CFC_CPLDSTATE - MACRO for reading the state
CFC CPLDSTATE _CDCH - State bit for card has changed
CFC _CPLDSTATE_CFCD - State bit for card removed

The developer must implement something to reflect this functionality. Contact
support@hcc-embedded.com for reference design info rmation.

Setting IDE Mode

A specia sequence needs to be done to force the compact flash card into IDE mode. This
is done in the function fnCFCtrueide. Thisis achieved in HCC hardware by a sequence

of commands to the CPLD which:
1. switches off power to the card
2. forces IDE mode

3. switches power on

This sequence may aso be achieved by CPLD logic or other hardware.

©2003 HCC-Embedded Kft. 75 www.hcc-embedded.com

Please reference the CFC specification or contact support@hcc embedded.com for
reference design information.

Further Information

HCC-Embedded provide design and consultancy services for developers implementing
Compact Flash Cards. HCC-Embedded also has a range of specific drivers for different
CF configurations such as with interrupts and in PC 1O mode.

HCC-Embedded aso have severd hardware reference designs for Compact Flash
interfaces.

The complete compact flash card specification may be obtained from
www.compactflash.org

©2003 HCC-Embedded Kft. 76 www.hcc-embedded.com

EFFS FAT - Implementation Guide

7 MultiMediaCard/Secure Digital Card Driver

Overview

Secure Digital cards are a super-set of MultiMediaCards i.e. they can be used exactly in
the same manner as MMCs but have additional functionality available. In particular they
have an additional two interface pins.

When used in Secure Digital mode there are 4 methods of communicating with the card:
SPI mode

Thisis available on both MMC and SD cards primarily because of its wide availability
and ease of use. Because many standard CPUs support an SPI interface it reduces the

load on the host system compared to other interface methods. When SPI isimplemented
by software control this benefit is lost.

MultiMediaCard Mode

Thisis aspecial mode for communicating with MultiMediaCards requiring very few 1O
pins. It has the disadvantage that generally software has to control every bit transfer and
clock.

Secure Digital Mode

Thisis not compatible with MultiMediaCards. It has the basic advantage that it uses four
data lines and thus the potential transfer speeds are higher (up to 10M Bytes/sec) but
unless there is specific UART hardware on the host system the load on the host is
generally much higher than in SPI mode (with hardware support).

The system currently supports the SPI driver interface. Thisis provided in two forms;

Hardware SPI - where the host CPU has an SPI capability
Software SPI - where the SPI is ssmulated by software using 4 GPIO pins.

How to port these is described in the sections below.

©2003 HCC-Embedded Kft. 77 www.hcc-embedded.com

Porting Hardware SPI Driver

The hardware SPI driver is for use by systems where the host CPU has dedicated logic
for handling SPI communication and in particular automatically handles SPI clock
generation and bit transmission and reception such that the programmer should only
receive and transmit bytes.

Unfortunately from system to system the SPI implemertation varies. In particular, the
handling of the SPI chip select pin may be different between systems - some
automatically generate it where as other systems require it to be controlled entirely by
software.

Files
The developer should include the following files to support this driver:

mmc_mcf.c Source Code file
mmc_mcf.h Header file

Hardwar e Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

MACROS

The following macros in the target specific section must be modified for the developers
target platform:

SPI_CS LO
This macro sets the SPI chip select to low. Some chips handle this automatically in which
case this macro can be aNULL macro.

SPI_CS HI
This macro sets the SPI chip select to high. Some chips handle this automatically in
which case this macro can be a NULL macro.

©2003 HCC-Embedded Kft. 78 www.hcc-embedded.com

EFFS FAT - Implementation Guide

SPI_CD_IN
This macro gets the current state of the card detect pin. Nb. If the card is not connected
the pinis high.

SPI_WP_IN
This macro gets the current state of the write protect pin on the connector.

SPI_WAIT_TR
This macro waits for the transmitter to be ready. The implementation of thisis UART
dependant and may not be necessary.

SER_FIFOCHAR
This macro writes an 8 bit value to the transmit FIFO.

SER_FIFOWORD
This macro writes a 16 bit value to the transmit FIFO.

SER_FIFO
This macro writes a 32 bit value to the transmit FIFO.

Functions

The following functions must be modified for the devel opers target platform:
PiSetBR()

The setting of a baud rate is a target specific function. This routine is called with the

desired baud rate divided by 10 (e.g. if 100kbit is required 10000 is passed to the
function).

SpiRx()

The receive handler is dependant upon the behavior of the hosts UART. This function
must be modified to receive data from the SPI port of the target system.

spilnit()

Initializing the SPI interfaceis a target specific function so the main body of this function
must be replaced. This section should do the set- up and initialization of the SPI port.

