
EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 1 www.hcc-embedded.com

HCC-Embedded

Embedded Flash File System
FAT12/16/32

Implementation Guide

Version 2.62

All rights reserved. This document and the associated software are the sole property of HCC-Embedded Kft. Reproduction or
duplication by any means of any portion of this document without the prior written consent of HCC-Embedded Kft. is expressly
forbidden.

HCC-Embedded Kft. reserves the right to make changes to this document and to the related software at any time and without notice.
The information in this document has been carefully checked for its accuracy; however, HCC-Embedded Kft. makes no warranty
relating to the correctness of this document.

©2003 HCC-Embedded Kft. 2 www.hcc-embedded.com

0 Contents

0 Contents ... 2
1 System Overview... 5

TARGET AUDIENCE ... 5
SYSTEM STRUCTURE/SOURCE CODE... 6
SOURCE FILE LIST .. 6
SOURCE FILE LIST .. 7
GETTING STARTED .. 8
TESTING.. 9

2 Porting ...11
SYSTEM REQUIREMENTS...11
STACK REQUIREMENTS...11
REAL TIME REQUIREMENTS ..11
REENTRANCY..11
MAXIMUM NUMBER OF VOLUMES ..12
MAXIMUM OPEN FILES ...12
LONG F ILENAMES ...12
GET TIME..14
GET DATE...14
RANDOM NUMBER..14
MEMCPY AND MEMSET...15
CACHE SETUP AND OPTIONS...16

FAT Caching ...16
Write Caching ..16

3 Drive Format...17
COMPLETELY UNFORMATTED ...17
MASTER BOOT RECORD..18

Master Boot Record ...18
Partition Entry Description..18

BOOT SECTOR INFORMATION..19
Boot Sector Information Table ..19
First 36 Bytes ...19

4 File API ..21
FILE SYSTEM FUNCTIONS ...21
FUNCTION ERROR CODES ...22
F_GETVERSION..23
F_INITVOLUME..24
F_DELVOLUME..26
F_GET_VOLUME_COUNT ...27
F_GET_VOLUME_LIST ...28
F_FORMAT..29
F_HARDFORMAT ...31
F_GETFREESPACE ..33
F_SETLABEL ..34

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 3 www.hcc-embedded.com

F_GETLABEL ...35
F_MKDIR ...36
F_CHDIR ..37
F_RMDIR ...38
F_GETDRIVE ..39
F_CHDRIVE..40
F_GETCWD..41
F_GETDCWD..42
F_RENAME..43
F_DELETE..44
F_FILELENGTH ..45
F_FINDFIRST ..46
F_FINDNEXT ..47
F_SETTIMEDATE..48
F_GETTIMEDATE ...49
F_SETATTR..50
F_GETATTR ...51
F_OPEN ...52
F_CLOSE..54
F_WRITE..55
F_READ ...56
F_SEEK ..57
F_TELL ..58
F_EOF..59
F_REWIND...60
F_PUTC..61
F_GETC ...62

5 Driver Interface ..63
DRIVER INTERFACE FUNCTIONS ...63
XXX_INITFUNC..65
XXX_GETPHY..67
XXX_READSECTOR..68
XXX_READMULTIPLESECTOR ..69
XXX_WRITESECTOR ..70
XXX_WRITEMULTIPLESECTOR...71
XXX_GETSTATUS ..72
XXX_DELFUNC..73

6 Compact Flash Card...74
OVERVIEW ..74
PORTING TRUE IDE MODE ...74

Files ...74
Hardware Porting..74
Setting IDE Mode ..75

FURTHER INFORMATION ...76
7 MultiMediaCard/Secure Digital Card Driver..77

OVERVIEW ..77

©2003 HCC-Embedded Kft. 4 www.hcc-embedded.com

PORTING HARDWARE SPI DRIVER..78
Files ...78
Hardware Porting..78
MACROS..78
Functions ...79
Waiting and Real-time Behavior ...80

PORTING SOFTWARE SPI DRIVER ...81
Files ...81
Waiting and Realtime Behaviour...81
Hardware Porting..83
Bit Rates ...83

PORTING MULTIMEDIACARD DRIVER ..84
PORTING SD CARD DRIVER ..84
FURTHER INFORMATION ...84

8 Hard Disk Drive ..85
OVERVIEW ..85

Files ...85
Hardware Porting..85

9 RAM Driver ..87
10 Using CheckDisk...88

FILES ..88
BUILD OPTIONS ..88
F_CHECKDISK ...89
MEMORY REQUIREMENTS...90
LOG FILE ENTRIES ..91

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 5 www.hcc-embedded.com

1 System Overview

Target Audience

This guide is intended for use by embedded software engineers who have should have a
knowledge of the C programming language, standard file API's who wish to implement a
FAT12, FAT16 or FAT32 file system in any combination of RAM, Compact Flash Card,
MultiMediaCard, Hard Disk Drive or other device type.

Although every attempt has been made to make the system as simple to use as possible
the developer must understand the requirements of the system they are designing to get
the best practical benefit from the system.

HCC-Embedded offers hardware and firmware development consultancy to assist
developers with the implementation of a flash file system.

©2003 HCC-Embedded Kft. 6 www.hcc-embedded.com

System Structure/Source Code

The following diagram illustrates the structure of the file system software.

GetPhy()
ReadSector()
WriteSector()

RAM Drive

ramdrv.c

GetPhy()
GetStatus()

ReadSector()
WriteSector()

Compact

Flash Card
cfc_ide.c

GetPhy()
GetStatus()

ReadSector()
WriteSector()

MultiMedia

Card
mmc_mcf.c/
mmc_mcfs.c

Standard File API

f_initvolume f_getdrive f_rename f_open
f_format f_chdrive f_delete f_close
f_hardformat f_getcwd f_filelength f_write
f_getfreespace f_getdcwd f_findfirst f_read
f_setlabel f_mkdir f_findnext f_seek
f_getlabel f_chdir f_settimedate f_tell
f_getversion f_rmdir f_gettimedate f_eof
f_delvolume f_setattr f_rewind
f_get_volume_count f_getattr f_putc
f_get_volume_list f_getc
f_checkdisk

FAT File System

fat.c, fat_lfn.c, fat_m.c,

port.c, chkdsk.c

User Applications

GetPhy()
GetStatus()

ReadSector()
WriteSector()

Hard Disk Drive

hdd_ide.c

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 7 www.hcc-embedded.com

Source File List

The following is a list of all the source code files included in the file system.

/src/
fat.c - fat file system
fat.h - fat file header

fat_lfn.c - alternative source file to fat.c for long filenames

fat_m.c - fat file system reentrancy wrapper
fat_m.h - fat file header reentrancy header

port.c - routines that require OS specific modifications
port.h - header for port routines.

/src/chkdsk/
chkdsk.c - check disk utility C source code
chkdsk.h - header file for checkdisk utility

/src/ram/
ramdrv.c - RAM driver implementation
ramdrv.h - RAM driver header file

/src/cfc/
cfc_ide.c - Compact Flash Card True IDE Driver
cfc_ide.h - Compact Flash Card True IDE Header

/src/mmc/
mmc_mcf.c - MultiMediaCard SPI driver (based on Motorola Coldfire)
mmc_mcfs.h - MultiMediaCard driver with software driven SPI
mmc.h - MultiMediaCard header

/src/hdd/
hdd_ide.c - Hard Disk Drive IDE driver
hdd_ide.h - Hard Disk Driver header file

/src/test/
test.c - Test source code for exercising the file system
test.h - Header file for test source code

The developer should not normally modify the fat source files. These files contain all the
file system handling and maintenance including FATs, directories, formatting etc.

The port.c and port.h files need to be modified to conform to the target system the
developer is working with. The tasks required of the developer are straightforward and

©2003 HCC-Embedded Kft. 8 www.hcc-embedded.com

ensure easy integration with any operating environment. Full guidance to this is given in
the Section 2.

The driver files are fully tested working driver examples. For any particular
implementation key parts of these must be changed to conform to the development
environment. In particular address mapping and IO port mapping must be done to
configure the driver to work with the developer’s hardware. The driver interface
functions are documented in Section 5. The sample drivers are documented in Sections 6,
7, 8 and 9.

To implement a customized driver is straightforward. The developer should base any new
driver on the RAM driver as the simplest possible starting point.

Getting Started

To get your development started as efficiently as possible we recommend that the
developer follow the instructions in Section 9 to set up a RAM drive on their target. This
enables the developer to become familiar with the system and develop test code without
the need to worry about a new hardware interface.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 9 www.hcc-embedded.com

Testing

Supplied with the system is test code for exercising the system and ensuring that the file
system is working correctly. Most functionality of the file system is exercised with this
program including file read/write/append/seek/file content, directories and file
manipulation functions. To use the test program include test.c and test.h in your test
project.

void f_dotest(void) is called to execute the test code.

The test program requires the following four functions to be implemented by the
developer - they are host system dependent - sample code below demonstrates the
required functionality:

 int _f_poweron(void)
/*
* Ths function which should call f_initvolume for the drive to be
* tested - which must be drive 0 ("A"). If the RAM drive is being
* tested then the volume must be both initialized and formatted.

 * _f_poweron is called by the test code during the test operation.
 * This routine should return non-zero if any error is detected.
 */
int _f_poweron(void)
{
#if RAM_TEST /* testing RAM drive */
int ret;
 ret=f_initvolume(0,f_ramdrvinit, F_AUTO_ASSIGN);
 if (ret) return ret;

 return f_format(0,F_FAT12_MEDIA);

#else /* if testing compact flash drive */

 return f_initvolume(0,f_cfcdrvinit, F_AUTO_ASSIGN);
#endif
}

 int _f_poweroff(void)
/*
 * This function should call f_delvolume for the drive being tested.
 * _f_poweroff is called by the test code during the test operation.
 * This routine should return non-zero if any error is detected.
 * The routine may also be used to free allocated resources
 */

int _f_poweroff(void)
{
 return f_delvolume(0);
}

©2003 HCC-Embedded Kft. 10 www.hcc-embedded.com

/* _f_dump() displays text output from the tests */

void _f_dump (char *s)
{
 printf("%s\n",s);
}

/* _f_result() displays errors detected during the test */

long _f_result(long testnum, long error)
{

printf("test number %d failed with error %d\n", testnum, error);
return(testnum)

}

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 11 www.hcc-embedded.com

2 Porting

System Requirements

The system is designed to be as open and portable as possible. No assumptions are made
about the functionality or behavior of the underlying operating system. For the system to
work at its best certain porting work should be done as outlined below. This is a
straightforward task for an experienced engineer.