©2003 HCC-Embedded Kft. 79 www.hcc-embedded.com

Waiting and Real-time Behavior

The following routines have wait loops inserted where they are waiting for a particular
external condition to occur:

spiWaitBusy()

This can be along wait (>10mseconds) as the data is being written into the card.
spiWaitStartBit()

Thiswait is dependent on the bit rate but is usually relatively short.

spiCmd()

This can be along wait as it is waiting for a complete response from the card.

It is recommended that in initial porting these loops are |eft as they are until the system is
stable. Then the developer should assess these loops in terms of their whole system and
find an appropriate scheduling mechanism or timer mechanism. All these conditions can

be delayed as long as the developer requires - i.e. there is no maximum time before the
condition must be re-checked.

©2003 HCC-Embedded Kft. 80 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Porting Software SPI Driver

The software SPI driver is used to drive the SPI interface through 4 1/0 pins controlled by
software. Additionally two further pins are required for Card Detect and Write Protect.
This driver is also useful when getting a system running even where hardware SPI is
available.

Generally, if no hardware SPI driver available on the host system it is preferable to use
the MultiMediaCard driver than software SPI. The main reason for thisis that the

performance of the two communication methods is roughly equal but the MMC Driver
mode requires fewer 10 pins to be connected.

Files
The developer should include the following files to support this driver:

mmc_mcfs.c Source Code file
mmc_mcf.h Header file

Waiting and Realtime Behaviour

The following routines have wait loops inserted where they are waiting for a particular
external condition to occur:

spiWaitBusy()

This can be along wait (>10mseconds) as the data is being written into the card and the
delay is completely dependant on the card type and what it is doing.

spiWaitStartBit()
Thiswait is dependent on the bit rate but is usually relatively short.
spiWaitTR()

This wait is hardware dependent where there is a request to transmit but the UART
requires that a transmit ready acknowledgement is given first.

spiCmd()
This can be along wait as it is waiting for a complete response from the card.

It is recommended that in initial porting these loops are |eft as they are until the system is
stable. Then the developer should assess these loops in terms of their whole system and

©2003 HCC-Embedded Kft. 81 www.hcc-embedded.com

find an appropriate scheduling mechanism or timer mechanism. All these conditions can
be delayed as long as the devel oper requires - i.e. there is no maximum time before the
condition must be re-checked.

©2003 HCC-Embedded Kft. 82 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Hardwar e Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#Hifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

Hardware porting requires the assignment of pins to each of the used pinsin the driver.
These pins are:

DAT | SPI Data input
DAT O SPI Data output
CLK SPI Clock

(O SPI Chip Select
CD Card Detect
WP Write Protect

For the software the following MACROS have to be written according to this assignment:

SPI CS LO Set the SPI Chip select to low.
SPI_CS HI Set the SPI chip select to high.
SPI_DATA_LO Set the SPI Data output to low.
SPI_DATA_HI Set the SPI Data output to high.
SPI CLK LO Set the SPI clock to low.

SPI_ CLK_HI Set the SPI clock to high.
SPI_DATA_IN Read the SPI data input.
SPI_CD_IN Read the Card detect.
SPI_WP_IN Read the write protect.

Bit Rates

There is no way to generally define a bit rate for a software implementation. The
developer must rely on the CPU and calculate from this. The following should be noted -
the maximum guaranteed speed which all MMC/SD cards will operate at is

100K bits/second. Generally cards operate much faster than this so it is normally not a
problem if the software is much quicker. Because the interface is SPI it can be driven as
dowly as required.

©2003 HCC-Embedded Kft. 83 www.hcc-embedded.com

Porting MultiMediaCard Driver

To be inserted.

Porting SD Card Driver

To be inserted.

Further Information

HCC-Embedded provide design and consultancy services for developersimplementing
MultiMediaCard Host interfaces. HCC-Embedded aso have severa reference designs for
MultiMediaCard Host interfaces.

©2003 HCC-Embedded Kft. 84 www.hcc-embedded.com

EFFS FAT - Implementation Guide

8 Hard Disk Drive

Overview

The Hard Disk Drive (HDD) driver is designed to operate with astandard IDE HDD. The
sample driver is designed to handle two HDDs simultaneoudly.

The design uses some CPLD logic for controlling the interface — for details of this
contact: support@hcc-embedded.com.