Stack Requirements

The file system functions are always called in the context of the calling thread or task.
Naturally the functions require stack space and the developer should allow for this in
applications calling file system functions. Typica lly calls to the file system will use
<2Kbytes of stack. However, if long filenames are used then the stack size should be
increased to 4K but see Long Filenames section below.

Real Time Requirements

The bulk of the file system is code that executes witho ut delay. There are exceptions at
the driver level where delays in writing to the physical media and in the communication
cause the system to wait on external events. The points at which this occur are
documented in the applicable driver sections and the d eveloper should modify them to
meet the system requirements - either by implementing interrupt control of that event or
scheduling other parts of the system. Read the relevant driver section for details.

Reentrancy

If more than one user is going to access the file system at one time then reentrancy must
be considered.

A reentrancy wrapper is included in fat_m.c. To enable reentrancy you must first set the
define F_REENTRANCY to a non-zero value. This causes all the API functions to be
called via the reentrancy wrapper functions in fat_m.c.

The reentrancy wrapper routines call semaphore routines contained in port.c. These are
general functions and should be replaced by the routines provided by your operating
system.

Nb. The semaphore routines supplied with the system are vulnerable to the classic
priority inversion problem which can only be resolved by the use of routines specific
to the target’s RTOS.

©2003 HCC-Embedded Kft. 12 www.hcc-embedded.com

It is only necessary to protect a volume from certain accesses simultaneously. Therefore
it is practical to provide a separate semaphore for each volume in use. It is up to the
developer to provide the management or wrapper functions to handle this.

Maximum Number of Volumes

The maximum number of volumes allowed by your system should be set in the
F_MAXVOLUME definition in fat.h. Set this value to the maximum volumes that will
be available on the target system. (E.g. if only RAM drive is used set the value to 1, if
RAM drive and CF card drive then set this value to 2, etc).

Volumes are given drive letters as specified in the f_initvolume function.

Maximum Open Files

The maximum number of simultaneously open files allowed must be specified in the
fat.h file. This is set in the F_MAXFILES definition. This is the total across all volumes.

Long Filenames

The system includes two main source files to choose between:

fat.c - contains file system without long filename support. If long filenames exist on the
media the system will ignore the long name part and use only the short name.

fat_lfn.c - contains file system with complete long filename support.

The long filename is optional because of the increase in system resources required to do
long filenames. In particular the stack sizes of applications which call the file system
must be increased and the amount of checking required is increased.

To choose between using the long filename version and the short use the
F_LONGFILENAME definition in fat.h.

The maximum long filename space required by the standard is 260 bytes. As a
consequence each time a long filename is processed large areas of memory must be
available. The developer may, depending on their application, reduce the size of
F_MAXPATH and F_MAXLNAME (in fat.h) to reduce the resource usage of the
system. The structure F_LFNINT must NOT be modified as this is used to process the
files on the media which may be created by other systems.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 13 www.hcc-embedded.com

The most critical function for long filenames is the fn_rename function which must keep
two long filenames on the stack and additional structures for handling it. If this function
is not required for your application it is sensible to comment it out and this can
significantly reduce the stack requirements (by approximately 1K).

NB. On December 3rd 2003 Microsoft announced that it would exercise its patent
rights relating to certain elements of how long filenames are implemented in FAT
file systems. As a consequence it is up to the user to contact Microsoft to get the
required licenses should they use the long filename option.

©2003 HCC-Embedded Kft. 14 www.hcc-embedded.com

Get Time

For the system to be compatible with other systems it is necessary to provide a real time
function so that files can be time-stamped.

An empty function (f_gettime) is provided in port.c which should be modified by the
developer to provide the time in standard format.

The required format for the time for PC compatibility is a short integer ‘t’ (16 bit) such
that:

2-second increments (0-30 valid) (t & 001fH)
minute (0-59 valid) ((t & 07e0H) >> 5)
hour (0-23 valid) ((t & 0f800H) >> 11)

Get Date

For the system to be compatib le with other systems it is necessary to provide a real time
function so that files can be date-stamped.

An empty function (f_getdate) is provided in port.c which should be modified by the
developer to provide the date in standard format.

The required format for the date for PC compatibility is a short integer ‘d’ (16 bit) such
that:

day (0-31) (d & 001fH)
month (1-12 valid) ((d & 01e0H) >> 5)
years since 1980 (0-119 valid) ((d & fe00H) >> 9)

Random Number

The port.c file contains a function (f_getrand) which the file system uses to get a
pseudo-random number to use as the volume serial number.

It is recommended that the developer replace this routine with a random function from
their base system or alternatively generate their own random number based on a
combination of the system time/date and a system constant such as a MAC address.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 15 www.hcc-embedded.com

Memcpy and Memset

Supplied with the system are memcpy and memset functions.

It is recommended to re-define these to call versions of these functions that are optimized
for your target system. As with all embedded systems, these routines are used frequently
and take time and having a good memcpy routine can have a large impact on the overall
performance of your system.

The following has been defined in fat.h and should be modified to call target optimized
versions of these functions :

#ifdef INTERNAL_MEMFN
#define _memcpy(d,s,l) _f_memcpy(d,s,l)
#define _memset(d,c,l) _f_memset(d,c,l)
#else
#define _memcpy(d,s,l) memcpy(d,s,l)
#define _memset(d,c,l) memset(d,c,l)
#endif

©2003 HCC-Embedded Kft. 16 www.hcc-embedded.com

Cache Setup and Options

The system includes two caching mechanisms to enhance the performance of the system;
these are FAT caching and write data caching.

FAT Caching

FAT caching enables the file system to read several sectors from the FAT in one access
so that when accessing the files the file system does not have to read new FAT sectors so
frequently. The FAT caching is arranged in blocks such that each block can cover
different areas of the FAT. The number of sectors that each block contains and the
number of blocks is configurable.

FAT caching requires additional RAM – 512 bytes per sector.

The following definitions are provided in fat.h

#define FATCACHE_ENABLE

#ifdef FATCACHE_ENABLE
#define FATCACHE_BLOCKS 4 /* number of different FAT cache blocks */
#define FATCACHE_READAHEAD 8 /* number of FAT sectors to read to a block */
#define FATCACHE_SIZE (FATCACHE_BLOCKS*FATCACHE_READAHEAD)
#endif

Note: The additional RAM required for FAT caching is:

FATCAHCE_BLOCKS*FATCACHE_READAHEAD*512

This default setting requires 16K of additional RAM.

Write Caching

The amount of data that can be written ahead depends on the depth of the write cache.
The write cache requires an F_POS structure (24 bytes) for each entry in the wr ite cache.
The main purpose of these structures is to be able to wind back a write in the event of an
error in writing.

The default setting for the write caching in fat.h is:

#define WR_DATACACHE_SIZE 32

This will require 768 additional bytes of RAM.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 17 www.hcc-embedded.com

3 Drive Format

This document does not describe a FAT file system in detail - there are many reference
works to choose from. This file system handles the majority of the features of a FAT file
system with no need for the developer to understand further. However, there are some
areas where an understanding may help - this section describes these features and
provides additional information about FAT formats.

There are three different forms in which your removable media maybe formatted with:

• Completely Unformatted Media
• Master Boot Record
• Boot sector Information only

The sections below describe how the system handles these three situations.

Completely unformatted

If a drive is completely unformatted then it is not useable until it has been formatted.
Most flash cards are pre-formatted whereas hard disk drives tend to be unformatted when
delivered.

When the f_format function is called the drive will be formatted with Boot Sector
Information. This is exactly the same as if the f_hardformat function had been called.
Please see Boot Sector Information section below for further information.

The format of the card is determined by the number of sectors on it. Information about
the connected device is given to the system from the xxx_getphy call to the driver from
which the number of available clusters on the device is calculated.

Refer to the f_hardformat and f_format commands for description of how to choose the
format type (FAT12/16/32).

©2003 HCC-Embedded Kft. 18 www.hcc-embedded.com

Master Boot Record

If a card contains a Master Boot Record it is formatted as in the tables below.
As standard the file system does not hard format a card with an MBR but with Boot
Sector Information as described in the next section. A hard format will remove the MBR
information.

When a device is inserted with an MBR it will be treated as if it just has one partition (the
first in the partition table.

Offset Bytes Entry Description Value/Range
0x0 446 Consistency check routine
0x1be 16 Partition table entry (table below)
0x1ce 16 Partition table entry (table below)
0x1de 16 Partition table entry (table below)
0x1ee 16 Partition table entry (table below)
0x1fe 1 Signature 0x55
0x1fe 1 Signature 0xaa

Master Boot Record

Offset Bytes Entry Description Value/Range
0x0 1 Boot descriptor 0x00 (non-bootable device)

0x80 (bootable device)
0x1 3 First partition sector Address of first sector
0x4 1 File system descriptor 0 = empty

1 = FAT12
4 = FAT16 < 32MB
5 = Extended DOS
6 = FAT16 >= 32MB
0xB=FAT32
0x10-0xff free

0x5 3 Last partition sector Address of last sector
0x8 4 First sector position relative to

device start
First sector number

0xc 4 Number of sectors in partition Between 1 and max number
on device

Partition Entry Description

Nb. Should a developer require to use multiple partitions on a single card please

contact support@hcc-embedded.com

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 19 www.hcc-embedded.com

Boot Sector information

This is the system used as standard by the file system. If a hard format command is issued
the card is always formatted with this table in the first sector. The first 36 bytes of the
boot sector are the same for FAT12/16/32 as in the first table. The second table shows the
format for the rest of the boot sector for FAT12/16. The third table shows the format of
the boot sector for FAT32.

Offset Bytes Entry Description Value/Range
0x0 3 Jump Command 0xeb 0xXX 0x90
0x3 8 OEM Name XXX
0xb 2 Bytes/Sector 512
0xd 1 Sectors/Cluster XXX(1-64)
0xe 2 Reserved Sectors 1
0x10 1 Number of FATs 2
0x11 2 Number of root directory entries 512
0x13 2 Number of sectors on media XXX (dependent on card size, if

greater than 65535 then 0 and number
of total sectors is used)

0x15 1 Media Descriptor 0xf8 (hard disk)
0xf0 (removable media)

0x16 2 Sectors/FAT16 XXX (normally 2). This must be zero
for FAT32.

0x18 2 Sectors/Track 32 (not relevant)
0x1a 2 Number of heads 2 (not relevant)
0x1c 4 Number of hidden sectors 0 or if MBR present number relative

sector offset of this sector.
0x20 4 Number of total sectors XXX (depends on card size) or 0

Boot Sector Information Table

First 36 Bytes

©2003 HCC-Embedded Kft. 20 www.hcc-embedded.com

Offset Bytes Entry Description Value/Range
0x24 1 Drive Number 0
0x25 1 Reserved 0
0x26 1 Extended boot signature 0x29
0x27 4 Volume ID or Serial Number Random number generated at hard

format
0x2b 11 Volume Label "NO LABEL" is put here by a format
0x36 8 File System type “FAT16” or "FAT12"
0x3e 448 Load Program Code Filled with zeroes.
0x1fe 1 Signature 0x55
0x1ff 1 Signature 0xaa

Boot Sector Information Table
FAT12/16 After byte 36

Nb. The serial number field is generated by the random number function – see porting
section for information about its generation.

Offset Bytes Entry Description Value/Range
0x24 4 Sectors/FAT32 The number of sectors in one FAT
0x28 2 ExtFlags Always zero.
0x2a 2 File System Version 0 0
0x2c 4 Root Cluster Cluster number of the first cluster of

the root directory
0x30 2 File System Info Sector number of FSINFO structure in

the reserved area of the FAT32.
Usually 1.

0x32 2 Backup Boot Sector If non-zero it indicates the sector
number in the reserved area of the
volume of a copy of the boot record.
Usually 6.

0x34 12 Reserved All bytes always zero
0x40 1 Drive Number 0
0x41 1 Reserved 0
0x42 1 Boot Signature 0x29
0x43 4 Volume ID Random number generated at hard

format.
0x47 11 Volume Label "NO LABEL" is put here by a format
0x52 8 File System Type Always set to string "FAT32 ".

Boot Sector Information Table

FAT32 After byte 36

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 21 www.hcc-embedded.com

4 File API

File System Functions

Volume functions

• f_getversion
• f_initvolume
• f_delvolume
• f_get_volume_count
• f_get_volume_list

• f_format
• f_hardformat
• f_getfreespace
• f_setlabel
• f_getlabel

Drive\Directory handler functions

• f_getdrive
• f_chdrive
• f_getcwd
• f_getdcwd

• f_mkdir
• f_chdir
• f_rmdir

File functions

• f_rename
• f_delete
• f_filelength
• f_findfirst
• f_findnext

• f_settimedate
• f_gettimedate
• f_getattr
• f_setattr

Read/Write functions

• f_open
• f_close
• f_write
• f_read
• f_seek

• f_tell
• f_eof
• f_rewind
• f_putc
• f_getc

©2003 HCC-Embedded Kft. 22 www.hcc-embedded.com

Function Error Codes

Error Code Literal Meaning
F_NO_ERROR 0 No Error - function was successful
F_ERR_INVALIDDRIVE 1 The specified drive does not exist
F_ERR_NOTFORMATTED 2 The specified volume has not been

formatted
F_ERR_INVALIDDIR 3 The specified directory is invalid
F_ERR_INVALIDNAME 4 The specified file name is invalid
F_ERR_NOTFOUND 5 The file or directory could not be found
F_ERR_DUPLICATED 6 The file or directory already exists
F_ERR_NOMOREENTRY 7 The volume is full
F_ERR_NOTOPEN 8 A function to access a file has been called

which requires the file to be open.
F_ERR_EOF 9 End of file
F_ERR_RESERVED 10 Not used
F_ERR_NOTUSEABLE, 11 Invalid parameters for f_seek
F_ERR_LOCKED 12 The file has already been opened for

writing/appending.
F_ERR_ACCESSDENIED 13 The necessary physical read and/or write

functions are not present for this volume
F_ERR_NOTEMPTY 14 The directory to be renamed or deleted is

not empty.
F_ERR_INITFUNC 15 If no init function available for a driver or

the function generates an error.
F_ERR_CARDREMOVED 16 The card has been removed.
F_ERR_ONDRIVE 17 Non-recoverable error on drive
F_ERR_INVALIDSECTOR 18 A sector has developed an error.
F_ERR_READ 19 Error reading the volume
F_ERR_WRITE 20 Error writing file to volume
F_ERR_INVALIDMEDIA 21 The media is not recognized
F_ERR_BUSY 22 The caller could not obtain the semaphore

within the expiry time
F_ERR_WRITEPROTECT 23 The physical media is write protected
F_ERR_INVFATTYPE 24 The type of FAT is not recognized
F_ERR_MEDIATOOSMALL 25 Media is too small for the format type

requested
F_ERR_MEDIATOOLARGE 26 Media is too large for the format type

requested
F_ERR_NOTSUPPSECTORSIZE 27 The sector size is not supported. The only

supported sector size is 512 bytes.
F_ERR_DELFUNC 28 The delete drive driver function failed
F_ERR_MOUNTED 29 The drive is already mounted

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 23 www.hcc-embedded.com

f_getversion

This function is used to retrieve file system version information.

Format

char * f_getversion(void)

Arguments

None

Return values

 Return value Description
 Any pointer to null terminated ASCII string

Example:

void display_fs_version(void) {

 printf("File System Version: %s",f_getversion());
}

©2003 HCC-Embedded Kft. 24 www.hcc-embedded.com

f_initvolume

This function is used to initialize a volume. The function is called with a
pointer to the function that must be called to retrieve drive configuration
information from the relevant driver. This function works independently of
the status of the hardware i.e. it does not matter if a card is inserted or not.

Format

int f_initvolume(int drivenum,F_INITFUNC *pfunc,
void *user_ptr)

Arguments

 Argument Description
 drivenum drive to be initialized (0:A, 1:B...)

 pfunc pointer to initialization function for drive

 user_ptr pointer to user information (see below)

Return values

 Return value Description
 F_NO_ERROR drive successfully initialized

 else failed - see error codes

Note: The user_ptr may be used to pass information to the low-level driver.
When the xxx_initfunc of the driver is called this parameter will be passed to
the driver. The usage of this parameter is optional and driver dependent. One
use is to specify which device associated with the specified driver will be
initialized. For convenience a definition F_AUTO_ASSIGN has been
predefined to mean that the driver should assign devices as it wishes – this
convention is optional and has no affect on the file system.

For more information about its usage please see Section 5.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 25 www.hcc-embedded.com

Example:

void myinitfs(void) {
 int ret;

/* Make a RAM volume on Drive A */
f_initvolume(0, f_ramdrvinit, F_AUTO_ASSIGN);

/*Make a Compact Flash Volume on Drive B */
f_initvolume(1, f_cfcinit, F_AUTO_ASSIGN);

/*Make an MMC Volume on Drive C */
f_initvolume(2, f_mmcinit, F_AUTO_ASSIGN);

 .
 .
}

See also

f_format, f_hardformat

©2003 HCC-Embedded Kft. 26 www.hcc-embedded.com

f_delvolume

This function is used to delete an existing volume. The link between the file
system and the driver will be broken i.e. an xxx_delfunc call will be made to
the driver and afterwards the user_ptr will be cleared. Any open files on the
media will be marked as closed so that subsequent API accesses to a
previously opened file handle will return with an error.

This function works independently of the status of the hardware i.e. it does
not matter if a card is inserted or not.

Format

int f_delvolume(int drivenum)

Arguments

 Argument Description
 drivenum drive to be deleted (0:A, 1:B...)

Return values

 Return value Description
 F_NO_ERROR drive successfully deleted

 else failed - see error codes

Example:

void mydelfs(int num) {
 int ret;

/*Delete volume 1 */
if(f_delvolume(num))

printf(“Unable to delete volume %d, num);

 .
 .
}

See also

f_initvolume

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 27 www.hcc-embedded.com

f_get_volume_count

This function returns the number of volumes currently available to the user.

Format

int f_get_volume_count(void)

Arguments

 Argument Description
 none

Return values

 Return value Description
 num number of active volumes

Example:

void mygetvols(void) {

printf(“there are %d active volumes\n”,
f_get_volume_count());

 .
 .
}

See also

©2003 HCC-Embedded Kft. 28 www.hcc-embedded.com

f_get_volume_list

This function returns a list of volumes currently available to the user.

Format

int f_get_volume_list(int *buffer)

Arguments

 Argument Description
 none

Return values

 Return value Description
 number number of active volumes

Example:

void mygetvols(void) {
 int i,j;

int buffer[F_MAXVOLUME];

if(i=f_get_volume_list(buffer));

for(j=0;j<i;j++)
{

printf(“Volume %d is active\n”, buffer[j]);
}

 .
 .
}

See also

 f_get_volume_count

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 29 www.hcc-embedded.com

f_format
Formats the specified drive. If the media is not present this routine will fail. If
successful all data on the specified volume will be destroyed. Any open files
will be closed.

Any existing Master Boot Record will be unaffected by this command. The
boot sector information will be re-created from the information provided by
f_getphy() (see Section 3).

The caller must specify the required format:

 F_FAT12_MEDIA for FAT12

F_FAT16_MEDIA for FAT16
F_FAT32_MEDIA for FAT32

The format will fail if the specified format type is incompatible with the size
of the physical media.