Files
There are two files for the HDD driver:

hdd_ide.h - header file for ide source files
hdd _ide.c - source code for running IDE

Hardwar e Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#Hifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

The following are the header file definitions which must be modified

HDD_TOVALUE - thisvaueis hardware dependent and is a counter for loop expiry.
The developer may replace this with a host OS timeout function.

HDD_BASEO - Base address of the first HDD
HDD_CSBASEOQ - Chip select base register for first HDD
HDD_CSOPTO - Chip select option register for first HDD

HDD_CONTROLO - Control register in CPLD control logic for HDD.

©2003 HCC-Embedded Kft. 85 www.hcc-embedded.com

Hard Disk Drive Registers:
The following definitions are used to access the hard disk drive registers.

HDD_DATA - Macro to access the data register
HDD_FEATURE - Macro to access the feature register
HDD_SECTORCOU - Macro to access the sector count register
HDD_SECTORNO - Macro to access the sector number register
HDD_CYLINDERLO - Macro to access the cylinder low word register
HDD_CYLINDERHI - Macro to access the cylinder high word register

HDD_SELC - Macro to access the select card register
HDD_COMMAND - Macro to access the command register
HDD_STATE - Macro to access the state register (same address as command)

©2003 HCC-Embedded Kft. 86 www.hcc-embedded.com

EFFS FAT - Implementation Guide

9 RAM Driver

The RAM driver is a good starting point for implementing a new driver. The sample
RAM driver iswritten to support two independent drives.

The RAM driver does not include aram_getstatus routine because there is no concept of
removing and replacing the drive - it is always present once initialized.

Follow the following steps to build aRAM drive:

1. Include the ramdrv.c and ramdrv.h filesin your file system build. This ensures it can
be mounted.

2. Modify the RAMDRIVE_SIZE define to the size of block of RAM you wish to use for
thisdrive. Nb. Thisis statically assigned - if you require it to be malloc'd thisis a minor
change. Also note - there are minimum sizes for FAT16 and FAT32 - to build aFAT16
file system you must assign 2.8MB of RAM and for a FAT32 32MB. Because of this, it
isnormal to run FAT12 in RAM. About 50K is minimumrequired to run a RAM drive.

3. Cdl f_initvolume with the number of the volume you wish it to be also a pointer to
thef_ramdrvinit function.

4. Cdl f_hardformat to format the drive.
voi d mai n(voi d){
/* mount RAM drive as drive A */
f_initvolume(0, f_randrvinit, F_AUTO _ASSIGN);
/* format the drive */
/* creates boot sector information and volune */
f _hardformat (0, F_FAT12_MEDI A); create FAT12 in RAM */
/* now free to use the drive */
}
The RAM drive may now be accessed as a standard drive using the API calls.

Note: When running the test suite with the RAM drive certain tests will fail because the
driveis destroyed through the simulated power on/off.

©2003 HCC-Embedded Kft. 87 www.hcc-embedded.com

10 Using CheckDisk

This section describes the usage of the f_checkdisk utility.

FAT file systems were not designed to be failsafe i.e. they were not designed in such a
way that if power islost unexpectedly they will aways be reconstructed in a clean state.
Severa types of error may occur such as loss of chains, or lost directory entries. This
utility is designed to correct al errorsthat can occur from unexpected power loss when
using EFFS-FAT. Note that if the mediais used in adevice with adifferent FAT
implementation then not all errors may be correctable.

This utility must be used stand-alone i.e. no other application should be accessing the file
system while this program is running.

Often acheck-disk operation can be performed by more powerful devices such as desktop
computers and in this case it is normal to omit the check-disk files from the build.
However, if there is a nonremovable media then the f_checkdisk utility should be
included in the build.

Files

Toincludethe f_checkdisk utility in your project add the following filesto your build:

/chkdsk/chkdsk.c
/chkdsk/chkdsk.h

Build Options

CHKDSK_LOG_ENABLE

This option should be enabled in chkdsk.h if you want to generate a log file for the
actions of f_checkdisk. This is recommended.

CHKDSK_LOG_SI ZE

This specifies the maximum size in RAM to be used for storing check disk log
information.

©2003 HCC-Embedded Kft. 88 www.hcc-embedded.com

EFFS FAT - Implementation Guide

f checkdisk

This function checks the state of the attached media and automatically fixes
errors detected and can create a log file of what it has found.

Format
int f_checkdisk(int drivenum int param

Arguments
Argument Description
drivenum Number of drive to be checked
param see below

Return values

Return value Description

FC_NO_ERROR Completed Successfully
FC WRITE_ERROR Unable to write a sector
FC_READ_ERROR Unable to read a sector

FC _CLUSTER_ERROR Unable to access a cluster in the FAT
FC ALLOCATION ERROR Memory alocation failed

Par anet er Val ues:
CHKDSK _ERASE BAD CHAI N

The function will automatically erase al bad chains found. Otherwise the file
with the bad chain will be terminated at the last good cluster.