Format

int f_format(int drivenum, long fattype)

Arguments

 Argument Description
 drivenum drive to be formatted (0=”A”…)

 fattype type of format: FAT12, FAT16 or FAT32

Return values

 Return value Description
 F_NO_ERROR drive successfully formatted

 else format failed - see error codes

©2003 HCC-Embedded Kft. 30 www.hcc-embedded.com

Note: The number of sectors per cluster on a FAT32 drive is set by a hard
format and is determined by the table below which is included in the fat.c and
fat_lfn.c files. The table specifies the number of sectors on the target device
below which the second number gives the number of sectors per cluster. This
table may be modified if required.

static t_FAT32_CS FAT32_CS[]={
 { 0x00020000, 1 }, /* ->64MB */
 { 0x00040000, 2 }, /* ->128MB */
 { 0x00080000, 4 }, /* ->256MB */
 { 0x01000000, 8 }, /* ->8GB */
 { 0x02000000, 16 }, /* ->16GB */
 { 0x0ffffff0, 32 } /* -> ... */

};

Example:

void myinitfs(void) {
 int ret;

f_initvolume(0,f_cfcinit, F_AUTO_ASSIGN);

ret=f_format(0, F_FAT16_MEDIA);

if(ret)
 printf(“Unable to format CFC: Error %d”,ret);
else
 printf(“CFC formatted”);

 .
 .
}

See also f_initvolume, f_hardformat

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 31 www.hcc-embedded.com

f_hardformat

Re-formats a drive ignoring current format information. All open fi les will be
closed. This command will destroy any existing Master Boot Record or Boot
Sector information. The new drive will be formatted without a Master Boot
Record. The new drive will start with Boot Sector Information created from
the information retrieved from the f_getphy() routine and use the whole
available physical space for the volume. All data will be destroyed on the
drive. (see Section 3 for further information)

The caller must specify the required format:

 F_FAT12_MEDIA for FAT12

F_FAT16_MEDIA for FAT16
F_FAT32_MEDIA for FAT32

The format will fail if the specified format type is incompatible with the size
of the physical media.

Format

int f_hardformat(int drivenum, long fattype)

Arguments

 Argument Description
 drivenum which drive need to be hard formatted

 fattype type of format: FAT12, FAT16 or FAT32

Return values

 Return value Description
 F_NO_ERROR drive successfully formatted

 else (see error codes)

©2003 HCC-Embedded Kft. 32 www.hcc-embedded.com

Note: The number of sectors per cluster on a FAT32 drive is set by a hard
format and is determined by the table below which is included in the fat.c and
fat_lfn.c files. The table specifies the number of sectors on the target device
below which the second number gives the number of sectors per cluster. This
table may be modified if required.

static t_FAT32_CS FAT32_CS[]={
 { 0x00020000, 1 }, /* ->64MB */
 { 0x00040000, 2 }, /* ->128MB */
 { 0x00080000, 4 }, /* ->256MB */
 { 0x01000000, 8 }, /* ->8GB */
 { 0x02000000, 16 }, /* ->16GB */
 { 0x0ffffff0, 32 } /* -> ... */

};

Example

void myinitfs(void) {
 int ret;

f_initvolume(0,f_cfcinit, F_AUTO_ASSIGN);

ret=f_hardformat(0, F_FAT16_MEDIA);
if(ret)

printf(“Format CFC Error: %d”, ret);
else
 printf(“CFC formatted”);

 .
 .
 .
 .
}

See also f_initvolume, f_format

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 33 www.hcc-embedded.com

f_getfreespace

This function fills a structure with information about the drive space usage -
total space, free space, used space and bad (damaged) size.

Note: If a drive size of greater than 4GB is being used then the high elements
of the returned structure should also be read to get the upper 32 bits of each of
the numbers i.e pspace.total_high etc.

Format

int f_getfreespace(int drivenum, F_SPACE
*pspace)

Arguments

 Argument Description
 drivenum drive number

 pspace pointer to F_SPACE structure

Return values

 Return value Description
 F_NO_ERROR no error

 else error code

Example

void info(void) {
F_SPACE space;
int ret;
 /* get free space on current drive */

int ret = f_getfreespace(f_getcurrdrive(),space);

if(!ret)
printf("There are %d bytes total, %d bytes free, \

%d bytes used, %d bytes bad.",
space.total, space.free, space.used,
space.bad);

else
printf("\nError %d reading drive\n", ret);

}

©2003 HCC-Embedded Kft. 34 www.hcc-embedded.com

f_setlabel

This function sets a volume label. The volume label should be an ASCII
string with a maximum length of 11 characters. Non-printable characters will
be padded out as space characters.

Format

int f_setlabel(int drivenum, const char *pLabel)

Arguments

 Argument Description
 drivenum drive number

 pLabel pointer to null terminated string to use

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void setlabel(void) {
int result = f_setlabel(f_getcurrdrive(),"DRIVE
1");

if (result)

printf("Error on Drive");
}

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 35 www.hcc-embedded.com

f_getlabel

This returns the label to a function. The pointer passed for storage should be
capable of holding an 11 character string.

Format

int f_getlabel(int drivenum,
char *pLabel, long len)

Arguments

 Argument Description
 drivenum drive number

 pLabel pointer to copy label to
 len length of storage area

Return values

 Return value Description
 F_NOERROR success

 else (see error codes table)

Example

void getlabel(void) {
char label[12];
int result;

result =
f_getlabel(f_getcurrdrive(),label);

if (result)

printf("Error on Drive");
else
 printf("Drive is %s",label);

}

©2003 HCC-Embedded Kft. 36 www.hcc-embedded.com

f_mkdir

Makes a new directory.

Format

int f_mkdir(const char *dirname)

Arguments

 Argument Description
 dirname new directory name to create

Return values

 Return value Description
 F_NO_ERROR new directory name created successfully

 else (see error codes table)

Example

void myfunc(void) {
.
.
f_mkdir(“subfolder”); /*creating directory */
f_mkdir(“subfolder/sub1”);
f_mkdir(“subfolder/sub2”);
f_mkdir(“a:/subfolder/sub3”
.
.

}

See also

f_chdir, f_rmdir

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 37 www.hcc-embedded.com

f_chdir

Change directory

Format

int f_chdir(const char *dirname)

Arguments

 Argument Description
 dirname directory to change to

Return values

 Return value Description
 F_NO_ERROR directory has been change successfully

 else (see error codes table)

Example

void myfunc(void) {
.
.
f_mkdir(“subfolder”);
f_chdir(“subfolder”); /*change directory */
f_mkdir(“sub2”);
f_chdir(“..”); /*go to upward */
f_chdir(“subfolder/sub2”); /*goto into sub2 dir */
.
.

}

See also

f_mkdir, f_rmdir, f_getcwd, f_getdcwd

©2003 HCC-Embedded Kft. 38 www.hcc-embedded.com

f_rmdir

Remove a directory. The target directory must be empty when this is called;
otherwise it returns an error code.

If a directory is read-only then this function returns an error code.

Format

int f_rmdir(const char *dirname)

Arguments

 Argument Description
 dirname name of directory to remove

Return values

 Return value Description
 F_NO_ERROR directory name is removed successfully
 else (see error codes table)

Example

void myfunc(void) {
.
.
f_mkdir(“subfolder”); /*creating directories */
f_mkdir(“subfolder/sub1”);
.
. doing some work
.
f_rmdir(“subfolder/sub1”);
f_rmdir(“subfolder”); /*removes directory */
.
.

}

See also

f_mkdir, f_chdir

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 39 www.hcc-embedded.com

f_getdrive

Get current drive number

Format

int f_getdrive(void)

Arguments

none

Return values

 Return value Description
 Current Drive 0-A, 1-B, 2-C etc

Example

void myfunc(void) {
int currentdrive;
.
currentdrive=f_getdrive();
.
.

}

See also

f_chdrive

©2003 HCC-Embedded Kft. 40 www.hcc-embedded.com

f_chdrive

Change to a new current drive.

Format

int f_chdrive(int drivenum)

Arguments

 Argument Description
 drivenum drive number to change to (0-A,1-B,2-C,…)

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void myfunc(void) {
.
.
f_chdrive(0);/*select drive A */
.
.

}

See also

f_getdrive

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 41 www.hcc-embedded.com

f_getcwd

Get current working directory on current drive.

Format

int f_getcwd(char *buffer, int maxlen)

Arguments

 Argument Description
 buffer where to store current working directory string

 maxlen length of the buffer

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

#define BUFFLEN F_MAXPATH+F_MAXNAME

void myfunc(void) {

char buffer[BUFFLEN];

if (!f_getcwd(buffer, BUFFLEN)) {
 printf (“current directory is %s”,buffer);
}
else {
 printf (“Drive Error”)
}

}

See also

f_chdir, f_getdcwd

©2003 HCC-Embedded Kft. 42 www.hcc-embedded.com

f_getdcwd

Get current working folder on selected drive.

Format

int f_getdcwd(int drivenum, char *buffer,
int maxlen)

Arguments

 Argument Description
 drivenum specify drive (0-A, 1-B, 2-C)

 buffer where to store current working directory string
 maxlen length of the buffer

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example

#define BUFFLEN F_MAXPATH+F_MAXNAME

void myfunc(long drivenum) {

char buffer[BUFFLEN];

if (!f_getcwd(drivenum,buffer, BUFFLEN)) {
 printf (“current directory is %s”,buffer);
 printf (“on drive %c”,drivenum+’A’);
}
else {
 printf (“Drive Error”)
}

}

See also

f_chdir, f_getcwd

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 43 www.hcc-embedded.com

f_rename

Renames a file or directory.

If a file or directory is read-only it cannot be renamed. If a file is already open
it cannot be renamed.

Format

int f_rename(const char *filename,
const char *newname)

Arguments

 Argument Description
 filename file or directory name with/without path
 newname new name of target file or directory (without path)

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void myfunc(void) {
.
.
f_rename (“oldfile.txt”,”newfile.txt”);
f_rename (“A:\subdir\oldfile.txt”,”newfile.txt”);
.
.

}

See also

f_mkdir, f_open

©2003 HCC-Embedded Kft. 44 www.hcc-embedded.com

f_delete

Deletes a file.

A read-only or open file cannot be deleted.

Format

int f_delete(const char *filename)

Arguments

 Argument Description
 filename file name with or without path to be deleted

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void myfunc(void) {
.
.
f_delete (“oldfile.txt”);
f_delete (“A:\subdir\oldfile.txt”);
.
.

}

See also

f_open

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 45 www.hcc-embedded.com

f_filelength

Get the length of a file. If the requested file does not exist this function
returns with zero.

Format

long f_filelength (const char *filename)

Arguments

 Argument Description
 filename file name with or without path

Return values

 Return value Description
 filelength length of file

Example

int myreadfunc(char *filename, char *buffer, long
buffsize) {

F_FILE *file=f_open(filename,”r”);
long size=f_filelength(filename);
if (!file) {
 printf (“%s Cannot be opened!”,filename);
 return 1;
}
if (size>buffsize) {
 printf (“Not enough memory!”);

return 2;
}

f_read(buffer,size,1,file);
f_close(file);

return 0;

}

See also

f_open

©2003 HCC-Embedded Kft. 46 www.hcc-embedded.com

f_findfirst

Find first file or subdirectory in specified directory. First call f_findfirst
function and if file was found get the next file with f_findnext function.
Files with the system attribute set will be ignored.

Note: If this is called with "*.*" and this is not the root directory the first
entry found will be "." - the current directory.

Format

int f_findfirst(const char *filename,
F_FIND *find)

Arguments

 Argument Description
 filename name of file to find

 find where to store find information

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void mydir(void) {
F_FIND find;
if (!f_findfirst("A:/subdir.*",&find)) {

do {
 printf (“filename:%s”,find.filename);

 if (find.attr&F_ATTR_DIR) {
 printf (“ directory\n”);
 }
 else {
 printf (“ size %d\n”,find.len);

 }
} while (!f_findnext(&find));

}
}

See also

f_findnext

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 47 www.hcc-embedded.com

f_findnext

Finds the next file or subdirectory in a specified directory after a previous call
to f_findfirst or f_findnext. First call f_findfirst function and if file was
found get the rest of the matching files by repeated calls to the f_findnext
function.
Files with the system attribute set will be ignored.

Note: If this is called with "*.*" and it is not the root directory the first file
found will be ".." - the parent directory.

Format

int f_findnext(F_FIND *find)

Arguments

 Argument Description
 find find information (created by f_findfirst call)

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void mydir(void) {
F_FIND find;
if (!f_findfirst("A:/subdir.*",&find)) {

do {
 printf (“filename:%s”,find.filename);

 if (find.attr&F_ATTR_DIR) {
 printf (“ directory\n”);
 }
 else {
 printf (“ size %d\n”,find.len);

 }
} while (!f_findnext(&find));

}
}

See also

f_findfirst

©2003 HCC-Embedded Kft. 48 www.hcc-embedded.com

f_settimedate

Set the time and date of a file or directory. (See Section 2 for further
information about porting).

Format

int f_settimedate(const char *filename,
unsigned short ctime,
unsigned short cdate)

Arguments

 Argument Description
 filename file
 ctime creation time of file or directory
 cdate creation date of file or directory

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example

void myfunc(void) {

f_mkdir(“subfolder”); /*creating directory */

f_settimedate(“subfolder”,f_gettime(),f_getdate());

}

See also

f_gettimedate

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 49 www.hcc-embedded.com

f_gettimedate

Get time and date information from a file or directory. (See Section 2 for
more information about porting).

Format

int f_gettimedate(const char *filename,
unsigned short *pctime,
unsigned short *pcdate)

Arguments

 Argument Description
 filename target file
 pctime pointer to where to store creation time
 pcdate pointer to where to store creation date

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example

void myfunc(void) {
 unsigned short t,d;

if (!f_gettimedate(“subfolder”,&t,&d)) {
 unsigned short sec=(t & 001fH) << 1;
 unsigned short minute=((t & 07e0H) >> 5);
 unsigned short hour=((t & 0f800H) >> 11);
 unsigned short day= (d & 001fH);
 unsigned short month= ((d & 01e0H) >> 5);

 unsigned short year=1980+ ((d & f800H) >> 9)
 printf (“Time: %d:%d:%d”,hour,minute,sec);
 printf (“Date: %d.%d.%d”,year,month,day);
}
else {
 printf (“File time cannot retrieved!”
}

}

See also

f_settimedate

©2003 HCC-Embedded Kft. 50 www.hcc-embedded.com

f_setattr

This routine is used to set the attributes of a file. Possible file attribute
settings are defined by the FAT file system:

F_ATTR_ARC Archive
F_ATTR_DIR Directory
F_ATTR_VOLUME Volume
F_ATTR_SYSTEM System
F_ATTR_HIDDEN Hidden
F_ATTR_READONLY Read Only

Note: The directory and volume attributes cannot be set by this function.

Format

int f_setattr(const char *filename, unsigned
char attr)

Arguments

 Argument Description
 filename target file

 attr new attribute setting

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void myfunc(void) {

/* make myfile read only and hidden */

f_setattr("myfile.txt",

F_ATTR_READONLY | F_ATTR_HIDDEN);
}

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 51 www.hcc-embedded.com

f_getattr

This routine is used to get the attributes of a specified file. Possible file
attribute settings are defined by the FAT file system:

F_ATTR_ARC Archive
F_ATTR_DIR Directory
F_ATTR_VOLUME Volume
F_ATTR_SYSTEM System
F_ATTR_HIDDEN Hidden
F_ATTR_READONLY Read Only

Format

int f_getattr(const char *filename, unsigned
char *attr)

Arguments

 Argument Description
 filename target file

 attr pointer to place attribute setting

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void myfunc(void) {
unsigned char attr;

/* find if myfile is read only */

if(!f_getattr("myfile.txt",&attr)
{

if(attr & F_ATTR_READONLY)
printf("myfile.txt is read only");

else
 printf("myfile.txt is writable");

}
else
 printf("file not found");
}

©2003 HCC-Embedded Kft. 52 www.hcc-embedded.com

f_open

Opens a file. The following modes are allowed to open:

"r" Open existing file for reading. The stream is positioned at the

beginning of the file.
"r+" Open existing file for reading and writing. The stream is positioned

at the beginning of the file.
"w" Truncate file to zero length or create file for writing. The stream is

positioned at the beginning of the file.
"w+" Open a file for reading and writing. The file is created if it does not

exist, otherwise it is truncated. The stream is positioned at the
beginning of the file.

"a" Open for appending (writing to end of file). The file is created if it
does not exist. The stream is positioned at the end of the file.

"a+" Open for reading and appending (writing to end of file). The file is
created if it does not exist. The stream is positioned at the end of
the file.

Note: There is no text mode. The system assumes all files to be accessed in
binary mode only.

Format

F_FILE *f_open(const char *filename,
const char *mode);

Arguments

 Argument Description
 filename file to be opened

 mode mode to open file with

Return values

 Return value Description
 F_FILE * pointer to the associated opened file handle or zero

if it could not be opened

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 53 www.hcc-embedded.com

Example

void myfunc(void) {
F_FILE *file;
char c;
file=f_open(“myfile.bin”,”r”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}
f_read(&c,1,1,file); /*read 1 byte */
printf (“’%c’ is read from file”,c);
f_close(file);

}

See also

f_read, f_write, f_close,

©2003 HCC-Embedded Kft. 54 www.hcc-embedded.com

f_close
Close a previously opened file.

Format

int f_close(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of target file

Return values

 Return value Description
 F_NO_ERROR success
 else (see error codes table)

Example

void myfunc(void) {
F_FILE *file;
char *string=”ABC”;
file=f_open(“myfile.bin”,”w”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}
f_write(string,3,1,file); /*write 3 bytes */
if (!f_close(file)) {
 printf (“file stored”);
}
else printf (“file close error”);

}

See also

f_open, f_read, f_write

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 55 www.hcc-embedded.com

f_write
Write data to file at current stream position. File has to be opened with “w”,
“w+”, "a+", "r+" or “a”.

Format

long f_write(const void *buf,
long size,long size_st,
F_FILE *filehandle)

Arguments

 Argument Description
 buf pointer to data to be written

 size size of items to be written
 size_st number of items to be written

 filehandle handle of target file

Return values

 Return value Description
 number number of bytes written

Example

void myfunc(void) {
F_FILE *file;
char *string=”ABC”;
file=f_open(“myfile.bin”,”w”);
if (!file) {
 printf (“File cannot be opened!”);
 return;
}

/* write 3 bytes */

if(f_write(string,3,1,file)!=3)
{

printf (“Error: write incomplete”);
}

f_close(file);

}

See also

f_read, f_open, f_close

©2003 HCC-Embedded Kft. 56 www.hcc-embedded.com

f_read

Read bytes from the current position in the target file. File has to be opened
with “r”, "r+", "w+" or "a+".

Format

long f_read(void *buf,
long size,long size_st,
F_FILE *filehandle)

Arguments

 Argument Description
 buf buffer where to store data

 size size of items to be read

 size_st number of items to be read
 filehandle handle of target file

Return values

 Return value Description
 number number of read bytes

Example

int myreadfunc(char *filename, char *buffer, long
buffsize) {

F_FILE *file=f_open(filename,”r”);
long size=f_filelength(filename);
if (!file) {
 printf (“%s Cannot be opened!”,filename);
 return 1;
}
if (f_read(buffer,size,1,file)!=size) {

printf (“different number of bytes are
read”);

}
f_close(file);
return 0;

}

See also

f_seek, f_tell, f_open, f_close, f_write

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 57 www.hcc-embedded.com

f_seek
Move stream position in the target file. The file must be open.

The Whence parameter could be one of:

F_SEEK_CUR - Current position of file pointer
F_SEEK_END - End of file
F_SEEK_SET - Beginning of file

offset position is relative to whence.