CHKDSK_ERASE_LOST_CHAI N

The function will automatically erase all lost chains found. Otherwise a
LOSTxxxx file will be created with the files contents.

CHKDSK_ERASE_LOST_BAD CHAI N

The function will automatically erase all bad lost chaeins. Otherwise a
LOSTxxxx file will be created and this file will be terminated at the last good
cluster.

©2003 HCC-Embedded Kft. 89 www.hcc-embedded.com

Exanpl e:

voi d mychkdsk(void) {
int ret;

/* check drive 0 (“A") */

I f(ret=f_checkdi sk(0, 0)

printf(“Check Disk Failed: error %d\n”,ret);
el se

printf(“Check Di sk Finished\n”);

Memory Requirements

Thef_checkdisk utility requires memory to run. Thisistypically 1K of static memory
(0.5K if logging is disabled) and 1.5K of stack.

Additionally atwo blocks must be alocated dynamically (using malloc) the sizes of
which are approximately:

(NUMBER_OF CLUSTERS+4096) / 8
and
512 + CHKDSK LOG Sl ZE

The second of these is not required if logging is not enabled — the CHKDSK _LOG_SI ZE
is defined in chkdsk.h. The number of clusters on a device can be very large and depends
on how the device is formatted (number of sectors per cluster) and the size of the device.
The number of clusters on a device can be approximated to:

(SIZE_OF_ MEDIA) / (512 * SECTORS PER CLUSTER).

The number of sectors per cluster is aways in the range 2*"n where0<=n<7.

©2003 HCC-Embedded Kft. 90 www.hcc-embedded.com

EFFS FAT - Implementation Guide

Log File Entries

Each timethe f_checkdisk utility isrun alog file is generated if enabled. The following
messages may appear in the log file:

Directory: <directory_ path>

Displays directory where error messages below have been found.
Directory entry del eted: <name>

Either a file entry or adirectory entry has been deleted from this directory
Lost entry deleted (found in a subdirectory):/ <LOSTXXXXx>

The named lost directory or file entry has been recovered.

Entry deleted (reserved/ bad cluster): <nane>

The first cluster in adirectory entry is unusable or if thereis abad element in the
chain and CHKDSK_ERASE_BAD_CHAI N is set.

File size changed: <nane> < ol d_size> <new size>

A file was found whose size is smaller than the minimum number of clusters
needed to dorethat file or the file size is greater than that which can be stored in
the cluster chain. The file size has been changed to the maximum for the clusters
allocated to that file. The user should analyze thisfile to find the correct
termination point.

Start cluster changed: <nane> (either “.” or“..”)

An invalid cluster has been found in a directory entry for either “.” or “..”. This
has been fixed.

Entry deleted (cross |inked chain): <nane>

If the start cluster of the named fileis cross-linked or if any subsequent cluster is
cross-linked and CHKDSK _ERASE_BAD_CHAI Nis set then this message will
give the name of the removed file.

Lost directory chain saved: <LOSTxxxx>

A directory chain with no references has been found. It has been recreated with
the name LOSTXxxX.

©2003 HCC-Embedded Kft. 91 www.hcc-embedded.com

Lost file chain saved: <LOSTxxxx>

A filechain with no references has been found. It has been recreated in the root
directory with the name L OSTxxxXx.

Lost chain renoved (first cluster/cnt): <cluster> <count>

A lost chain has been discovered and removed. This will only appear if
CHKDSK _ERASE LOST_CHAI Nor CHKDSK ERASE LOST BAD CHAI'N
enabled. If not a LOSTxxxx file will be created.

Last cluster changed (bad next cluster val ue): <nane>
In checking the file chain an invalid cluster was discovered. The cluster prior to
the bad cluster is changed to end of file and the file size adjusted to the maximum
for the new size of cluster chain.

Movi ng |l ost directory: /<LOSTXXXX>
A lost directory has been recovered.

"..' changed to root: <LOSTxxxx>

A lost directory entry has been placed in root soits*..” entry has been changed to
point to root.

FAT2 updated according to FATL.

FAT1 and FAT2 were found to be different and FAT1 is used as the correct
verson. This can appear only once at the beginning of the log file.

Long filenanme entry/entries renoved. Count=

This appears at the end of the log file and is a count of the number of long
filename entries that were invalid and unrecoverable.

©2003 HCC-Embedded Kft. 92 www.hcc-embedded.com