Format

long f_seek(F_FILE *filehandle,long offset,
long whence)

Arguments

 Argument Description
 filehandle handle of open target file

 offset relative byte position according to whence
 whence where to calculate offset from

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

int myreadfunc(char *filename, char *buffer, long
buffsize) {

F_FILE *file=f_open(filename,”r”);
f_read(buffer,1,1,file); /* read 1st byte */
f_seek(file,0,SEEK_SET);
f_read(buffer,1,1,file); /* read the same byte */
f_seek(file,-1,SEEK_END);
f_read(buffer,1,1,file); /* read last byte */
f_close(file);
return 0;

}

See also

f_read, f_tell

©2003 HCC-Embedded Kft. 58 www.hcc-embedded.com

f_tell

Tells the current read-write position in the open target file.

Format

long f_tell(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
 filepos current read or write file position

Example

int myreadfunc(char *filename, char *buffer, long
buffsize) {

F_FILE *file=f_open(filename,”r”);
printf (“Current position %d”,f_tell(file));
/* position 0 */

f_read(buffer,1,1,file); /* read 1 byte
printf (“Current position %d”,f_tell(file));
/* positin 1 */

f_read(buffer,1,1,file); /* read 1 byte
printf (“Current position %d”,f_tell(file));
/* position 2 */
f_close(file);
return 0;

}

See also

f_seek, f_read, f_write, f_open

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 59 www.hcc-embedded.com

f_eof

Check whether the current position in the open target file is the end of the
file.

Format

int f_eof(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
 0 not at end of file

 else end of file or any error

Example

int myreadfunc(char *filename, char *buffer, long
buffsize) {

F_FILE *file=f_open(filename,”r”);
while (!f_eof()) {
 if (!buffsize) break;
 buffsize--;
 f_read(buffer++,1,1,file);
}
f_close(file);
return 0;

}

See also

f_seek, f_read, f_write, f_open

©2003 HCC-Embedded Kft. 60 www.hcc-embedded.com

f_rewind

Sets the file position in the open target file to the start of the file.

Format

int f_rewind(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
 F_NO_ERROR success

 else (see error codes table)

Example

void myfunc(void) {
 char buffer[4];
 char buffer2[4];

F_FILE *file=f_open("myfile.bin",”r”);
if (file) {

f_read(buffer,4,1,file);

/*rewind file pointer */
f_rewind(file);

/*read from beginning */
f_read(buffer2,4,1,file);

f_close(file);

 }
return 0;

}

See also

f_seek, f_read, f_write, f_open

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 61 www.hcc-embedded.com

f_putc

Writes a character to the specified open file at the current file position. The
current file position is incremented.

Format

int f_putc(char ch,F_FILE *filehandle)

Arguments

 Argument Description
 ch character to be written

 filehandle handle of open target file

Return values

 Return value Description
 -1 Write failed

 value Successfully written character

Example

void myfunc (char *filename, long num) {
F_FILE *file=f_open(filename,”w”);
while (num--) {
int ch='A';
 if(ch!=(f_putc(ch))
 {

printf("f_putc error!");
break;

 }
}
f_close(file);
return 0;

}

See also

f_seek, f_read, f_write, f_open

©2003 HCC-Embedded Kft. 62 www.hcc-embedded.com

f_getc

Reads a character from the current position in the target open file.

Format

int f_getc(F_FILE *filehandle)

Arguments

 Argument Description
 filehandle handle of open target file

Return values

 Return value Description
-1 Read failed

value character read from the file

Example

int myreadfunc(char *filename, char *buffer, long
buffsize) {

F_FILE *file=f_open(filename,”r”);
while (buffsize--) {
int ch;
 if((ch=f_getc(file))== -1)
 break;
 *buffer++=ch;
 buffsize--;
}

f_close(file);
return 0;

}

See also

f_seek, f_read, f_write, f_open, f_eof

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 63 www.hcc-embedded.com

5 Driver Interface

This section documents the required interface functions to provide a media driver for the
file system.

Reference should also be made to the sample device drivers supplied with the code when
developing a new driver. The easiest starting point is the RAM driver.

Driver Interface Functions

• xxx_initfunc
• xxx_getphy
• xxx_readsector
• xxx_readmultiplesector
• xxx_writesector
• xxx_writemultiplesector
• xxx_getstatus
• xxx_delfunc

These are the routines that may be supplied by any driver.

The xxx is a reference to the particular driver being developed e.g. xxx=cfc for compact
flash card driver.

The xxx_initfunc routine is mandatory and is passed to the f_initvolume routine to
initialize a volume. This passes a set of pointers to the driver interface functions below to
the file system.

The xxx_getphy routine is mandatory and is called by the file system to find out the
physical properties of the device e.g. number of sectors.

The xxx_readsector routine is mandatory and is used to read a sector from the target
device.

The xxx_readmultiplesector routine is optional and is used to read a series of sector from
the target device. If not available xxx_readsector will be used.

The xxx_writesector routine is optional and is required to write a sector to the target
device. It is mandatory if format is required.

The xxx_writemultiplesector routine is optional and is used to write a series of sectors to
the target device. If not available xxx_writesector will be used.

©2003 HCC-Embedded Kft. 64 www.hcc-embedded.com

The xxx_getstatus routine is optional and is only used for removable media to discover
their status i.e. whether a card has been removed or changed.

The xxx_delfunc routine is optional and can be used to release any resources associated
with a drive when it is removed.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 65 www.hcc-embedded.com

xxx_initfunc

Passed to the f_initvolume routine to create a volume. The routine passes to
the file system a set of function pointers to access the volume and an optional
user_ptr. These function pointers are to the other functions documented in
this section.

Format

int xxx_initfunc(F_FUNC *pfunc, void *user_ptr)

Arguments

 Argument Description
 pfunc function structure used by file system

 ̀ user_ptr pointer to drive init information

Return values

 Return value Description
 0 Always successful

The F_FUNC structure is defined as:

typedef struct {
 F_WRITESECTOR writesector;
 F_WRITEMULTIPLESECTOR writemultiplesector;
 F_READSECTOR readsector;
 F_READMULTIPLESECTOR readmultiplesector;
 F_GETPHY getphy;
 F_GETSTATUS getstatus;
 F_DELFUNC delfunc;
 void *user_ptr;
} F_FUNC;

Except for the last field these are all function pointers to inform the file system which
functions to call.

The user_ptr is assigned by the driver. The value stored in the user_ptr is included in all
driver function calls for that volume. The usage of this field is determined by the driver
but is typically used to identify one of a set of attached interfaces e.g. if there are multiple
Compact Flash card slots being controlled by a single driver. A call to f_delvolume will
cause the file system to call the driver xxx_delfunc with the assigned user_ptr which
will then be removed when the driver function returns.

©2003 HCC-Embedded Kft. 66 www.hcc-embedded.com

Note: The user_ptr value passed to the xxx_initfunc is determined by the f_initvolume
call. The driver may use this value in the user_ptr field of the returned structure or assign
another value as the driver requires. The file system will make all subsequent calls to
driver functions with the assigned value.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 67 www.hcc-embedded.com

xxx_getphy

This function is called by the file system to discover the physical properties of
the drive. The routine will set the number of cylinders, heads and tracks and
the number of sectors per track.

Format

int xxx_getphy(F_PHY *pPhy, void *user_ptr)

Arguments

 Argument Description
 pPhy pointer to physical control structure

 user_ptr pointer to drive information (see xxx_initfunc)

Return values

 Return value Description
 0 Success

 else Error codes for this device e.g. device not present

The F_PHY structure is defined as follows:

typedef struct {

unsigned short number_of_cylinders; /* number of cylinders */
unsigned short sector_per_track; /* sectors per track */
unsigned short number_of_heads; /* number of heads */
unsigned long number_of_sectors; /* number of sectors */

} F_PHY;

Note: the number of cylinders is not required by the system. All other parameters must be
set correctly by the xxx_getphy function.

©2003 HCC-Embedded Kft. 68 www.hcc-embedded.com

xxx_readsector

This function is called by the file system to read a complete sector.

Format

int xxx_readsector(void *data,
unsigned long sector, void *user_ptr)

Arguments

 Argument Description
 data pointer to write data to from specified sector

 sector number of sector to be written
 user_ptr pointer to driver information (see xxx_initfunc)

Return values

 Return value Description
 0 Success

 else Sector out of range

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 69 www.hcc-embedded.com

xxx_readmultiplesector

This function is called by the file system to read a series of consecutive
sectors. This function is optional – its inclusion will enhance performance on
most devices and is particularly important with Hard Disk Drives.

Format

int xxx_readmultiplesector(void *data,
unsigned long sector, int cnt, void
*user_ptr)

Arguments

 Argument Description
 data pointer to write data to from specified sector

 sector number of first sector to be written
 cnt number of sectors to write
 user_ptr pointer to driver information (see xxx_initfunc)

Return values

 Return value Description
 0 Success

 else Sector out of range

©2003 HCC-Embedded Kft. 70 www.hcc-embedded.com

xxx_writesector

This function is called by the file system to write a complete sector.

Nb. This function maybe omitted if a read-only drive is required.

Format

int xxx_writesector(void *data,
unsigned long sector, void *user_ptr)

Arguments

 Argument Description
 data pointer to data to write to specified sector

 sector number of sector to be written

 user_ptr pointer to drive information (see xxx_initfunc)

Return values

 Return value Description
 0 Success

 else Sector out of range

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 71 www.hcc-embedded.com

xxx_writemultiplesector

This function is called by the file system to write a series of consecutive
sectors. This function is optional – its inclusion will enhance performance on
most devices and is particularly important with Hard Disk Drives.

Format

int xxx_writemultiplesector(void *data,
unsigned long sector, int count, void
*user_ptr)

Arguments

 Argument Description
 data pointer to data to write to specified sector

 sector number of first sector to be written
 cnt number of sectors to write
 user_ptr pointer to drive information (see xxx_initfunc)

Return values

 Return value Description
 0 Success

 else Sector out of range

©2003 HCC-Embedded Kft. 72 www.hcc-embedded.com

xxx_getstatus

This function is called by the file system to check the status of the media.
This is used with removable media to check that a card has not been removed
or swapped. The function returns a bit field of new status information.

Nb. If this drive is for a permanent media (e.g. Hard disk or RAM drive), this
function may be omitted.

Format

int xxx_getstatus(void *user_ptr)

Arguments

 Argument Description
 user_ptr pointer to drive information (see xxx_initfunc)

Return values

 Return value Description
 0 All Ok

 F_ST_MISSING Card has been removed (Bit field)
 F_ST_CHANGED The card has been removed and replaced (Bit field)
 F_ST_WRITEPROTECT The card is write protected (Bit field)

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 73 www.hcc-embedded.com

xxx_delfunc

This function is called by the file system to remove a drive. The drive can use
this call to free any resources associated to that drive . Use of this routine in
the driver is optional.

This function is called is an f_delvolume API call is made. After this is
completed the file system removes all record of this volume including the
current value of the user_ptr.

Format

int xxx_delfunc(void *user_ptr)

Arguments

 Argument Description
 user_ptr pointer to drive information (see xxx_initfunc)

Return values

 Return value Description
 0 Successful

 Else Error Code

©2003 HCC-Embedded Kft. 74 www.hcc-embedded.com

6 Compact Flash Card

Overview

The Compact Flash Card (CFC) driver is designed to operate with all standard compact
flash cards types 1 and 2.

There are three methods for interfacing with a Compact Flash Card:

• True IDE Mode
• PC Memory Mode
• PC I/O Mode

The package contains a sample driver for True IDE mode. For developers wishing to use
other modes they should contact HCC-Embedded for further information.

Porting True IDE Mode

Files

There are three files for using True IDE mode:

cfc_ide.h - header file for ide source files
cfc_ide.c - source code for running IDE without interrupts

Hardware Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

The following are the header file definitions which must be modified

CFC_TOVALUE - this value is hardware dependent and is a counter for loop expiry.
The developer may replace this with a host OS timeout function.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 75 www.hcc-embedded.com

CFC_CSO - this is for accessing a chip select register and is hardware dependent. The
code assumes a chip select is used to access the card and is removed after access. The
developer must modify this and all accesses to meet the host system design. It should also
be noted that the chip select needs to be set for a relatively long access time (>300ns).
Developers should check the timing in the CFC Specification.

Compact Flash Registers:

The following definitions are used to access the compact flash registers:

CFC_BASE - Base address of the compact flash card
CFC_DATA - Macro to access the data register
CFC_SECTORCOU - Macro to access the sector count register
CFC_SECTORNO - Macro to access the sector number register
CFC_CYLINDERLO - Macro to access the cylinder low word register
CFC_CYLINDERHI - Macro to access the cylinder high word register
CFC_SELC - Macro to access the select card register
CFC_COMMAND - Macro to access the command register
CFC_STATE - Macro to access the state register (same address as command)

CPLD Logic:

HCC uses CPLD logic in most of its reference designs for CFCards. The following
definitions are used to read from HCC CPLD logic state changes in the card.

CFC_CPLDSTATE - MACRO for reading the state
CFC_CPLDSTATE_CDCH - State bit for card has changed
CFC_CPLDSTATE_CFCD - State bit for card removed

The developer must implement something to reflect this functionality. Contact
support@hcc-embedded.com for reference design info rmation.

Setting IDE Mode

A special sequence needs to be done to force the compact flash card into IDE mode. This
is done in the function fnCFCtrueide. This is achieved in HCC hardware by a sequence
of commands to the CPLD which:

1. switches off power to the card
2. forces IDE mode
3. switches power on

This sequence may also be achieved by CPLD logic or other hardware.

©2003 HCC-Embedded Kft. 76 www.hcc-embedded.com

Please reference the CFC specification or contact support@hcc-embedded.com for
reference design information.

 Further Information

HCC-Embedded provide design and consultancy services for developers implementing
Compact Flash Cards. HCC-Embedded also has a range of specific drivers for different
CF configurations such as with interrupts and in PC IO mode.

HCC-Embedded also have several hardware reference designs for Compact Flash
interfaces.

The complete compact flash card specification may be obtained from
www.compactflash.org.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 77 www.hcc-embedded.com

7 MultiMediaCard/Secure Digital Card Driver

Overview

Secure Digital cards are a super-set of MultiMediaCards i.e. they can be used exactly in
the same manner as MMCs but have additional functionality available. In particular they
have an additional two interface pins.

When used in Secure Digital mode there are 4 methods of communicating with the card:

SPI mode

This is available on both MMC and SD cards primarily because of its wide availability
and ease of use. Because many standard CPUs support an SPI interface it reduces the
load on the host system compared to other interface methods. When SPI is implemented
by software control this benefit is lost.

MultiMediaCard Mode

This is a special mode for communicating with MultiMediaCards requiring very few IO
pins. It has the disadvantage that generally software has to control every bit transfer and
clock.

Secure Digital Mode

This is not compatible with MultiMediaCards. It has the basic advantage that it uses four
data lines and thus the potential transfer speeds are higher (up to 10MBytes/sec) but
unless there is specific UART hardware on the host system the load on the host is
generally much higher than in SPI mode (with hardware support).

The system currently supports the SPI driver interface. This is provided in two forms;

• Hardware SPI - where the host CPU has an SPI capability
• Software SPI - where the SPI is simulated by software using 4 GPIO pins.

How to port these is described in the sections below.

©2003 HCC-Embedded Kft. 78 www.hcc-embedded.com

Porting Hardware SPI Driver

The hardware SPI driver is for use by systems where the host CPU has dedicated logic
for handling SPI communication and in particular automatically handles SPI clock
generation and bit transmission and reception such that the programmer should only
receive and transmit bytes.

Unfortunately from system to system the SPI implementation varies. In particular, the
handling of the SPI chip select pin may be different between systems - some
automatically generate it where as other systems require it to be controlled entirely by
software.

Files

The developer should include the following files to support this driver:

mmc_mcf.c Source Code file
mmc_mcf.h Header file

Hardware Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

MACROS

The following macros in the target specific section must be modified for the developers
target platform:

SPI_CS_LO
This macro sets the SPI chip select to low. Some chips handle this automatically in which
case this macro can be a NULL macro.

SPI_CS_HI
This macro sets the SPI chip select to high. Some chips handle this automatically in
which case this macro can be a NULL macro.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 79 www.hcc-embedded.com

SPI_CD_IN
This macro gets the current state of the card detect pin. Nb. If the card is not connected
the pin is high.

SPI_WP_IN
This macro gets the current state of the write protect pin on the connector.

SPI_WAIT_TR
This macro waits for the transmitter to be ready. The implementation of this is UART
dependant and may not be necessary.

SER_FIFOCHAR
This macro writes an 8 bit value to the transmit FIFO.

SER_FIFOWORD
This macro writes a 16 bit value to the transmit FIFO.

SER_FIFO
This macro writes a 32 bit value to the transmit FIFO.

Functions

The following functions must be modified for the developers target platform:

spiSetBR ()

The setting of a baud rate is a target specific function. This routine is called with the
desired baud rate divided by 10 (e.g. if 100kbit is required 10000 is passed to the
function).

spiRx()

The receive handler is dependant upon the behavior of the hosts UART. This function
must be modified to receive data from the SPI port of the target system.

spiInit()

Initializing the SPI interface is a target specific function so the main body of this function
must be replaced. This section should do the set-up and initialization of the SPI port.

©2003 HCC-Embedded Kft. 80 www.hcc-embedded.com

Waiting and Real-time Behavior

The following routines have wait loops inserted where they are waiting for a particular
external condition to occur:

spiWaitBusy()

This can be a long wait (>10mseconds) as the data is being written into the card.

spiWaitStartBit()

This wait is dependent on the bit rate but is usually relatively short.

spiCmd()

This can be a long wait as it is waiting for a complete response from the card.

It is recommended that in initial porting these loops are left as they are until the system is
stable. Then the developer should assess these loops in terms of their whole system and
find an appropriate scheduling mechanism or timer mechanism. All these conditions can
be delayed as long as the developer requires - i.e. there is no maximum time before the
condition must be re-checked.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 81 www.hcc-embedded.com

Porting Software SPI Driver

The software SPI driver is used to drive the SPI interface through 4 I/O pins controlled by
software. Additionally two further pins are required for Card Detect and Write Protect.
This driver is also useful when getting a system running even where hardware SPI is
available.

Generally, if no hardware SPI driver available on the host system it is preferable to use
the MultiMediaCard driver than software SPI. The main reason for this is that the
performance of the two communication methods is roughly equal but the MMC Driver
mode requires fewer IO pins to be connected.

Files

The developer should include the following files to support this driver:

mmc_mcfs.c Source Code file
mmc_mcf.h Header file

Waiting and Realtime Behaviour

The following routines have wait loops inserted where they are waiting for a particular
external condition to occur:

spiWaitBusy()

This can be a long wait (>10mseconds) as the data is being written into the card and the
delay is completely dependant on the card type and what it is doing.

spiWaitStartBit()

This wait is dependent on the bit rate but is usually relatively short.

spiWaitTR()

This wait is hardware dependent where there is a request to transmit but the UART
requires that a transmit ready acknowledgement is given first.

spiCmd()

This can be a long wait as it is waiting for a complete response from the card.

It is recommended that in initial porting these loops are left as they are until the system is
stable. Then the developer should assess these loops in terms of their whole system and

©2003 HCC-Embedded Kft. 82 www.hcc-embedded.com

find an appropriate scheduling mechanism or timer mechanism. All these conditions can
be delayed as long as the developer requires - i.e. there is no maximum time before the
condition must be re-checked.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 83 www.hcc-embedded.com

Hardware Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

Hardware porting requires the assignment of pins to each of the used pins in the driver.
These pins are:

 DAT_I SPI Data input
 DAT_O SPI Data output
 CLK SPI Clock
 CS SPI Chip Select
 CD Card Detect
 WP Write Protect

For the software the following MACROS have to be written according to this assignment:

SPI_CS_LO Set the SPI Chip select to low.
SPI_CS_HI Set the SPI chip select to high.
SPI_DATA_LO Set the SPI Data output to low.
SPI_DATA_HI Set the SPI Data output to high.
SPI_CLK_LO Set the SPI clock to low.
SPI_CLK_HI Set the SPI clock to high.
SPI_DATA_IN Read the SPI data input.
SPI_CD_IN Read the Card detect.
SPI_WP_IN Read the write protect.

Bit Rates

There is no way to generally define a bit rate for a software implementation. The
developer must rely on the CPU and calculate from this. The following should be noted -
the maximum guaranteed speed which all MMC/SD cards will operate at is
100Kbits/second. Generally cards operate much faster than this so it is normally not a
problem if the software is much quicker. Because the interface is SPI it can be driven as
slowly as required.

©2003 HCC-Embedded Kft. 84 www.hcc-embedded.com

Porting MultiMediaCard Driver

To be inserted.

Porting SD Card Driver

To be inserted.

Further Information

HCC-Embedded provide design and consultancy services for developers implementing
MultiMediaCard Host interfaces. HCC-Embedded also have several reference designs for
MultiMediaCard Host interfaces.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 85 www.hcc-embedded.com

8 Hard Disk Drive

Overview

The Hard Disk Drive (HDD) driver is designed to operate with a standard IDE HDD. The
sample driver is designed to handle two HDDs simultaneously.

The design uses some CPLD logic for controlling the interface – for details of this
contact: support@hcc-embedded.com.

Files

There are two files for the HDD driver:

hdd_ide.h - header file for ide source files
hdd_ide.c - source code for running IDE

Hardware Porting

Throughout the code the areas which are target specific have been put within an
HCC_HW definition e.g.

#ifdef HCC_HW
Target specific hardware parts
#endif

Within these areas the parts listed in this section must be provided for the driver to
function.

The following are the header file definitions which must be modified

HDD_TOVALUE - this value is hardware dependent and is a counter for loop expiry.
The developer may replace this with a host OS timeout function.

HDD_BASE0 - Base address of the first HDD
HDD_CSBASE0 - Chip select base register for first HDD
HDD_CSOPT0 - Chip select option register for first HDD
HDD_CONTROL0 - Control register in CPLD control logic for HDD.

©2003 HCC-Embedded Kft. 86 www.hcc-embedded.com

Hard Disk Drive Registers:

The following definitions are used to access the hard disk drive registers:

HDD_DATA - Macro to access the data register
HDD_FEATURE - Macro to access the feature register
HDD_SECTORCOU - Macro to access the sector count register
HDD_SECTORNO - Macro to access the sector number register
HDD_CYLINDERLO - Macro to access the cylinder low word register
HDD_CYLINDERHI - Macro to access the cylinder high word register
HDD_SELC - Macro to access the select card register
HDD_COMMAND - Macro to access the command register
HDD_STATE - Macro to access the state register (same address as command)

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 87 www.hcc-embedded.com

9 RAM Driver

The RAM driver is a good starting point for implementing a new driver. The sample
RAM driver is written to support two independent drives.

The RAM driver does not include a ram_getstatus routine because there is no concept of
removing and replacing the drive - it is always present once initialized.

Follow the following steps to build a RAM drive:

1. Include the ramdrv.c and ramdrv.h files in your file system build. This ensures it can
be mounted.

2. Modify the RAMDRIVE_SIZE define to the size of block of RAM you wish to use for
this drive. Nb. This is statically assigned - if you require it to be malloc'd this is a minor
change. Also note - there are minimum sizes for FAT16 and FAT32 - to build a FAT16
file system you must assign 2.8MB of RAM and for a FAT32 32MB. Because of this, it
is normal to run FAT12 in RAM. About 50K is minimum required to run a RAM drive.

3. Call f_initvolume with the number of the volume you wish it to be also a pointer to
the f_ramdrvinit function.

4. Call f_hardformat to format the drive.

void main(void){

 /* mount RAM drive as drive A: */

 f_initvolume(0, f_ramdrvinit, F_AUTO_ASSIGN);

 /* format the drive */

 /* creates boot sector information and volume */

 f_hardformat(0, F_FAT12_MEDIA); create FAT12 in RAM */

 /* now free to use the drive */

}

The RAM drive may now be accessed as a standard drive using the API calls.

Note: When running the test suite with the RAM drive certain tests will fail because the
drive is destroyed through the simulated power on/off.

©2003 HCC-Embedded Kft. 88 www.hcc-embedded.com

10 Using CheckDisk

This section describes the usage of the f_checkdisk utility.

FAT file systems were not designed to be failsafe i.e. they were not designed in such a
way that if power is lost unexpectedly they will always be reconstructed in a clean state.
Several types of error may occur such as loss of chains, or lost directory entries. This
utility is designed to correct all errors that can occur from unexpected power loss when
using EFFS-FAT. Note that if the media is used in a device with a different FAT
implementation then not all errors may be correctable.

This utility must be used stand-alone i.e. no other application should be accessing the file
system while this program is running.

Often a check-disk operation can be performed by more powerful devices such as desktop
computers and in this case it is normal to omit the check-disk files from the build.
However, if there is a non-removable media then the f_checkdisk utility should be
included in the build.

Files

To include the f_checkdisk utility in your project add the following files to your build :

 /chkdsk/chkdsk.c
 /chkdsk/chkdsk.h

Build Options

CHKDSK_LOG_ENABLE

This option should be enabled in chkdsk.h if you want to generate a log file for the
actions of f_checkdisk. This is recommended.

CHKDSK_LOG_SIZE

This specifies the maximum size in RAM to be used for storing check disk log
information.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 89 www.hcc-embedded.com

f_checkdisk

This function checks the state of the attached media and automatically fixes
errors detected and can create a log file of what it has found.

Format

int f_checkdisk(int drivenum, int param)

Arguments

 Argument Description
 drivenum Number of drive to be checked

 param see below

Return values

 Return value Description
 FC_NO_ERROR Completed Success fully

 FC_WRITE_ERROR Unable to write a sector
 FC_READ_ERROR Unable to read a sector

 FC_CLUSTER_ERROR Unable to access a cluster in the FAT
 FC_ALLOCATION_ERROR Memory allocation failed

Parameter Values:

CHKDSK_ERASE_BAD_CHAIN

The function will automatically erase all bad chains found. Otherwise the file
with the bad chain will be terminated at the last good cluster.

CHKDSK_ERASE_LOST_CHAIN

The function will automatically erase all lost chains found . Otherwise a
LOSTxxxx file will be created with the files contents.

CHKDSK_ERASE_LOST_BAD_CHAIN

The function will automatically erase all bad lost chains. Otherwise a
LOSTxxxx file will be created and this file will be terminated at the last good
cluster.

©2003 HCC-Embedded Kft. 90 www.hcc-embedded.com

Example:

void mychkdsk(void) {
 int ret;

/* check drive 0 (“A”) */

if(ret=f_checkdisk(0, 0)

 printf(“Check Disk Failed: error %d\n”,ret);
else

printf(“Check Disk Finished\n”);

 .
 .
}

Memory Requirements

The f_checkdisk utility requires memory to run. This is typically 1K of static memory
(0.5K if logging is disabled) and 1.5K of stack.

Additionally a two blocks must be allocated dyna mically (using malloc) the sizes of
which are approximately:

 (NUMBER_OF_CLUSTERS+4096) / 8
 and
 512 + CHKDSK_LOG_SIZE

The second of these is not required if logging is not enabled – the CHKDSK_LOG_SIZE
is defined in chkdsk.h. The number of clusters on a device can be very large and depends
on how the device is formatted (number of sectors per cluster) and the size of the device.
The number of clusters on a device can be approximated to:

(SIZE_OF_MEDIA) / (512 * SECTORS_PER_CLUSTER).

The number of sectors per cluster is always in the range 2^n where 0 <= n < 7.

EFFS FAT - Implementation Guide

©2003 HCC-Embedded Kft. 91 www.hcc-embedded.com

Log File Entries

Each time the f_checkdisk utility is run a log file is generated if enabled. The following
messages may appear in the log file:

Directory: <directory_path>

Displays directory where error messages below have been found.

Directory entry deleted: <name>

Either a file entry or a directory entry has been deleted from this directory

Lost entry deleted (found in a subdirectory):/ <LOSTxxxx>

The named lost directory or file entry has been recovered.

Entry deleted (reserved/bad cluster): <name>

The first cluster in a directory entry is unusable or if there is a bad element in the
chain and CHKDSK_ERASE_BAD_CHAIN is set.

File size changed: <name> < old_size> <new_size>

A file was found whose size is smaller than the minimum number of clusters
needed to store that file or the file size is greater than that which can be stored in
the cluster chain. The file size has been changed to the maximum for the clusters
allocated to that file. The user should analyze this file to find the correct
termination point.

Start cluster changed: <name> (either “.” or “..”)

An invalid cluster has been found in a directory entry for either “.” or “..”. This
has been fixed.

Entry deleted (cross linked chain): <name>

If the start cluster of the named file is cross- linked or if any subsequent cluster is
cross-linked and CHKDSK_ERASE_BAD_CHAIN is set then this message will
give the name of the removed file.

Lost directory chain saved: <LOSTxxxx>

A directory chain with no references has been found. It has been recreated with
the name LOSTxxxx.

©2003 HCC-Embedded Kft. 92 www.hcc-embedded.com

Lost file chain saved: <LOSTxxxx>

A file chain with no references has been found. It has been recreated in the root
directory with the name LOSTxxxx.

Lost chain removed (first cluster/cnt): <cluster> <count>

A lost chain has been discovered and removed. This will only appear if
CHKDSK_ERASE_LOST_CHAIN or CHKDSK_ERASE_LOST_BAD_CHAIN
enabled. If not a LOSTxxxx file will be created.

Last cluster changed (bad next cluster value): <name>

In checking the file chain an invalid cluster was discovered. The cluster prior to
the bad cluster is changed to end of file and the file size adjusted to the maximum
for the new size of cluster chain.

Moving lost directory: /<LOSTxxxx>

 A lost directory has been recovered.

'..' changed to root: <LOSTxxxx>

A lost directory entry has been placed in root so its ‘..’ entry has been changed to
point to root.

FAT2 updated according to FAT1 .

FAT1 and FAT2 were found to be different and FAT1 is used as the correct
version. This can appear only once at the beginning of the log file.

Long filename entry/entries removed. Count=

This appears at the end of the log file and is a count of the number of long
filename entries that were invalid and unrecoverable.

